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Abstract

Despite the progress made in developing more advanced compilers for embedded sys-

tems, programming of embedded high-performance computing systems based on Dig-

ital Signal Processors (DSPs) is still a highly skilled manual task. This is true for

single-processor systems, and even more for embedded systems based on multiple

DSPs. Compilers often fail to optimise existing DSP codes written in C due to the

employed programming style. Parallelisation is hampered by the complex multiple ad-

dress space memory architecture, which can be found in most commercial multi-DSP

configurations.

This thesis develops an integrated optimisation and parallelisation strategy that can

deal with low-level C codes and produces optimised parallel code for a homogeneous

multi-DSP architecture with distributed physical memory and multiple logical address

spaces. In a first step, low-level programming idioms are identified and recovered. This

enables the application of high-level code and data transformations well-known in the

field of scientific computing. Iterative feedback-driven search for “good” transforma-

tion sequences is being investigated. A novel approach to parallelisation based on a

unified data and loop transformation framework is presented and evaluated. Perfor-

mance optimisation is achieved through exploitation of data locality on the one hand,

and utilisation of DSP-specific architectural features such as Direct Memory Access

(DMA) transfers on the other hand.

The proposed methodology is evaluated against two benchmark suites (DSPstone

& UTDSP) and four different high-performance DSPs, one of which is part of a com-

mercial four processor multi-DSP board also used for evaluation. Experiments confirm

the effectiveness of the program recovery techniques as enablers of high-level trans-

formations and automatic parallelisation. Source-to-source transformations of DSP

codes yield an average speedup of 2.21 across four different DSP architectures. The

parallelisation scheme is – in conjunction with a set of locality optimisations – able to

produce linear and even super-linear speedups on a number of relevant DSP kernels

and applications.
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Chapter 1

Introduction

1.1 High Performance Embedded Systems

High Performance Computing is not the exclusive domain of computational science.

Instead, high computational power is required in many devices, which are not built

with the primary goal of providing their users with a computer of any kind, but to

offer a service in which a powerful computer plays a central role. Medical imaging

is an example of the application of such a High Performance Embedded System. As

signals from an X-ray or magneto-resonance device come in at a very high rate, they

are processed by a computer to provide the radiologist with a visualisation suitable for

further diagnosis. Other examples include radar and sonar processing, speech synthesis

and recognition, and a broad range of applications in the fields of multimedia and

telecommunications.

In this thesis, embedded systems based on Digital Signal Processors (DSPs) are

investigated as one specific example of the many different system configurations in

use today. Real-time digital signal processing requires high-performance processors

due to the strict timing constraints imposed by the volatile nature of signals.

1.2 High Performance Digital Signal Processing

Digital Signal Processors (DSPs) are ubiquitous and increasingly important in the

1



2 Chapter 1. Introduction

telecommunications and electronics industry. The industry’s demand for short time-

to-market, high computational performance, low power consumption and flexibility

over the lifespan of their devices – e.g. to adapt to new standards, to add new fea-

tures or to correct bugs of earlier versions – make programmable DSPs the favourite

choice for many new electronic designs. For example, the business magazine EETimes

reports of impressive growth rates forecasts over the next three years:

EETimes (www.eetimes.com)
(By Mark LaPedus, Semiconductor Business News, June 11, 2003 (7:01 p.m. ET)

DSPs also remain a sizzling market. This business is forecast to rise 27.7
percent to $6.2 billion in 2003, 20.8 percent in 2004 to $7.5 billion, 21.0
percent to $9.1 billion in 2005, and 6.0 percent to $9.6 billion in 2006.

From the constraints set by the DSP application domain arise some (partially mutu-

ally exclusive) requirements for signal processors distinct to those of general purpose

processors. DSPs have to be able to deliver enough computational power to cope

with demanding applications like image and video processing whilst meeting further

constraints such as low cost and low power. As a result, DSPs are usually highly spe-

cialised and adapted to their specific application domain, but notoriously difficult to

program.

DSPs find application in a broad range of different signal processing environments,

which are characterised by their algorithm complexity and predominant sampling rates.

An overview of these properties for different applications is given in figure 1.1.

DSP applications have sampling rates that vary by more than twelve orders of mag-

nitude (Glossner et al., 2000). Weather forecasting on the lower end of the frequency

scale has sampling rates of about 1/1000Hz, but utilises highly complex algorithms,

while demanding radar applications require sampling rates over a gigahertz, but ap-

ply relatively simple algorithms. Both extremes have in common that they rely on

high-performance computing systems, possibly based on DSPs, to meet the timing

constraints imposed on them. With the current state of processor technology, it is still

not possible to deliver the required compute power for some applications with just a

single DSP, but the combined power of several DSPs is needed. Unfortunately, such

multi-DSP systems are even more difficult to program than a single DSP.



1.2. High Performance Digital Signal Processing 3

Figure 1.1: DSP application complexity and sampling rates (Jinturkar, 2000)

1.2.1 Parallelism in DSP Applications

DSP and multimedia algorithms are often highly repetitive as incoming data streams

are uniformly processed. This regularity suggests that DSP and multimedia applica-

tions contain higher levels of parallelism than general purpose applications, possibly

at different granularities. Figure 1.2 shows the inherent parallelism of three classes of

workloads (general purpose, DSP, video). DSP and video codes contain larger amounts

of exploitable parallelism than general purpose codes, with video codes containing the

most parallelism. This fact not only simplifies the work of automatically parallelising

compilers, but more importantly it provides the basis for larger performance benefits

according to Amdahl’s Law. While general purpose codes can only experience theo-

retical speedups of up to 10 due to parallel execution, DSP and multimedia codes are

subject to more than an order of magnitude higher performance improvements.

In the past, DSP software was mainly composed of small kernels and software de-

velopment in assembly language was acceptable. Similar to other fields of computing,
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Figure 1.2: Potential parallel speedup of different workloads (Jinturkar, 2000)

code complexity in the DSP area began to increase and application development using

high-level languages such as C became the norm. Recent DSP applications require ten

thousand or more lines of C code (Glossner et al., 2000).

Problems exploiting the parallelism in DSP codes arise from this use of C as the

dominating high-level language for DSP programming. C is particularly difficult to

analyse due to the large degrees of freedom given to the programmer. Even worse, C

permits a low-level, hardware-oriented programming style that is frequently used by

embedded systems programmers to manually tune their codes for better performance.

Without accurate analyses, however, success in detection and exploitation of program

parallelism is very limited. Against this background, optimising as well as parallelising

compilers must find a way to cope with idiosyncracies of the C programming language

and the predominant programming style in order to be successful.

1.2.2 Parallelism in DSP Architectures

DSP manufacturers’ response to the increased demand for computational power of

their devices was the adoption of the Very Large Instruction Word (VLIW) paradigm
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Figure 1.3: Application performance requirements (Glossner et al., 2000)

to offer larger amounts of Instruction-Level Parallelism (ILP) in their processors. This

approach is very appealing as improved semiconductor manufacturing technology al-

lows for the integration of more functional units on the same chip whilst maintaining

the same sequential high-level programming model. However, it presents the compil-

ers for these architectures with the problems of identifying simultaneously executable

instructions and of constructing compact and efficient schedules.

Figure 1.3 shows the performance requirements of typical DSP applications. While

for most current end-user telecommunication applications a single DSP suffices, more

compute-intensive applications in the telecommunication infrastructure, multimedia

and speech processing domains require more computer power than an individual DSP

can deliver. To accommodate these demanding applications, provisions to combine in-

dividual DSPs to a multi-DSP were taken by their manufacturers. Nevertheless, mul-

tiprocessor capabilities of most commercial DSPs are very restricted due to cost when

compared with larger mainstream parallel computer systems. Again, manufacturers

follow their design philosophy to implement only the most frequently utilised func-
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tionality in hardware. This minimal hardware support has significant consequences for

the design of parallel DSP software. Writing parallel code for a multi-DSP target is

still a highly skilled, manual task with associated costs due to person power, increased

time-to-market and reduced reliability.

