1,463 research outputs found

    Interactive video retrieval using implicit user feedback.

    Get PDF
    PhDIn the recent years, the rapid development of digital technologies and the low cost of recording media have led to a great increase in the availability of multimedia content worldwide. This availability places the demand for the development of advanced search engines. Traditionally, manual annotation of video was one of the usual practices to support retrieval. However, the vast amounts of multimedia content make such practices very expensive in terms of human effort. At the same time, the availability of low cost wearable sensors delivers a plethora of user-machine interaction data. Therefore, there is an important challenge of exploiting implicit user feedback (such as user navigation patterns and eye movements) during interactive multimedia retrieval sessions with a view to improving video search engines. In this thesis, we focus on automatically annotating video content by exploiting aggregated implicit feedback of past users expressed as click-through data and gaze movements. Towards this goal, we have conducted interactive video retrieval experiments, in order to collect click-through and eye movement data in not strictly controlled environments. First, we generate semantic relations between the multimedia items by proposing a graph representation of aggregated past interaction data and exploit them to generate recommendations, as well as to improve content-based search. Then, we investigate the role of user gaze movements in interactive video retrieval and propose a methodology for inferring user interest by employing support vector machines and gaze movement-based features. Finally, we propose an automatic video annotation framework, which combines query clustering into topics by constructing gaze movement-driven random forests and temporally enhanced dominant sets, as well as video shot classification for predicting the relevance of viewed items with respect to a topic. The results show that exploiting heterogeneous implicit feedback from past users is of added value for future users of interactive video retrieval systems

