5,392 research outputs found

    Three-Dimensional Photonic Circuits in Rigid and Soft Polymers Tunable by Light

    Get PDF
    partially_open6Polymeric matrices offer a wide and powerful platform for integrated photonics, complementary to the well established silicon photonics technology. The possibility to integrate, on the same chip, different customized materials allows for many functionalities, like the ability to dynamically control the spectral properties of single optical components. Within this context, this Article reports on the fabrication and optical characterization of integrated photonic circuits for the telecom C-band, made of a combination of both rigid and tunable elastic polymers. By using a 3D photolithographic technique (direct laser writing), in a single-step process, every building block of the polymeric circuit is fabricated: straight and bent waveguides, grating couplers, and single and vertically coupled whispering gallery mode resonators designed in planar and vertical geometries. Using this platform, a new type of operation was introduced through true three-dimensional integration of tunable photonic components, made by liquid crystalline networks that can be actuated and controlled by a remote and non-invasive light stimulus. Depending on the architecture, it is possible to integrate them as elastic actuators or as constituents of the photonic cavity itself. The two strategies then exploit the optical induced deformation and variation of its refractive index, inducing a net red or blue shift of the cavity resonances, respectively. This work paves the way for light-tunable optical networks that combine different photonic components, made by glassy or shape-changing materials, in order to implement further photonic circuit requirements.openSara Nocentini; Francesco Riboli; Matteo Burresi; Daniele Martella; Camilla Parmeggiani; Diederik S. WiersmaNocentini, Sara; Riboli, Francesco; Burresi, Matteo; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S

    Multi-site Event Discrimination in Large Liquid Scintillation Detectors

    Full text link
    Simulation studies have been carried out to explore the ability to discriminate between single-site and multi-site energy depositions in large scale liquid scintillation detectors. A robust approach has been found that is predicted to lead to a significant statistical separation for a large variety of event classes, providing a powerful tool to discriminate against backgrounds and break important degeneracies in signal extraction. This has particularly relevant implications for liquid scintillator searches for neutrinoless double beta decay (0νββ0\nu\beta\beta) from 130^{130}Te and 136^{136}Xe, where it is possible for a true 0νββ0\nu\beta\beta signal to be distinguished from most radioactive backgrounds (including those from cosmogenic production) as well as unknown gamma lines from the target isotope.Comment: 20 pages, 10 figure

    Optical excitation and detection of high-frequency coherent phonons and magnons

    Get PDF
    The goal of this work is to obtain better control over all-optical excitation and detection of high-frequency collective excitations, in particular - phonons and magnons. Phonons- a collective movement of atoms in the lattice, and magnons- excitations of a spin system in magnetically ordered materials, recently became the prospective alternative to electrons in quantum computing or in general, information technology. In the scope of this thesis, we present a novel approach to the resonant excitation of fundamental magnon mode in a thin ferromagnetic film of Iron-Gallium alloy, as well as enhanced detection sensitivity of propagating coherent phonon wave packet exploiting giant photo-elasticity of exciton-polaritons in GaAs/AlAs superlattice. Additionally, a possible way to miniaturize the all-optical set-ups for manipulation of collective excitations is proposed by implementing a passively mode-locked semiconductor laser diode

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Controlling phonons and photons at the wavelength-scale: silicon photonics meets silicon phononics

    Get PDF
    Radio-frequency communication systems have long used bulk- and surface-acoustic-wave devices supporting ultrasonic mechanical waves to manipulate and sense signals. These devices have greatly improved our ability to process microwaves by interfacing them to orders-of-magnitude slower and lower loss mechanical fields. In parallel, long-distance communications have been dominated by low-loss infrared optical photons. As electrical signal processing and transmission approaches physical limits imposed by energy dissipation, optical links are now being actively considered for mobile and cloud technologies. Thus there is a strong driver for wavelength-scale mechanical wave or "phononic" circuitry fabricated by scalable semiconductor processes. With the advent of these circuits, new micro- and nanostructures that combine electrical, optical and mechanical elements have emerged. In these devices, such as optomechanical waveguides and resonators, optical photons and gigahertz phonons are ideally matched to one another as both have wavelengths on the order of micrometers. The development of phononic circuits has thus emerged as a vibrant field of research pursued for optical signal processing and sensing applications as well as emerging quantum technologies. In this review, we discuss the key physics and figures of merit underpinning this field. We also summarize the state of the art in nanoscale electro- and optomechanical systems with a focus on scalable platforms such as silicon. Finally, we give perspectives on what these new systems may bring and what challenges they face in the coming years. In particular, we believe hybrid electro- and optomechanical devices incorporating highly coherent and compact mechanical elements on a chip have significant untapped potential for electro-optic modulation, quantum microwave-to-optical photon conversion, sensing and microwave signal processing.Comment: 26 pages, 5 figure