1.3 Goals of this Thesis

This thesis aims to identify and eliminate some of the obstacles to compiler-based op-

timisation and parallelisation of real-world DSP codes written in C. The choice of C

as the input language is motivated by its wide-spread use in the DSP world. While

other languages might be more suitable for compiler analysis and transformation, they

lack the support of the DSP community. Heavily used idioms and constructs in exist-

ing DSP codes that defeat program analysis and transformation are identified. Based

on this, automatable program recovery techniques that reconstruct a more compiler-

friendly form from the original sources are developed. Later work in transforming and

parallelising DSP codes will rely on the success of this stage.

High-level transformations successful in the optimisation of scientific codes have

found little consideration in the DSP domain. Instead, embedded systems compiler

research has primarily focused on low-level techniques such as register allocation

and instruction selection to accommodate the unconventional and specialised micro-

architectures found in typical DSPs. As compilers become more mature, improvements

in low-level transformations deliver diminishing returns. In this thesis, the effective-

ness of a set of high-level source-to-source transformations well-known from other

areas of high-performance computing is evaluated in the context of compilation for

single DSPs. Starting with the hypothesis that the application of high-level transfor-

mations should significantly improve performance, while finding a “good” sequence

of transformations to achieve this goal is hard, a feedback-driven iterative approach to

performance optimisation is investigated.

Parallelisation of DSP applications is still in its infancy, despite the progress in au-

tomatic parallelisation in the last two decades (Banerjee et al., 1993). This is partly

due to the complexities of the C programming language, but can also be attributed to
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the idiosyncracies of the DSP target processors. Unconventional memory models and

little hardware support for multiprocessing complicate parallelisation. Rather than ab-

stract away these details and develop parallelisation techniques on more conventional

Symmetric Multiprocessing (SMP) architectures, a commercially available, yet in its

features representative, multi-DSP platform was chosen to ensure real-world relevance

of this work. In this thesis, a methodology for the parallelisation of DSP codes is devel-

oped that takes into account the specific properties of existing multi-DSP architectures

and the C programming language.

Data locality is one of the key contributors to high performance. DSP specific

features such as a higher bandwidth to on-chip memory than to off-chip memory are

analysed to determine how they affect program performance under the aspect of data

locality. Mechanisms to exploit data locality and to integrate them into an overall

parallelisation strategy are developed.

1.3.1 Contributions

This thesis provides contributions to several relevant aspects in compiler-based DSP

code optimisation and parallelisation. The main achievements are in the following

fields:

• Program Recovery

Identification and elimination of frequently used idioms defeating program anal-

ysis and transformation.

• Single Processor Performance Optimisation

Evaluation of high-level code and data transformations embedded in an iterative

compilation framework against two important DSP benchmark suites and four

DSP architectures.

• Automatic Parallelisation

Development of a novel transformation enabling efficient parallelisation on mul-

tiple address space hardware whilst maintaining a single address space program-

ming model suitable for further single-processor optimisation.
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• Locality Optimisations

Performance optimisation through exploitation of data locality and DSP-specific

hardware features.

1.4 Overview

This thesis is structured as follows. In chapter 2 background information on digital sig-

nal processing, embedded processors, data and loop transformations and program par-

allelism is provided. Chapter 3 presents more background information on the specific

infrastructure, i.e. benchmarks, architectures and program transformation frameworks,

used in this thesis. Related work is discussed in chapter 4. Two program recovery tech-

niques used later in this thesis are developed in chapter 5. An evaluation of high-level

transformations for single-processor performance improvement is contained in chapter

6. Parallelisation of DSP codes is the subject of chapter 7, before locality optimisa-

tions are presented in chapter 8. An outlook to future work is given in chapter 9, before

chapter 10 summarises and concludes.



Chapter 2

Background

This chapter presents background material in the areas of digital signal processing and

compiler optimisations, and is structured as follows. In section 2.1 a short introduction

to digital signal processing is given. This is followed by an overview of architectural

features of digital signal processors in section 2.2. Data and loop transformations are

the subjects of section 2.3, and, finally, parallelisation is covered in section 2.4.

2.1 Digital Signal Processing

Limitations of analogue signal processing operations and the rapid progress made in

the field of Very Large Scale Integration (VLSI) led to the development of techniques

for Digital Signal Processing (DSP). To enable DSP, an analogue signal is sampled

at regular intervals and each of the sample values is represented as a binary number,

which is then further processed by a digital computer (often in the form of a specialised

Digital Signal Processor (DSP)). In general, the following sequence of operations is

commonly found in DSP systems (Mulgrew et al., 1999):

• Sampling and Analogue-to-Digital (A/D) conversion.

• Mathematical processing of the digital information data stream.

• Digital-to-Analogue (D/A) conversion and filtering.

Among the many attractions of DSP the most important factors are:

• High achievable (and extendable) accuracy.

9
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• Good repeatability.

• Insensitivity to noise.

• High processing speed.

• High flexibility.

• Realisation of complex operations (Linear phase filters, Fourier trans-
form, matrix manipulations).

• Low manufacturing cost.

• Low power consumption.

• Low maintenance cost.

Usually, not all of these benefits can be realised simultaneously, i.e. they are par-

tially mutually exclusive. For example, extending the dynamic range (e.g. by use of

floating-point arithmetic) can have adverse effects on cost, processing speed and power

consumption. However, this and other disadvantages are often not severe and for many

system designers DSP technology is regularly the preferred choice for approaching

their specific task.

The following sections briefly present an overview of the wide spectrum of DSP

applications, and give a short introduction to signal representation, DSP algorithms and

their characteristics. This is followed by a presentation of DSP systems, in particular

digital signal processors, and their architectural features.

2.1.1 Applications

Digital signal processing is not a technique restricted to specific applications, but can

be found in very different application areas. Its application domain spans from the

ubiquitous GSM mobile phone with modest signal processing requirements to highly

compute-intensive radar signal generation and analysis. According to Mulgrew et al.

(1999) the generic DSP application areas are:

• Speech and Audio
noise reduction (Dolby), coding, compression (MPEG), recognition, speech
synthesis.

• Music
recording, playback and mixing, synthesis of digital music, CD players.



2.1. Digital Signal Processing 11

• Telephony
speech, data and video transmission by wire, radio or optical fibre.

• Radio
digital modulators and modems for cellular telephony.

• Signal analysis
spectrum estimation, parameters estimation, signal modelling and classifi-
cation.

• Instrumentation
signal generation, filtering, signal parameter measurement.

• Image processing
2-D filtering, enhancement, coding, compression, pattern recognition.

• Multimedia
generation, storage and transmission of sound, motion pictures, digital TV,
HDTV, DVD, MPEG, video conferencing, satellite TV.

• Radar
filtering, target detection, position and velocity estimation, tracking, imag-
ing, direction finding, identification.

• Sonar
as for radar but also for use in acoustic media such as sea.

• Control
servomechanisms, automatic pilots, chemical plant control.

• Biomedical
analysis, diagnosis, patient monitoring, preventive health care, telemedicine.

• Transport
vehicle control (braking, engine management) and vehicle speed measure-
ment.

• Navigation
accurate position determination, global positioning, map display.

2.1.2 Algorithms

There are several textbooks on the subject of DSP algorithms (e.g. Mulgrew et al.,

1999; Smith, 1997; Proakis and Manolakis, 1995). From a compiler writer’s point

of view, it is not necessary to understand how these algorithms work. However, it is

important to know and to understand the characteristics of the algorithms and their

concrete implementations. These are the inputs supplied to a compiler, and affect the

ability of the compiler to generate efficient code.
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The following two sections present the important characteristics of many DSP pro-

grams and their impact on the design of specialised digital signal processors.

2.1.2.1 Properties

The list below presents the most important characteristics of DSP algorithms relevant

to a compiler.

• Streaming Data

Most DSP algorithms exclusively access current data, i.e. data within a small spatial

neighbourhood progressing in time. Once the data has been processed and output, no

further references to it will take place.

• Sums of Products

Digital filters, for example, are frequently stated as sums of products, i.e. two vectors

are multiplied pairwise and then the products are accumulated to form a single number

as a result.

• Constant Iteration Count

As data is often processed in constant sized blocks, many loops have constant iteration

counts that do not depend on any result computed in the loop body.

• Data Independent Control Flow

Many DSP algorithms show very little if any variation in control flow. Often control

flow is only dependent on the size of the input, but not on the actual input values.