    Sensing, interpreting, and anticipating human social behaviour in the real world

    Get PDF
    Low-level nonverbal social signals like glances, utterances, facial expressions and body language are central to human communicative situations and have been shown to be connected to important high-level constructs, such as emotions, turn-taking, rapport, or leadership. A prerequisite for the creation of social machines that are able to support humans in e.g. education, psychotherapy, or human resources is the ability to automatically sense, interpret, and anticipate human nonverbal behaviour. While promising results have been shown in controlled settings, automatically analysing unconstrained situations, e.g. in daily-life settings, remains challenging. Furthermore, anticipation of nonverbal behaviour in social situations is still largely unexplored. The goal of this thesis is to move closer to the vision of social machines in the real world. It makes fundamental contributions along the three dimensions of sensing, interpreting and anticipating nonverbal behaviour in social interactions. First, robust recognition of low-level nonverbal behaviour lays the groundwork for all further analysis steps. Advancing human visual behaviour sensing is especially relevant as the current state of the art is still not satisfactory in many daily-life situations. While many social interactions take place in groups, current methods for unsupervised eye contact detection can only handle dyadic interactions. We propose a novel unsupervised method for multi-person eye contact detection by exploiting the connection between gaze and speaking turns. Furthermore, we make use of mobile device engagement to address the problem of calibration drift that occurs in daily-life usage of mobile eye trackers. Second, we improve the interpretation of social signals in terms of higher level social behaviours. In particular, we propose the first dataset and method for emotion recognition from bodily expressions of freely moving, unaugmented dyads. Furthermore, we are the first to study low rapport detection in group interactions, as well as investigating a cross-dataset evaluation setting for the emergent leadership detection task. Third, human visual behaviour is special because it functions as a social signal and also determines what a person is seeing at a given moment in time. Being able to anticipate human gaze opens up the possibility for machines to more seamlessly share attention with humans, or to intervene in a timely manner if humans are about to overlook important aspects of the environment. We are the first to propose methods for the anticipation of eye contact in dyadic conversations, as well as in the context of mobile device interactions during daily life, thereby paving the way for interfaces that are able to proactively intervene and support interacting humans.Blick, Gesichtsausdrücke, Körpersprache, oder Prosodie spielen als nonverbale Signale eine zentrale Rolle in menschlicher Kommunikation. Sie wurden durch vielzählige Studien mit wichtigen Konzepten wie Emotionen, Sprecherwechsel, Führung, oder der Qualität des Verhältnisses zwischen zwei Personen in Verbindung gebracht. Damit Menschen effektiv während ihres täglichen sozialen Lebens von Maschinen unterstützt werden können, sind automatische Methoden zur Erkennung, Interpretation, und Antizipation von nonverbalem Verhalten notwendig. Obwohl die bisherige Forschung in kontrollierten Studien zu ermutigenden Ergebnissen gekommen ist, bleibt die automatische Analyse nonverbalen Verhaltens in weniger kontrollierten Situationen eine Herausforderung. Darüber hinaus existieren kaum Untersuchungen zur Antizipation von nonverbalem Verhalten in sozialen Situationen. Das Ziel dieser Arbeit ist, die Vision vom automatischen Verstehen sozialer Situationen ein Stück weit mehr Realität werden zu lassen. Diese Arbeit liefert wichtige Beiträge zur autmatischen Erkennung menschlichen Blickverhaltens in alltäglichen Situationen. Obwohl viele soziale Interaktionen in Gruppen stattfinden, existieren unüberwachte Methoden zur Augenkontakterkennung bisher lediglich für dyadische Interaktionen. Wir stellen einen neuen Ansatz zur Augenkontakterkennung in Gruppen vor, welcher ohne manuelle Annotationen auskommt, indem er sich den statistischen Zusammenhang zwischen Blick- und Sprechverhalten zu Nutze macht. Tägliche Aktivitäten sind eine Herausforderung für Geräte zur mobile Augenbewegungsmessung, da Verschiebungen dieser Geräte zur Verschlechterung ihrer Kalibrierung führen können. In dieser Arbeit verwenden wir Nutzerverhalten an mobilen Endgeräten, um den Effekt solcher Verschiebungen zu korrigieren. Neben der Erkennung verbessert diese Arbeit auch die Interpretation sozialer Signale. Wir veröffentlichen den ersten Datensatz sowie die erste Methode zur Emotionserkennung in dyadischen Interaktionen ohne den Einsatz spezialisierter Ausrüstung. Außerdem stellen wir die erste Studie zur automatischen Erkennung mangelnder Verbundenheit in Gruppeninteraktionen vor, und führen die erste datensatzübergreifende Evaluierung zur Detektion von sich entwickelndem Führungsverhalten durch. Zum Abschluss der Arbeit präsentieren wir die ersten Ansätze zur Antizipation von Blickverhalten in sozialen Interaktionen. Blickverhalten hat die besondere Eigenschaft, dass es sowohl als soziales Signal als auch der Ausrichtung der visuellen Wahrnehmung dient. Somit eröffnet die Fähigkeit zur Antizipation von Blickverhalten Maschinen die Möglichkeit, sich sowohl nahtloser in soziale Interaktionen einzufügen, als auch Menschen zu warnen, wenn diese Gefahr laufen wichtige Aspekte der Umgebung zu übersehen. Wir präsentieren Methoden zur Antizipation von Blickverhalten im Kontext der Interaktion mit mobilen Endgeräten während täglicher Aktivitäten, als auch während dyadischer Interaktionen mittels Videotelefonie

    Looking Beyond a Clever Narrative: Visual Context and Attention are Primary Drivers of Affect in Video Advertisements

    Full text link
    Emotion evoked by an advertisement plays a key role in influencing brand recall and eventual consumer choices. Automatic ad affect recognition has several useful applications. However, the use of content-based feature representations does not give insights into how affect is modulated by aspects such as the ad scene setting, salient object attributes and their interactions. Neither do such approaches inform us on how humans prioritize visual information for ad understanding. Our work addresses these lacunae by decomposing video content into detected objects, coarse scene structure, object statistics and actively attended objects identified via eye-gaze. We measure the importance of each of these information channels by systematically incorporating related information into ad affect prediction models. Contrary to the popular notion that ad affect hinges on the narrative and the clever use of linguistic and social cues, we find that actively attended objects and the coarse scene structure better encode affective information as compared to individual scene objects or conspicuous background elements.Comment: Accepted for publication in the Proceedings of 20th ACM International Conference on Multimodal Interaction, Boulder, CO, US

