65 research outputs found

    Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces

    Get PDF
    We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of sequence classification tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state-of-the-art for topic-based sentiment analysis.Comment: To appear at NAACL 2018 (long

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation

    Get PDF
    Peer reviewe

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Multi-Word Terminology Extraction and Its Role in Document Embedding

    Get PDF
    Automated terminology extraction is a crucial task in natural language processing and ontology construction. Termhood can be inferred using linguistic and statistic techniques. This thesis focuses on the statistic methods. Inspired by feature selection techniques in documents classification, we experiment with a variety of metrics including PMI (point-wise mutual information), MI (mutual information), and Chi-squared. We find that PMI is in favour of identifying top keywords in a domain, but Chi-squared can recognize more keywords overall. Based on this observation, we propose a hybrid approach, called HMI, that combines the best of PMI and Chi-squared. HMI outperforms both PMI and Chi-squared. The result is verified by comparing overlapping between the extracted keywords and the author-identified keywords in arXiv data. When the corpora are computer science and physics papers, the top-100 hit rate can reach 0.96 for HMI. We also demonstrate that terminologies can improve documents embeddings. In this experiment, we treat machine-identified multi-word terminologies with one word. Then we use the transformed text as input for the document embedding. Compared with the representations learnt from unigrams only, we observe a performance improvement over 9.41% for F1 score in arXiv data on document classification tasks

    IEEE Access Special Section Editorial: Big Data Learning and Discovery

    Full text link
    corecore