• Linear Array Traversals

Data access patterns are mainly linear, i.e. array index functions are affine. The most

prominent exception to this is the ubiquitous Fast Fourier Transform (FFT). This algo-

rithm shows highly non-linear data access patterns.

2.1.2.2 Architectural Implications

The previously listed properties of the most important DSP algorithms have affected

the design of highly adapted digital processors aimed at digital signal processing.
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These Digital Signal Processors (DSP) are discussed later in this chapter in more de-

tail. At this point, only a brief overview of how DSP algorithms influence the design

of DSPs is given.

The high frequency at which multiply-accumulate operations are found in many

DSP algorithms has led to the integration of highly efficient Multiply-Accumulate

(MAC) instructions in the instruction set of almost all DSPs. MAC operations typi-

cally take two operands and accumulate the result of their multiplication in a dedicated

processor register. Thereby, sums of products can be implemented using very few, fast

instructions.

Further improvements come from Zero-overhead loops (ZOLs). A loop counter

can be initialised to a constant value which then determines how often the following

loop body is executed. This eliminates the need for potentially stalling conditional

branches in the implementation of loops with fixed iteration counts.

Streaming data as the main domain of DSP shows very little temporal locality. This

and the real-time guarantees required from many DSP systems make data caches un-

favourable. Instead, fast and deterministic on-chip memories are the preferred design

option.

Memory in DSPs is usually banked. Two independent memory banks and internal

buses allow for the simultaneous fetch of two operands as required by many arithmetic

operations, e.g. MAC.

Address computation is supported by Address Generation Units (AGUs), which

operate in parallel to the main data path. Thus, the data path is fully available for user

calculations and does not need to perform auxiliary computations.

2.1.3 Systems

In embedded systems processors usually work under tighter constraints than in a desk-

top environment. This is particularly true for DSPs, which are often faced with real-

time performance requirements on top of other system constraints.

DSP system engineering is not the issue of this thesis. However, it is important to

understand the main system requirements to avoid solutions that are feasible on their

own, but do not fit into the overall system design. For example, compiler transfor-
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mations that blow up code size to such an extent that it does not fit into the restricted

on-chip memories differentiate embedded compiler construction from general-purpose

compilers where code size is less critical.

In the following section a short overview of DSP system requirements and the DSP

software design and implementation process are given.

2.1.3.1 System Requirements

DSPs often operate in highly specialised systems and must meet the systems’ over-

all constraints. The main requirements of DSP-based systems are summarised in the

following list.

• Real-Time (high bandwidth, low latency)

Most DSP systems work under real-time constraints, i.e. data must be processed at an

externally defined rate.

• Memory (deterministic, high bandwidth)

Memory access times must be deterministic in order to be able to reason about worst

case behaviour. This and high memory bandwidth is important to guarantee real-time

performance.

• Power/Energy (battery powered devices, cooling)

As many DSPs are embedded in battery powered devices with restricted battery capacity,

low energy consumption is paramount. Low power dissipation is a further requirement

originating from the need for passive processor cooling in embedded systems.

• Cost (Development/Manufacturing)

DSPs find use in large volume products as well as small scale applications, e.g. pro-

totypes. Both markets demand low cost solutions. However, for volume products the

manufacturing cost dominates the overall cost, whereas development cost dominates the

low volume domain.

• Time-to-Market

DSPs are a driving force behind many new technologies for which time-to-market is crit-
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ical. Programmability in high-level programming languages, e.g. C, and high efficiency

of the compiler-generated code are important to reduce product development cycles.

• Physical size (Embedded)

Due to their embedded nature, DSPs must not take up too much space.

Of these, real-time performance, efficiency of memory accesses, low power and

development cost and time-to-market are important to compiler construction.

2.1.3.2 Software Design and Implementation

The DSP software design process has the peculiar property of being split into two

separate high-level and low-level stages. On the high level, simple algorithms are for-

mulated by means of equations which form basic blocks for the construction of more

complex algorithms. These high-level formulations are translated into Synchronous

Data Flow (SDF) Graphs (Lee, 1995) and implemented in high-level languages like

Matlab (Rijpkema et al., 1999). Due to performance reasons, proven high-level imple-

mentations are re-implemented on a lower level using programming languages like C

or C++ enhanced with system specific and non-standard features. Where performance

is still not sufficient, assembly is used to optimise performance bottlenecks.

In this work, the lower level of abstraction is considered. Programmers are pro-

vided with an optimising and parallelising C compiler, which saves him from manually

tuning and parallelising code for a specific target architecture.

2.2 Embedded Processors

The requirements of a processor powering a desktop computer and a processor embed-

ded in a device designed for one fixed application differ significantly. Depending on

the requirements to that specific device certain constraints such as performance, cost,

size, energy consumption and power dissipation must be met. Consequently, manufac-

turers have developed specialised processor architectures for different user profiles and

requirements. In this section an overview of embedded digital signal and multimedia

processors is presented.
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2.2.1 DSPs and Multimedia processors

Leupers (2000) indentifies five classes of embedded processors: Microcontrollers,

RISC processors, Digital Signal Processors (DSPs), Multimedia processors and Ap-

plication Specific Instruction Set Processors (ASIPs). Of these five classes, only DSPs

and multimedia processors are of interest as the targeted application domain covers

DSP and multimedia workloads. According to Leupers (2000) DSPs are characterised

by special hardware to support digital filter and Fast Fourier Transform (FFT) imple-

mentation, a certain degree of instruction-level parallelism, special-purpose registers

and special arithmetic modes. Multimedia processors, on the other hand, are specially

adapted to the higher demands of video and audio processing in that they follow the

VLIW paradigm for statically scheduling parallel operations. To achieve a higher re-

source utilisation multimedia processors often offer SIMD instructions and conditional

instructions for the fast execution of if-then-else statements.

However, manufacturers have not generally adopted this classification and tend

to classify and name their products by the type of applications found in the market

they are aiming at. In particular, manufacturers refer to their processors aiming at

multimedia processing as DSPs, too. We adhere to the manufacturers’ classification

(DSP/multimedia processor) of their processors.

In the following two paragraphs the generic features of the memory systems found

in DSPs as well as frequently implemented approaches to parallel DSP architectures

are discussed. After that, four specific DSPs used as vehicles for experimentation in

this study are introduced and explained in more detail.

2.2.2 Memory System

Digital signal processors as specialised processor architectures have a memory system

which significantly differs from those found in general-purpose processors and com-

puting systems. In the following paragraph the main differences and idiosyncracies as

relevant to the rest of this thesis are briefly sketched.
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2.2.2.1 On-Chip and Off-Chip Memory Banks

Most embedded DSPs comprise of several kilobytes of fast on-chip SRAM. This is due

to the fact that SRAM integrated on the same chip as the core processor allows for fast

access without wait states. Thus, processor performance is not impeded by the memory

system. Furthermore, on-chip SRAM allows for the construction of inexpensive and

compact DSP systems with a minimal number of external components.

Usually, a DSP’s internal memory is banked, i.e. distributed over several memory

banks, thereby allowing for parallel accesses. The reason for this physical memory

organisation comes from the fact that many operations in DSP applications require

two or sometimes three operands to compute a single result. Fetching these operands

sequentially leads to poor resource utilisation as the processor might have to wait until

all operands become available before it can resume computation. Parallel accesses

to operands are a way of matching processor and memory speed by providing higher

memory bandwidth. Hence, appropriate assignment of program variables to memory

banks is crucial to achieve good performance.

The on-chip storage capacity is not always sufficient to hold a program’s code and

data. In such a case, external memory can be connected to a DSP through an external

memory interface. Often the latency of external memory is higher than that of the

on-chip SRAM as a cheaper, but slower memory technology might be used (lower

cost and improved memory density). Additionally, bandwidth to external memory is

usually smaller as parallel internal buses are multiplexed onto a single external bus

(smaller pin count) operating at a slower clock rate (simpler board design, cheaper

external components). Avoiding excessive numbers of external memory accesses by

appropriate program/data allocation and utilisation of on-chip memory together with

the exploitation of efficient data transfer modes (e.g. Direct Memory Access (DMA))

are necessary to save program performance from severe degradation.

