15 research outputs found

    Tools and Models for High Level Parallel and Grid Programming

    Full text link
    When algorithmic skeletons were first introduced by Cole in late 1980 the idea had an almost immediate success. The skeletal approach has been proved to be effective when application algorithms can be expressed in terms of skeletons composition. However, despite both their effectiveness and the progress made in skeletal systems design and implementation, algorithmic skeletons remain absent from mainstream practice. Cole and other researchers, focused the problem. They recognized the issues affecting skeletal systems and stated a set of principles that have to be tackled in order to make them more effective and to take skeletal programming into the parallel mainstream. In this thesis we propose tools and models for addressing some among the skeletal programming environments issues. We describe three novel approaches aimed at enhancing skeletons based systems from different angles. First, we present a model we conceived that allows algorithmic skeletons customization exploiting the macro data-flow abstraction. Then we present two results about the exploitation of meta-programming techniques for the run-time generation and optimization of macro data-flow graphs. In particular, we show how to generate and how to optimize macro data-flow graphs accordingly both to programmers provided non-functional requirements and to execution platform features. The last result we present are the Behavioural Skeletons, an approach aimed at addressing the limitations of skeletal programming environments when used for the development of component-based Grid applications. We validated all the approaches conducting several test, performed exploiting a set of tools we developed.Comment: PhD Thesis, 2008, IMT Institute for Advanced Studies, Lucca. arXiv admin note: text overlap with arXiv:1002.2722 by other author

    Tools and models for high level parallel and Grid programming

    Get PDF
    When algorithmic skeletons were first introduced by Cole in late 1980 (50) the idea had an almost immediate success. The skeletal approach has been proved to be effective when application algorithms can be expressed in terms of skeletons composition. However, despite both their effectiveness and the progress made in skeletal systems design and implementation, algorithmic skeletons remain absent from mainstream practice. Cole and other researchers, respectively in (51) and (19), focused the problem. They recognized the issues affecting skeletal systems and stated a set of principles that have to be tackled in order to make them more effective and to take skeletal programming into the parallel mainstream. In this thesis we propose tools and models for addressing some among the skeletal programming environments issues. We describe three novel approaches aimed at enhancing skeletons based systems from different angles. First, we present a model we conceived that allows algorithmic skeletons customization exploiting the macro data-flow abstraction. Then we present two results about the exploitation of metaprogramming techniques for the run-time generation and optimization of macro data-flow graphs. In particular, we show how to generate and how to optimize macro data-flow graphs accordingly both to programmers provided non-functional requirements and to execution platform features. The last result we present are the Behavioural Skeletons, an approach aimed at addressing the limitations of skeletal programming environments when used for the development of component-based Grid applications. We validated all the approaches conducting several test, performed exploiting a set of tools we developed

    Compilation Techniques for High-Performance Embedded Systems with Multiple Processors

    Get PDF
    Institute for Computing Systems ArchitectureDespite the progress made in developing more advanced compilers for embedded systems, programming of embedded high-performance computing systems based on Digital Signal Processors (DSPs) is still a highly skilled manual task. This is true for single-processor systems, and even more for embedded systems based on multiple DSPs. Compilers often fail to optimise existing DSP codes written in C due to the employed programming style. Parallelisation is hampered by the complex multiple address space memory architecture, which can be found in most commercial multi-DSP configurations. This thesis develops an integrated optimisation and parallelisation strategy that can deal with low-level C codes and produces optimised parallel code for a homogeneous multi-DSP architecture with distributed physical memory and multiple logical address spaces. In a first step, low-level programming idioms are identified and recovered. This enables the application of high-level code and data transformations well-known in the field of scientific computing. Iterative feedback-driven search for “good” transformation sequences is being investigated. A novel approach to parallelisation based on a unified data and loop transformation framework is presented and evaluated. Performance optimisation is achieved through exploitation of data locality on the one hand, and utilisation of DSP-specific architectural features such as Direct Memory Access (DMA) transfers on the other hand. The proposed methodology is evaluated against two benchmark suites (DSPstone & UTDSP) and four different high-performance DSPs, one of which is part of a commercial four processor multi-DSP board also used for evaluation. Experiments confirm the effectiveness of the program recovery techniques as enablers of high-level transformations and automatic parallelisation. Source-to-source transformations of DSP codes yield an average speedup of 2.21 across four different DSP architectures. The parallelisation scheme is – in conjunction with a set of locality optimisations – able to produce linear and even super-linear speedups on a number of relevant DSP kernels and applications

    A pipelined code mapping scheme for static data flow computers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1986.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERINGBibliography: leaves 245-252.by Gao Guang Rong.Ph.D

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers

    CYBER 200 Applications Seminar

    Get PDF
    Applications suited for the CYBER 200 digital computer are discussed. Various areas of application including meteorology, algorithms, fluid dynamics, monte carlo methods, petroleum, electronic circuit simulation, biochemistry, lattice gauge theory, economics and ray tracing are discussed

    Parallel iterative methods in semiconductor device modelling

    Get PDF

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    corecore