    Summarizing First-Person Videos from Third Persons' Points of Views

    Full text link
    Video highlight or summarization is among interesting topics in computer vision, which benefits a variety of applications like viewing, searching, or storage. However, most existing studies rely on training data of third-person videos, which cannot easily generalize to highlight the first-person ones. With the goal of deriving an effective model to summarize first-person videos, we propose a novel deep neural network architecture for describing and discriminating vital spatiotemporal information across videos with different points of view. Our proposed model is realized in a semi-supervised setting, in which fully annotated third-person videos, unlabeled first-person videos, and a small number of annotated first-person ones are presented during training. In our experiments, qualitative and quantitative evaluations on both benchmarks and our collected first-person video datasets are presented.Comment: 16+10 pages, ECCV 201

    Creating and exploiting multimodal annotated corpora

    Get PDF
    International audienceThe paper presents a project of the Laboratoire Parole et Langage which aims at collecting, annotating and exploiting a corpus of spoken French in a multimodal perspective. The project directly meets the present needs in linguistics where a growing number of researchers become aware of the fact that a theory of communication which aims at describing real interactions should take into account the complexity of these interactions. However, in order to take into account such a complexity, linguists should have access to spoken corpora annotated in different fields. The paper presents the annotation schemes used in phonetics, morphology and syntax, prosody, gestuality at the LPL together with the type of linguistic description made from the annotations seen in two examples

    Computer-aided investigation of interaction mediated by an AR-enabled wearable interface

    Get PDF
    Dierker A. Computer-aided investigation of interaction mediated by an AR-enabled wearable interface. Bielefeld: Universitätsbibliothek Bielefeld; 2012.This thesis provides an approach on facilitating the analysis of nonverbal behaviour during human-human interaction. Thereby, much of the work that researchers do starting with experiment control, data acquisition, tagging and finally the analysis of the data is alleviated. For this, software and hardware techniques are used as sensor technology, machine learning, object tracking, data processing, visualisation and Augmented Reality. These are combined into an Augmented-Reality-enabled Interception Interface (ARbInI), a modular wearable interface for two users. The interface mediates the users’ interaction thereby intercepting and influencing it. The ARbInI interface consists of two identical setups of sensors and displays, which are mutually coupled. Combining cameras and microphones with sensors, the system offers to record rich multimodal interaction cues in an efficient way. The recorded data can be analysed online and offline for interaction features (e. g. head gestures in head movements, objects in joint attention, speech times) using integrated machine-learning approaches. The classified features can be tagged in the data. For a detailed analysis, the recorded multimodal data is transferred automatically into file bundles loadable in a standard annotation tool where the data can be further tagged by hand. For statistic analyses of the complete multimodal corpus, a toolbox for use in a standard statistics program allows to directly import the corpus and to automate the analysis of multimodal and complex relationships between arbitrary data types. When using the optional multimodal Augmented Reality techniques integrated into ARbInI, the camera records exactly what the participant can see and nothing more or less. The following additional advantages can be used during the experiment: (a) the experiment can be controlled by using the auditory or visual displays thereby ensuring controlled experimental conditions, (b) the experiment can be disturbed, thus offering to investigate how problems in interaction are discovered and solved, and (c) the experiment can be enhanced by interactively comprising the behaviour of the user thereby offering to investigate how users cope with novel interaction channels. This thesis introduces criteria for the design of scenarios in which interaction analysis can benefit from the experimentation interface and presents a set of scenarios. These scenarios are applied in several empirical studies thereby collecting multimodal corpora that particularly include head gestures. The capabilities of computer-aided interaction analysis for the investigation of speech, visual attention and head movements are illustrated on this empirical data. The effects of the head-mounted display (HMD) are evaluated thoroughly in two studies. The results show that the HMD users need more head movements to achieve the same shift of gaze direction and perform less head gestures with slower velocity and fewer repetitions compared to non-HMD users. From this, a reduced willingness to perform head movements if not necessary can be concluded. Moreover, compensation strategies are established like leaning backwards to enlarge the field of view, and increasing the number of utterances or changing the reference to objects to compensate for the absence of mutual eye contact. Two studies investigate the interaction while actively inducing misunderstandings. The participants here use compensation strategies like multiple verification questions and arbitrary gaze movements. Additionally, an enhancement method that highlights the visual attention of the interaction partner is evaluated in a search task. The results show a significantly shorter reaction time and fewer errors
    corecore