2.2.2.2 Address Generation Units

Many DSPs provide dedicated Address Generation Units (AGUs) (also known as Data

Address Generators (DAGs)) for parallel next-address computations (Leupers and Mar-

wedel, 1996). As these AGUs are not part of the data path and perform their compu-
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tations simultaneously to it, instruction-level parallelism is increased. Auto-increment

addressing modes make the use of the AGUs explicit in the program code. Generation

of efficient addressing code is subject of e.g. Leupers and Marwedel (1996); Leupers

(2003).

Figure 2.1: Address generation unit of the SHARC 2106x DSP (Smith, 2000)

Figure 2.1 shows the address generation units of the Analog Devices SHARC

2106x DSP. Two separate units DAG1 and DAG2 are dedicated to data (DM) and

program (PM) memory, respectively. This allows for the simultaneous and indepen-

dent address computation for accesses to the two memory banks. Each unit contains

four banks of eight registers (length registers L, base registers B, index registers I, and

modify registers M).

DSP algorithms frequently traverse linear arrays. For the purpose of addressing

contiguous elements of such an array, an index register Ix is used to point to the current

element. An auto-increment access automatically updates the value in Ix so that it

points to the next element afterwards. To accomplish this, the element size as stored in

a modify register My is added to the current address in Ix. The result is stored back to

Ix.
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Circular buffers as an algorithmic basis for digital filters are also directly supported

by the AGU. A length register Lx and a base register By contain the length and the start

address such that the necessary wrap-around is automatically performed by a modulo

unit when required.

Additional circuitry for bit-reversed addressing is available. This exotic address-

ing mode is mainly used in the efficient implementation of the FFT. However, most

compilers are not able to exploit this specific feature.

2.2.2.3 Direct Memory Access

Many DSP applications process streaming data at a very high throughput rate. In

order to keep up with the required I/O bandwidth, DSPs typically employ sophisticated

controllers for independently managing I/O and memory accesses.

Such a controller capable of reading and writing to or from memory without CPU

intervention is known as a Direct Memory Access (DMA) controller (Tanenbaum, 1999).

Once a DMA transfer has been initiated, the CPU can continue until it receives an in-

terrupt indicating the completion of the data transfer.

Using DMA for bulk data transfers between internal and external memory or be-

tween internal memories of different processors greatly improves the efficiency of

memory accesses for two reasons: First, bulk data transfers are faster than many in-

dividual transfers as the transfer setup costs (bus request and arbitration, etc.) are

incurred only once. Second, the CPU can continue normal operations and perform

useful work while the data transfer is in progress.

2.2.3 Parallel DSP Architectures

As technology limits the maximal clock rate and the application limits the available

instruction-level parallelism, the performance of a single DSP cannot be increased

arbitrarily. However, certain applications (e.g. radar/sonar processing) require more

compute power than a single DSP can deliver. The solution to this problem is to employ

multiple DSPs and let them co-operate on a common task under the assumption that

this task can be decomposed into sub-tasks which then can be approached by different
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processors in parallel. Thus, it seems likely to experience a shorter processing time

and to meet the requirements a single processor could not fulfil.

Partitioning the original task into sub-tasks and mapping these onto a parallel tar-

get architecture generally requires some communication between the processors as the

sub-tasks are seldomly independent of each other. As the mode of inter-processor com-

munications depends on the logical memory organisation of the parallel computer, the

two dominating paradigms shared memory and distributed memory are briefly intro-

duced in the following paragraph and discussed in the context of their implications on

how processors communicate.

2.2.3.1 Inter-processor Communication

Inter-processor communication and memory organisation are intimately related as data

is transferred from the scope of one processor to another. Furthermore, logical and

physical memory organisation must be distinguished.

Common logical address space organisations are single address space and multiple

private address spaces. In the first programming paradigm, each program has the same

uniform view of the memory space and can access data arbitrarily. Communication is

performed via writing to and reading from this shared memory. In a multiple private

address space environment, each program maintains its own address space. Processes

communicate by explicitly sending and receiving data.

Physical memory organisation in existing computers can have many different forms.

Depending on whether a single physical address space is maintained, or multiple pri-

vate address spaces are provided, parallel computers can be classified as Shared Mem-

ory and Distributed Memory computers. However, this classification can be mislead-

ing as shared memory computers (i.e. with a single address space) are often based on

physically distributed memory banks.

Clearly, the logical address space must be mapped onto the physical memory or-

ganisation. This can be done either explicitly, i.e. under the control of the programmer,

or implicitly, i.e. by some extra layer of hardware or software. From a programmer’s

point of view the implicit model is preferable, because it saves one from explicit data

management. Performance, however, can suffer if the implementation of the address
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space mapping is not very well tuned.

2.2.3.1.1 Distributed Memory In this approach to logical memory organisation,

each process maintains its own private address space, i.e. each process owns some

memory which no other process is able to address and, thus, to access. Frequently, the

physical memory organisation matches the logical organisation with each processor

having private, local memory attached.

Communication in-between processes is managed by explicitly introducing Send

and Receive instructions into the code, which initiate messages to be send from one

process to another. On the hardware side, these messages are passed via a communi-

cations network spanning the processors.

Parallel computers following the distributed memory paradigm are often consid-

ered to be more scalable as memory is not a single resource which can potentially be-

come a bottleneck. Furthermore, distributed memory computers are less cost-intensive

as no additional hardware creating a single address space is required. However, due to

the need for explicit Message Passing, programming in the distributed memory model

can be difficult and prone to errors.

2.2.3.1.2 Shared Memory This approach to logical memory organisation offers the

programmer a single address space, i.e. no matter where data is stored all processes can

access it using the same address. To prevent memory from becoming a bottleneck, the

physical implementation of the shared memory paradigm is often based on physically

distributed memory and additional circuitry to maintain a uniform address space.

Processes communicate by writing values to memory, which can then be read by

other processes. For the programmer, there is no distinction in-between local and

remote memory. With respect to performance, however, locality is an important issue

as accesses to local data are usually much faster than remote accesses.

Shared memory computers are less scalable due to the need to maintain a single

address space. Additional hardware or software can form a bottleneck and limit the

overall performance. However, from a programmer’s point of view shared memory

computers are preferable as the single address space makes programming much easier.
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2.2.3.1.3 Hybrid Memory Organisation As the driving design philosophy of the

DSP domain is to keep hardware cheap, small and fast, existing DSP architectures

are either representatives of the distributed memory paradigm or some hybrid forms

with restricted shared memory support. Concrete examples of such architectures are

presented and discussed in the chapter 3.2.

2.3 Data and Loop Transformations

Restructuring a (possibly sequential) program can greatly improve its performance on a

single processor or enable its efficient execution on multiple processors. Restructuring

mainly focuses on program loops and data layout as DSP performance is dominated

by these structures.

Fundamental definitions are presented in the next section. Section 2.3.2 presents an

overview of loop transformations. Data transformations are discussed in section 2.3.3.

2.3.1 Definitions

To enable formal and systematic program restructuring, a formalism to describe pro-

gram loops, data declarations and accesses and also the transformations themselves is

required. In this section well-established algebraic representations for loop nests, array

declarations and different loop and data transformations are presented. These will be

used throughout this thesis.

2.3.1.1 Loop Nest Representation

Figure 2.2 shows a loop nest of depth n. Each of the loops is normalised, i.e. has unit

stride. To obtain unit stride for all loops of a given loop nest, loop normalisation can

be applied. After that, each loop iterates through a sequence of consecutive integer

numbers. The Iteration Space of a normalised loop nest is an ordered set of loop

iterations, in which each iteration is represented by the current values of the iterators

i1, . . . , in of the loops surrounding the loop body.

The loop iterators can be represented by a column vector III = [i1, . . . , in]T where
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for (i1 = LB1 ; i1 <= UB1 ; i1++) {

for (i2 = LB2(i1) ; i2 <= UB2(i1); i2++) {

· · ·

for (in = LBn(i1, . . . , in−1) ; i1 <= UBn(i1, . . . , in−1); in++)

· · ·

· · ·

}

}

Figure 2.2: Loop nest of depth n

[i1, . . . , in] denotes the transpose of the vector III. The loop ranges are then defined by

the following system of inequalities:

LB1 ≤ i1 ≤UB1 (2.1)

LB2(i1)≤ i2 ≤UB2(i1)
...