    Design, monitoring and performance evaluation of high capacity optical networks

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit de les TICInternet traffic is expected to keep increasing exponentially due to the emergence of a vast number of innovative online services and applications. Optical networks, which are the cornerstone of the underlying Internet infrastructure, have been continuously evolving to carry the ever-increasing traffic in a more flexible, cost-effective, and intelligent way. Having these three targets in mind, this PhD thesis focuses on two general areas for the performance improvement and the evolution of optical networks: i) introducing further cognition to the optical layer, and ii) introducing new networking solutions revolutionizing the optical transport infrastructure. In the first part, we present novel failure detection and identification solutions in the optical layer utilizing the optical spectrum traces captured by cost-effective coarse-granular Optical Spectrum Analyzers (OSA). We demonstrate the effectiveness of the developed solutions for detecting and identifying filter-related failures in the context of Spectrum-Switched Optical Networks (SSON), as well as transmitter-related laser failures in Filter-less Optical Networks (FON). In addition, at the subsystem level we propose an Autonomic Transmission Agent (ATA), which triggers local or remote transceiver reconfiguration by predicting Bit-Error-Rate (BER) degradation by monitoring State-of-Polarization (SOP) data obtained by coherent receivers. I have developed solutions to push further the performance of the currently deployed optical networks through reducing the margins and introducing intelligence to better manage their resources. However, it is expected that the spectral efficiency of the current standard Single-Mode Fiber (SMF) based optical network approaches the Shannon capacity limits in the near future, and therefore, a new paradigm is required to keep with the pace of the current huge traffic increase. In this regard, Space Division Multiplexing (SDM) is proposed as the ultimate solution to address the looming capacity crunch with a reduced cost-per-bit delivered to the end-users. I devote the second part of this thesis to investigate different flavors of SDM based optical networks with the aim of finding the best compromise for the realization of a spectrally and spatially flexible optical network. SDM-based optical networks can be deployed over various types of transmission media. Additionally, due to the extra dimension (i.e., space) introduced in SDM networks, optical switching nodes can support wavelength granularity, space granularity, or a combination of both. In this thesis, we evaluate the impact of various spectral and spatial switching granularities on the performance of SDM-based optical networks serving different profiles of traffic with the aim of understanding the impact of switching constraints on the overall network performance. In this regard, we consider two different generations of wavelength selective switches (WSS) to reflect the technology limitations on the performance of SDM networks. In addition, we present different designs of colorless direction-less, and Colorless Directionless Contention-less (CDC) Reconfigurable Optical Add/Drop Multiplexers (ROADM) realizing SDM switching schemes and compare their performance in terms of complexity and implementation cost. Furthermore, with the aim of revealing the benefits and drawbacks of SDM networks over different types of transmission media, we preset a QoT-aware network planning toolbox and perform comparative performance analysis among SDM network based on various types of transmission media. We also analyze the power consumption of Multiple-Input Multiple-Output (MIMO) Digital Signal Processing (DSP) units of transceivers operating over three different types of transmission media. The results obtained in the second part of the thesis provide a comprehensive outlook to different realizations of SDM-based optical networks and showcases the benefits and drawbacks of different SDM realizations.Se espera que el tráfico de Internet siga aumentando exponencialmente debido a la continua aparición de gran cantidad de aplicaciones innovadoras. Las redes ópticas, que son la piedra angular de la infraestructura de Internet, han evolucionado continuamente para transportar el tráfico cada vez mayor de una manera más flexible, rentable e inteligente. Teniendo en cuenta estos tres objetivos, esta tesis doctoral se centra en dos áreas cruciales para la mejora del rendimiento y la evolución de las redes ópticas: i) introducción de funcionalidades cognitivas en la capa óptica, y ii) introducción de nuevas estructuras de red que revolucionarán el transporte óptico. En la primera parte, se presentan soluciones novedosas de detección e identificación de fallos en la capa óptica que utilizan trazas de espectro óptico obtenidas mediante analizadores de espectros ópticos (OSA) de baja resolución (y por tanto de coste reducido). Se demuestra la efectividad de las soluciones desarrolladas para detectar e identificar fallos derivados del filtrado imperfecto en las redes ópticas de conmutación de espectro (SSON), así como fallos relacionados con el láser transmisor en redes ópticas sin filtro (FON). Además, a nivel de subsistema, se propone un Agente de Transmisión Autónomo (ATA), que activa la reconfiguración del transceptor local o remoto al predecir la degradación de la Tasa de Error por Bits (BER), monitorizando el Estado de Polarización (SOP) de la señal recibida en un receptor coherente. Se han desarrollado soluciones para incrementar el rendimiento de las redes ópticas mediante la reducción de los márgenes y la introducción de inteligencia en la administración de los recursos de la red. Sin embargo, se espera que la eficiencia espectral de las redes ópticas basadas en fibras monomodo (SMF) se acerque al límite de capacidad de Shannon en un futuro próximo, y por tanto, se requiere un nuevo paradigma que permita mantener el crecimiento necesario para soportar el futuro aumento del tráfico. En este sentido, se propone el Multiplexado por División Espacial (SDM) como la solución que permita la continua reducción del coste por bit transmitido ante ése esperado crecimiento del tráfico. En la segunda parte de esta tesis se investigan diferentes tipos de redes ópticas basadas en SDM con el objetivo de encontrar soluciones para la realización de redes ópticas espectral y espacialmente flexibles. Las redes ópticas basadas en SDM se pueden implementar utilizando diversos tipos de medios de transmisión. Además, debido a la dimensión adicional (el espacio) introducida en las redes SDM, los nodos de conmutación óptica pueden conmutar longitudes de onda, fibras o una combinación de ambas. Se evalúa el impacto de la conmutación espectral y espacial en el rendimiento de las redes SDM bajo diferentes perfiles de tráfico ofrecido, con el objetivo de comprender el impacto de las restricciones de conmutación en el rendimiento de la red. En este sentido, se consideran dos generaciones diferentes de conmutadores selectivos de longitud de onda (WSS) para reflejar las limitaciones de la tecnología en el rendimiento de las redes SDM. Además, se presentan diferentes diseños de ROADM, independientes de la longitud de onda, de la dirección, y sin contención (CDC) utilizados para la conmutación SDM, y se compara su rendimiento en términos de complejidad y coste. Además, con el objetivo de cuantificar los beneficios e inconvenientes de las redes SDM, se ha generado una herramienta de planificación de red que prevé la QoT usando diferentes tipos de fibras. También se analiza el consumo de energía de las unidades DSP de los transceptores MIMO operando en redes SDM con tres tipos diferentes de medios de transmisión. Los resultados obtenidos en esta segunda parte de la tesis proporcionan una perspectiva integral de las redes SDM y muestran los beneficios e inconvenientes de sus diferentes implementacionesAward-winningPostprint (published version