LBn(i1, . . . , in−1)≤ in ≤UBn(i1, . . . , in−1)

Usually, the loop bounds LBk and UBk are restricted to affine expressions. With

this assumption of loop bound linearity, the Iteration Space of the loop nest is a finite

convex polyhedron in Z
n. For convenience, this polyhedron is represented as

BIII ≤ bbb (2.2)

where B ∈ Z
2n×n is called the iteration space constraint matrix, III the vector of loop

iterators ik,∀k ∈ 1, . . . ,n and bbb ∈ Z
2n the constant size vector.

2.3.1.2 Data Representation

Formalising data layout transformations requires an algebraic description of the shape

of data, in particular arrays. This is achieved in a similar way as for loops. Array
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bounds are described by a system of inequalities, which form a polyhedral Array Index

Space.

An m-dimensional array a[LB1 . . .UB1][LB2 . . .UB2] . . . [LBm . . .UBm] is described

by following system of inequalities

LB1 ≤ j1 ≤UB1 (2.3)

LB2 ≤ j2 ≤UB2
...

LBm ≤ jm ≤UBm

Rewriting these inequalities in matrix representation, the Array Index Space is also

characterised by the polyhedral AJJJ ≤ aaa , where JJJ represents the array indices, and aaa

the array bounds. Often, arrays are assumed to be allocated statically, i.e. the array

bounds LBk and UBk are constant. In this case the array index space is rectangular.

2.3.1.3 Unimodular Transformations

Many different reordering transformations have been studied (Bacon et al., 1994) and

each of them has its own legality checks and transformation rules. To overcome this

difficulty, a unified framework of unimodular transformations based on unimodular

matrices has been suggested. It is able to describe transformations obtained from com-

bining loop interchange, loop skewing and loop reversal.

Unimodular transformations are unimodular linear mappings from one iteration

space into another. Thus, each transformation can be described as a unimodular matrix

and the application of a transformation corresponds to the multiplication of an index

vector by such a matrix.

Definitions of unimodular transformations and matrices are given, before a number

of important properties are listed. This section is based on the material in Banerjee

(1991, 1993) with some references also to Barnett and Lengauer (1992) and Yiyun

et al. (1998).

Definition 2.1 (Unimodularity) A transformation is unimodular if and only if

1. it is invertible,
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2. it maps integer points to integer points, and

3. its inverse maps integer points to integer points.

An integer matrix is unimodular if and only if it has a unit determinant.

From this definition a number of useful properties can be derived:

Property 2.1 (Combination) If U1,U2 are unimodular matrices, U = U1U2 is still a

unimodular matrix.

Property 2.2 (Inversion) If U is a unimodular matrix, its inverse U−1 is still a uni-

modular matrix.

Property 2.3 (Preservation) If a unimodular transformation is applied to a unit stride

normalised multi-nested loop, this loop keeps its normalisation and stride.

Property 2.4 (Decomposition) If U is a unimodular matrix, there exists a sequence

of fundamental unimodular matrices U1, . . . ,UT such that U = U1 . . .UT .

Property 2.5 (Fundamental Unimodular Matrices) A column-skewing matrix V can

be replaced by the multiple of a row-skewing matrix U and two interchange matri-

ces T1,T2: V = T1UT2. Therefore fundamental unimodular matrices include row-

skewing, interchange and reversal matrices.

The application of a unimodular transformation yields a correct program as long

as dependence relations are preserved, i.e. the lexicographical order of dependent

iterations is preserved in the new iteration space.

Unimodular transformations can be easily integrated into a transformation frame-

work (Wolf and Lam, 1991) and greatly simplify code generation as long as the appro-

priate unimodular transformation matrix can be found. However, unimodular transfor-

mations have certain shortcomings, too. It is difficult to apply them to non-perfectly

nested loops, and they cannot represent some important transformations like loop fu-

sion, loop distribution and statement reordering.
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2.3.1.4 Non-Unimodular Transformations

Resigning from unimodularity opens the field for a large class of new transformations.

However, non-unimodular transformations can introduce non-unit loop strides and,

more serious than that, non-convex boundaries.

Kelly and Pugh (1993) have developed a unifying reordering framework that ad-

dresses this problem and incorporates unimodular and non-unimodular transforma-

tions such as loop interchange, distribution, skewing, index set splitting and statement

reordering.

The key concept in the paper of Kelly and Pugh (1993) is to introduce Schedules to

represent transformations. A schedule is a mapping from the original iteration space

into the new iterations space and has the following form

T : [i1, . . . , im]→ [ f1, . . . , fn]|C (2.4)

where the iteration variables i1, . . . , im represent the loop nest around the statement,

the f js are functions of the iteration variables, and C is an optional restriction on the

domain of schedules.

Schedules can be used to express unimodular transformations. This is the case

when all statements are mapped using the same schedule, the f js are linear functions

of the iteration variables, the schedule is invertible and unimodular, the old and the new

iteration space have the same dimensions and no further restrictions C to the domain

apply.

Relaxing these restrictions on schedules enables the representation of a broader

class of reordering transformations. The proposed generalisation includes the follow-

ing points: a separate schedule for each statement, a symbolic constant term in the f js,

invertible, but not necessarily unimodular schedules, different dimensionality of old

and new iteration space, piece-wise schedules, and inclusion of integer division and

modular operations (with constant denominators) in the f js.

Using this generalisation, transformations constructed from the following set of

fundamental transformations can be represented: loop interchange, loop reversal, loop

skewing, statement reordering, loop distribution, loop fusion, loop alignment, loop

interleaving, loop blocking, index set splitting, loop coalescing and loop scaling.
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Specific examples and further information on the construction and use of schedules

can be found in Kelly and Pugh (1993).

2.3.2 Loop Transformations

Concentrating program restructuring on the most frequently executed and thus most

profitable to optimise program segments leads immediately to Loop Transformations.

The objectives for transforming a loop can vary. They include improving locality by

changing a loop’s data access pattern, increasing parallelism on a certain loop level by

iteration reordering, minimising the size of the sequential loop level, improving load

balance and supporting or enabling later compiler stages by conditioning a loop in a

given way.

Loop transformation generally targets Fortran-style DO loops as they can be appro-

priately modelled using linear algebra. WHILE loops do not fit easily into this model,

because generally the iteration condition cannot be determined at compile-time.

2.3.2.1 Array Reference Representation

Most formalisms to describe array references are restricted to affine index functions.

Non-affine index expressions are beyond the scope of linear algebra and require more

advanced formalisms. The vast majority of array indices, however, are affine (Paek

et al., 2002).

An access to an m-dimensional array has the form a[ j1][ j2] . . . [ jm]. In an affine

model, each of the indices jk is determined by a function fk of the form

fk(i1, . . . , in) = ak,1× i1 +ak,2× i2 + . . .ak,n× in + ck (2.5)

where all ak,l and ck are constant. Thus, the entire access can be written as

UIII +uuu (2.6)

where U is an integer matrix and uuu is a vector.
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2.3.2.2 Unimodular Loop Transformations

Unimodular loop transformations can be represented using an algebraic framework

based on unimodular matrices. Throughout this paragraph we follow the example of

Kulkarni and Stumm (1993) in the presentation of unimodular loop transformations.

Before any loop transformation is applied its legality is tested (Wolf and Lam,

1991). Legal transformations do not change the result that is produced by a loop, in

particular, dependent iterations must be executed in their lexicographic order.

A unimodular loop transformation is represented by a unimodular matrix U . This

matrix U maps an iteration vector III = [i1, . . . , in]T into a new iteration vector KKK =

[k1, . . . ,kn]
T :

UIII = KKK (2.7)

Application of a loop transformation involves the computation of new array index

expressions and loop bounds. For the computation of the new index expressions, the

iterator III in the index function UIII +uuu is replaced by III = U−1KKK according to equation

2.7. Thus, the new index expression has the form:

UU
−1KKK +uuu (2.8)

Determining the new loop bounds involves computing affine functions specifying

the convex polyhedron resulting from transforming the original iteration space BIII ≤ bbb.

Applying the identity transformation U−1U the iteration space can be rewritten as

BU
−1

UIII ≤ bbb (2.9)

Using equation (2.7) gives

BU
−1KKK ≤ bbb (2.10)

If B ′ = BU−1 is lower triangular, the new loop bounds can be directly obtained

from the rows of B ′. In general, Fourier-Motzkin variable elimination (Schrijver, 1986)

has to be applied on B
′ to obtain the new bounds. This approach works well for loops

of any dimension as long as the original loop bounds are constant (Kumar et al., 1991),

but becomes more complex when the original loop bounds are linear.
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Avoiding these complications in determining the new loop bounds, equation 2.10

can be further transformed into

XBU
−1KKK ≤ Xbbb, where X =

[

U 0

0 U

]

(2.11)

The new loop bounds are now of the form

B
′KKK ≤ bbb′′′, where B

′ = XBU
−1 and bbb′′′ = Xbbb (2.12)

2.3.2.3 List of Loop Transformations

Covering loop transformations in an algebraic or any other framework is not sufficient.

The most challenging problem remains to find a “good” sequence of loop transforma-

tions. Identifying a sequence of legal transformations that help exploit architectural

features of the hardware involves searching a potentially huge search space.

The following list contains some of the most important (not exclusively unimodu-

lar) loop transformations together with a short description of their potential usage. This

list is far from complete, but it reflects the broad field of applications in parallelisation,

locality optimisation, and other purposes.

Loop interchange exchanges two loop levels. This can expose parallelism at the inner

level enabling vectorisation or it can expose parallelism at the outer level.

Wavefront restructures a loop to execute sets of independent iterations. The new loop

construct comprises a sequential outer loop, and a parallel inner loop. Loop

skewing is one well-known instance of wavefront transformation.

Loop tiling divides the iteration space into smaller blocks, which are subsequently

iterated individually. This aims at increasing locality within the tiles and helps

to efficiently utilise data caches by reusing cached data.

Loop strip-mining splits a linear loop into an inner and an outer loop such that the

inner loop iterates over strips of fixed size and the outer loop enumerates the

individual strips. This transformation is traditionally used to match the size of a

vectorisable loop with the vector register size.
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Loop unrolling duplicates the loop body a given number of times, and updates the in-

dex variable within these copies and the loop step accordingly. Due to the larger

number in the newly created loop body the scheduler has more flexibility and

can possibly construct a more efficient schedule. Furthermore, loop overhead is

reduced by loop unrolling.

More formal background on loop transformations can be found in e.g. Kulkarni

and Stumm (1993), and Bacon et al. (1994) comprises an extensive list of loop trans-

formations.

2.3.3 Data Transformations

Program performance is not only affected by its loop structure, but also data organisa-

tion plays an equally important role. Cost of data accesses are usually not uniform, i.e.

the time required to fetch data from memory depends on the location the data is stored

in. In computers with hierarchical memory organisation, data stored “closer” to a pro-

cessor can be accessed faster than remote data. Moving frequently accessed data closer

to the processor where it is processed, should thus increase overall performance. Data

Transformations aim at rearranging the data layout so as to minimise the overhead due

to access latency. This task is non-trivial as data access patterns often put incompatible

constraints on the relative data placement and distribution across processors.

Most DSP programs operate heavily on data stored in arrays. Therefore, the focus

of this work is on the reorganisation of array structures. For this, techniques from the

field of scientific computing are employed as codes from both domains have similar

properties.

While some data transformations can be expressed using unimodular transforma-

tions, most data transformations are highly specialised and require their own transfor-

mation framework. Therefore, no detailed description of unimodular data transforma-

tions is given. Specific examples can be found in e.g. Bacon et al. (1994) and Kulkarni

and Stumm (1993).
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2.3.3.1 List of Data Transformations

A large number of data transformations have been developed and have come to appli-

cation in modern compilers. A short list of some of the most important data transfor-

mations is given below.

Alignment aims to improve the relative placement of array elements of different ar-

rays. Array alignment reduces communication overhead as array elements are

placed on the same processor.

Data Distribution maps the array index space onto the processor space, i.e. an array

is distributed across a number of processors. When accesses to local memory are

significantly faster than to remote memory, data distribution can help improve

performance by minimising the number of remote references.

Delinearisation is the transformation of a linear array into an array with higher dimen-

sionality. Although the immediate benefits of this transformation are marginal,

it enables or supports further transformations such as the aforementioned data

distribution.

Padding inserts dummy elements either within an array or between different arrays.

Both intra-array padding and inter-array padding aim at reducing the number of

conflict-related cache misses.

Theory of data transformations is covered in O’Boyle and Hedayat (1992); Kulka-

rni and Stumm (1993), and Bacon et al. (1994) lists a number of data transformations

in the context of program parallelisation. Finally, Anderson et al. (1995) evaluate the

effectiveness of data transformations for multiprocessors.

2.4 Parallelisation

Parallelisation is the transformation of an algorithmic specification into a suitable par-

allel implementation (Karkowski and Corporaal, 1998). Automating this transforma-

tion of a sequential program into a parallel form is highly challenging and a subject
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of on-going research in the area of High-Performance Computing (Padua and Wolfe,

1986; Wolfe, 1991; Zima and Chapman, 1990) .

2.4.1 Parallelism in DSP Codes

For the extraction of parallelism from existing DSP code, it is important to quantify

how much parallelism can be found in this kind of workload. A number of researchers

have conducted extensive studies to measure the amount of available concurrency in

DSP and multimedia codes.

Guerra et al. (1994) focus on Instruction Level Parallelism (ILP), i.e. simultane-

ously schedulable instructions, and consider various concurrency parameters in their

empirical study. They show that the maximum sustained parallelism in their set of 59

DSP benchmarks is notable, but not exceptionally high (range 3-33). However, after

applying a set of optimising transformations the maximum parallelism is dramatically

increased – for some examples several hundred instructions can be executed simultane-

ously. Concentrating on complex audio and video applications, Liao and Wolfe (1997)

have found theoretical speedups of over 1000 due to ILP. They also show, however,

that these speedups are difficult or even impossible to achieve on practical computers.

Downton (1994) studied the CCITT H.261 encoder algorithm and evaluated different

coarse-grain parallelisation schemes. Throughput scaling of up to a factor of 11 was

achieved on 16 processors.

2.4.2 Definitions

In this chapter, notation and basic definitions for the formal description of parallelisa-

tion are introduced. The presentation closely follows Karkowski and Corporaal (1998)

and Barnett and Lengauer (1992).

Starting with a sequential source program, SP , parallelisation aims at constructing

a parallel target program, T P . Loop nests in SP and T P are represented by their

iteration spaces I S and T S , respectively. Each iteration of the original program cor-

responds to a point in I S , and dependent iterations correspond to a direction vector in

I S . To guarantee correctness, the target program T P must respect these dependence
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relations, i.e. it must not change their lexicographic order. Parallelisation is then the

construction of the following functions

TS : I S → T S (2.13)

PG : (SP ,T )→ T P (2.14)

where TS is a transformation that distributes the iterations contained in I S in space

and time, under preservation of the dependences of SP . PG is a code generator that

takes a source program SP and a parallelising transformation T , and produces a par-

allel program in T P . Objective functions for the optimisation of the transformation T

include the minimisation of the extent of the temporal dimension of T S , the maximi-

sation of the spacial dimension of T S , or hybrid approaches. These general definitions

provide little insight into the construction of efficient parallelising transformations. For

this, a more specific view at different parallelisation methods is required.

Karkowski and Corporaal (1998) distinguish between two fundamental modes of

parallel execution: operation-parallel and data-parallel. Whereas in the operation-

parallel mode different operations of a program are executed in parallel, one or more

operations are simultaneously applied to many data items in data-parallel mode. For

loops operation-parallel mode leads to functional pipelining, i.e. the pipelined execu-

tion of statements within the loop body. Data-parallel mode of parallelisation applies

index set splitting for loops, i.e. individual iterations or groups of iterations are mapped

onto different processors. A combination of both modes can be achieved by hierarchi-

cal parallelisation.