    Atmospheric Thermodynamic Profiling through the Use of a Micro-Pulse Raman Lidar System: Introducing the Compact Raman Lidar MARCO

    Get PDF
    It was for a long time believed that lidar systems based on the use of high-repetition micro-pulse lasers could be effectively used to only stimulate atmospheric elastic backscatter echoes, and thus were only exploited in elastic backscatter lidar systems. Their application to stimulate rotational and roto-vibrational Raman echoes, and consequently, their exploitation in atmospheric thermodynamic profiling, was considered not feasible based on the technical specifications possessed by these laser sources until a few years ago. However, recent technological advances in the design and development of micro-pulse lasers, presently achieving high UV average powers (1–5 W) and small divergences (0.3–0.5 mrad), in combination with the use of large aperture telescopes (0.3–0.4 m diameter primary mirrors), allow one to presently develop micro-pulse laser-based Raman lidars capable of measuring the vertical profiles of atmospheric thermodynamic parameters, namely water vapor and temperature, both in the daytime and night-time. This paper is aimed at demonstrating the feasibility of these measurements and at illustrating and discussing the high achievable performance level, with a specific focus on water vapor profile measurements. The technical solutions identified in the design of the lidar system and their technological implementation within the experimental setup of the lidar prototype are also carefully illustrated and discussed

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure
    • …
    corecore