Parallelism can be identified and exploited on different levels. Three possible lev-

els, i.e. instruction level, loop level, and task level, are described in the following

sections.

2.4.3 Instruction-Level Parallelism

As pointed out in section 2.4.1, DSP codes contain large amounts of Instruction-Level

Parallelism (ILP), i.e. instructions that can be scheduled simultaneously without vio-

lating dependence relations.
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Extracting and exploiting ILP can be achieved using either a dynamic or static

approach. Dynamic approaches determine dependences during runtime and issue in-

structions from a certain instruction window out-of-order. However, this dynamic ap-

proach, which is employed in superscalar processors, adds to the complexity of the

target processor. This additional complexity may be undesirable for certain applica-

tions, in particular in embedded systems, due to cost and power consumption. Static

approaches rely on compilers to schedule parallel instruction bundles. Very Large In-

struction Word (VLIW) machines and many high-performance DSP architectures use

this approach due to the reduced hardware complexity. However, advanced compila-

tion techniques are required to construct compact and efficient schedules.

In embedded systems, compilers must additionally cope with specialised data paths,

addressing modes, domain specific instructions, tight memory requirements and must

still be able to deliver (real-time) performance (Gupta et al., 1999). In chapter 6 the

evaluation how high-level transformations can support a compiler to achieve these

goals is described.

2.4.4 Loop-Level Parallelism

Loop Parallelisation (Banerjee, 1994) aims at distributing iterations of a given loop

across processors to execute concurrently, i.e. in data parallel mode. Since many pro-

grams spend most of their time within a small number of loops, parallelising these

compute-intensive loops can have a significant impact on the overall performance.

However, concrete benefits depend on a number of factors: the amount of work (num-

ber of loop iterations and work within the loop body), dependence relations between

loop iterations, load balancing, the number of processors and the overhead for com-

munication and synchronisation. Obviously, loops with many iterations, similar work

within each iteration and no cross-iteration dependences benefit most from this scheme

when distributed evenly across the available processors.

Loop Vectorisation also exploits loop-level parallelism, but unlike loop paralleli-

sation it aims at executing all iterations of a loop on a single, but specialised vector

processor. Vectorisation only works on inner loops that can be expressed as a vector

expression.
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In contrast, loop parallelisation is often applied on outer loops to provide suf-

ficiently large blocks of computation and to minimise synchronisation. Often both

schemes cannot be exploited directly, but only become applicable after transforming a

loop nest to expose its parallelism.

More recently, processors equipped with short-vector units have appeared, e.g. the

TigerSHARC, which are capable of performing data-parallel operations (SIMD) on

vectors of very limited size, e.g. two or four. A parallel system constructed of these

processors must clearly trade off benefits from inner and outer loop parallelism.

In chapter 7 of this thesis, the primary focus is on loop-level parallelisation as

one goal of this thesis is to investigate methods for the automatic parallelisation of

compute-intensive DSP kernels, which consist of few, but frequently executed loops.

2.4.5 Task-Level Parallelism

At a higher level, independent tasks can be identified and executed in parallel. These

tasks can comprise of anything from a few instructions up to entire blocks of functions.

In order to be efficient, however, the time saved by parallel computation must outweigh

communication overheads.

The amount of task-level parallelism is a property inherent to a program and does

not, unlike loop-level parallelism, scale with the size of the data set. The consequence

of this is that the number of independent tasks does not increase with the input size, but

remains constant. Therefore, adding processors only improves program performance

as long as enough parallel tasks are available.

However, identifying task-level parallelism automatically usually amounts to ex-

tensive global data dependence analysis. This is necessary to prove independence of

tasks to be scheduled in parallel (Abdelrahman and Huynh, 1996). Manual approaches

to exploit task-level parallelism usually utilise programming languages able to explic-

itly express parallel tasks, such that the compiler does not need to perform advanced

analyses.

Hybrid parallelisation schemes exploiting both loop-level and task-level parallelism

simultaneously appear promising in the DSP domain, as many complex DSP applica-

tions are composed of interacting algorithm building blocks. The low-level program-
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ming style, however, makes it difficult to extract sufficient task-level parallelism.

2.4.6 Parallelism Detection

Parallelism detection (Hall et al., 1995) amounts to the identification of program con-

structs that can potentially be executed in parallel, and the analysis of possible depen-

dences between those constructs. The identification of potential candidates, e.g. loops,

for parallelisation is usually not very difficult, whereas data dependence analyses to

verify independence can become highly complex.

Frequently, parallelism detection fails as either the identification stage or the em-

ployed dependence analysis expects the program to have a certain structure. In this

case, program transformations exposing the implicit parallelism are required. For ex-

ample, in order to vectorise a loop nest its innermost loop ought to be independent. If

this is not the case, loop transformations can be applied, e.g. loop interchange, that

convert the inner loop into the required form.

Whereas scalar dataflow analysis has a long tradition (Muchnick, 1997), and ar-

ray dependence analysis has caught up in the early nineties by the development of

the Omega test (Pugh and Wonnacott, 1992), data dependence checking on pointer-

based data structures is still not fully developed. Although many researchers have

approached pointer analysis, (e.g. Lu, 1998; Wilson, 1997), it is still not commonplace

in production compilers. This has two reasons: Pointer analysis techniques are rather

complex and expensive to implement, and many scientific codes that benefit most from

improved dependence information do not contain many pointer references.

Programmers’ adaption to their compilers has led to an interesting development in

the field of DSP codes. Since early compilers were restricted in their abilities to pro-

duce efficient addressing code, programmers made extensive use of pointer arithmetic

for linear array traversals. As compilers become more advanced, the excessive use

of pointers hampers their ability to analyse programs. In chapter 5 a Pointer Conver-

sion algorithm that reconstructs the original explicit array accesses from pointer-based

codes is presented. This recovery transformation enables further analyses and perfor-

mance enhancing code restructuring techniques.
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2.4.7 Parallelism Exploitation

Program parallelism can only be exploited if it can be efficiently mapped onto the

parallelism provided by the target machine. In the case of instruction-level parallelism,

the instruction scheduler uses the dependence information gathered earlier to construct

a schedule with as many parallel operations as possible. Failure to expose enough ILP

results in inefficient schedules and poor performance, whereas a processor not offering

parallel instruction execution will not benefit from independent instructions.

Similarly, detected coarse-grain parallelism must be matched to the available ma-

chine parallelism. A common approach is to partition the data based on some metric

and to map it onto the available processors. Computation follows the data based on

the owner-computes rule (Hiranandani et al., 1992). These partitioning and mapping

stages are of highest importance as they decide about the achievable performance.

2.4.8 Locality Optimisations

Parallel performance is often limited by the amount and cost of inter-processor com-

munication. Thus, minimising communication is of highest importance for achieving

good performance on a parallel computer. This is particularly true in the presence of

hierarchical memory architectures, where non-uniform memory access times exist.

A restructuring compiler has the chance to analyse a program and apply loop and

data layout transformations in such a way that the number of references to remote

memory locations is reduced. Enhancing parallelism and locality is the aim of a num-

ber of locality optimisations, e.g. Internalisation (Kulkarni et al., 1991; Kumar et al.,

1991). This technique aims at transforming a loop so that as many dependences as pos-

sible are independent of the outer loop, and so that the outer loop is as large as possible.

However, internalisation and many other locality increasing techniques assume coher-

ent data caches to implement hidden data transfers between processors. Unfortunately,

this is not necessarily a valid assumption for multi-DSP systems.
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2.5 Summary

Digital signal processing is one of the most important application areas of embedded

computing systems. The DSP domain has distinctive characteristics, e.g. processing of

streaming data under tight timing constraints, low cost, low energy consumption etc.

to justify the existence of specialised digital signal processors. Unfortunately, many of

these processors are notoriously difficult to program, especially when a compiler for

a high-level programming language is used. To achieve good performance, an opti-

mising compiler must be able to address both machine- and language-specific issues.

Data and loop transformations achieve this goal by restructuring a program to make

efficient use of the available hardware, whilst maintaining its correctness. At a larger

scale, automatic parallelisation for multi-DSP also relies on program restructuring to

distribute available work over several parallel processors.
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Infrastructure

In this chapter the specific infrastructure used in this thesis is presented. Section 3.1

introduces the DSPstone and UTDSP DSP benchmarks. In section 3.2 four popular

digital signal processors are described in detail, and in section 3.3 a unified data and

loop transformation framework is introduced. Section 3.4 summarises.

3.1 DSP Benchmarks

As DSP systems significantly differ from other computing systems, the application of

established numerical or general-purpose benchmarks, e.g. SPEC, is of little use and

does not provide representative performance measures. For this reason, specialised

benchmarks representing typical DSP and multimedia workloads have been developed.

As DSP is a powerful method that enables applications over a broad range of charac-

teristics, this must be reflected in the set of benchmarks. In the following sections three

freely available and frequently used benchmark suites that cover DSP application char-

acteristics are introduced.

3.1.1 DSPstone

DSPstone (Zivojnovic et al., 1994) is a DSP benchmark originally developed to enable

the comparison of compiler generated code with hand-written assembly code. It con-

tains a set of DSP kernels, i.e. computational loops, that are frequently used within

39
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larger applications and as such often dominate the runtime behaviour and performance

of these applications. A summary of the programs contained in DSPstone is shown in

figure 3.1.

To allow for the (manual) comparison DSPstone originally aimed at, the kernels

and, in particular, the data sets are kept very small. These artificially small data sets

make the use of DSPstone problematic as they do not represent realistic workloads.

However, after adapting the data set sizes to more representative values DSPstone is

very well suited to serve as a basis for benchmarking compute-intensive DSP loops.

Furthermore, most programs in DSPstone make heavy use of pointer arithmetic and

pointer accesses to linear arrays. This low-level programming style often obfuscates

the intention of the programmer and prevents compiler transformations. It is important

to note that DSPstone can only serve as a measure of raw compute power, as data

transfers to and from the DSP chip are not accounted for.

3.1.2 UTDSP

The UTDSP (Lee, 1998; Saghir et al., 1998) benchmark suite contains compute-in-

tensive DSP kernels as well as applications composed of multiple kernels. Similar to

DSPstone, the original goal behind UTDSP was to evaluate compiler performance for

DSP architectures. Two different data set sizes and the availability of pointer and array

based versions of most codes, however, make UTDSP a good choice for compiler

evaluation. In figures 3.2 and 3.3 the kernels and applications, respectively, within

UTDSP are listed.

3.1.3 MediaBench

MediaBench is a benchmark aiming at delivering representative workloads of multi-

media and communications systems written in a high-level language. MediaBench

contains 19 full applications from different domains like image and video processing,

audio and speech processing, encryption and computer graphics. Figure 3.4 briefly

describes the individual applications of the MediaBench suite.

As the application comprised in MediaBench mainly originate from the PC world,
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Kernels Description

ADPCM Adaptive Differential Pulse Code Modulation

complex multiply Multiplication of two complex numbers

complex update Update of a complex number; similar to Multiply

Accumulate with complex numbers, but with arbitrary

destination

convolution Computation of a convolution sum

dot product Dot-product of a (1,2) and a (2,1) vector

fir FIR filter with parameterisable number of taps

fir2dim FIR filter for image filtering, i.e. the filter is applied to

matrix data rather than a sequence of values

biquad N sections IIR biquad filter with parameterisable number of sections

biquad one section Computations for one section of an IIR biquad filter

lms Implementation of an adaptive DLMS filter

matrix Two programs (matrix1, matrix2) for the multiplication

of two matrices of arbitrary dimensions

matrix1x3 Multiplication of a (3,3) matric by a (3,1) vector

n complex updates Updates of n complex numbers in a way similar to

Multiply-Accumulate

n real updates Updates of n complex numbers with values coming from

three different arrays and multiplication and addition

as operators

real update A single real update

Figure 3.1: DSPstone benchmark suite
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Kernels Description

fft 1024
Radix-2, in-place, decimation-in-time Fast Fourier Transform (FFT)

fft 256

fir 256 64
Finite Impulse Response (FIR) filter

fir 32 1

iir 4 64
Infinite Impulse Response (IIR) filter

iir 1 1

latnrm 32 64
Normalised lattice filter

latnrm 8 1

lmsfir 32 64
Least-mean-squared (LMS) adaptive FIR filter

lmsfir 8 1

mult 10 10
Matrix multiplication

mult 4 4

Figure 3.2: UTDSP kernel benchmarks (Saghir et al., 1998)

Applications Description

G721 A
Two implementations of the ITU G.721 ADPCM speech transcoder

G721 B

V32.modem V.32 modem encoder/decoder

adpcm Adaptive Differential Pulse-Coded Modulation speech encoder

compress Image compression using Discrete Cosine Transform

edge detect Edge detection using 2D convolution and Sobel operators

histogram Image enhancement using histogram equalisation

lpc Linear Predictive Coding speech encoder

spectral Spectral analysis using periodogram averaging

trellis Trellis decoder

Figure 3.3: UTDSP application benchmarks (Saghir et al., 1998)
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they tend to have a size and complexity unsuitable for compiler evaluation. Individual

effects are easily blurred and are hard to identify in a program’s overall behaviour. Due

to this reason the two other benchmarks (DSPstone & UTDSP) were chosen as a basis

for empirical evaluation in this thesis.

3.2 Digital Signal Processors

In the following four sections, four DSPs and multimedia processors are introduced

as examples of commercial DSP architectures. These processors are in wide-spread

industrial use and serve as platforms for empirical evaluations throughout this thesis.

3.2.1 Analog Devices ADSP-21160 (SHARC)

The ADSP-21160 is a member of Analog Devices’ second generation 32-bit SHARC

DSPs. It has two computational units each comprising an arithmetic-logic unit (ALU),

a barrel shifter, a multiply-accumulate unit (MAC) and a register file. The SHARC

processors are equipped for both 32-bit fixed-point and (32-bit, 40-bit) floating-point

arithmetic. The two computational units can be used either independently, i.e. per-

forming different operations on different data, or in short vector mode, i.e. perform-

ing the same operation on different data. This latter mode is also known as Single-

Instruction Multiple-Data (SIMD) processing. A block diagram of the Analog Devices

ADSP-21160N is shown in figure 3.5.

3.2.1.1 Memory System

The SHARC has integrated 4 Mbit of dual-ported on-chip static RAM (SRAM). This

memory is distributed across two banks individually connected to four internal buses

(address/data buses for program/data memory) such that independent accesses to both

banks become possible. The separation of data and program memory is not strict. It

is possible to store program instructions in data memory and vice versa. However,

as the next instruction is fetched at the same time as the current operation’s data, it

is generally advisable to keep data and instructions in separate memory banks. For
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Applications Description

ADPCM A simple adaptive differential pulse code modulation coder

(rawcaudio) and decoder (rawdaudio)

EPIC An image compression coder (epic) and decoder unepic)

based on wavelets and including run-length/Huffman entropy

coding

G.721 Voice compression coder (encode) and decoder (decode) based

on the G.711, G.721 and G.723 standards

Ghostscript An interpreter (gs) for the PostScript language; performs file I/O

but no graphical display

GSM Full-rate speech transcoding coder (gsmencode) and decoder

(gsmdecode) based on the European GSM 06.10 provisional

standard

H-263 A very low bitrate video coder (h263enc) and decoder (h263dec)

based on the H.263 standard; provided by Telenor R&D

JPEG A lossy image compression coder (cjpeg) and decoder (djpeg)

for colour and grayscale images, based on the JPEG standard;

performs file I/O but no graphical display

Mesa A 3-D graphics library clone of OpenGL; includes three demo

programs (mipmap, osdemo, texgen); performs file I/O but no

graphical display

MPEG-2 A motion video compression coder (mpeg2enc) and decoder

(mpeg2dec) for high-quality video transmission, based on the

MPEG-2 standard; perform file I/O but no graphical display

MPEG-4 A motion video compression coder (mpeg4enc) and decoder

(mpeg4dec) for coding video using the video object model; based

on the MPEG-4 standard; perform file I/O but no graphical

display; provided by the European ACTS project MuMoSys

PEGWIT A public key encryption and authentication coder (pegwitenc)

and decoder (pegwitdec)

PGP A public key encryption coder (pgpenc) and decoder (pgpdec)

including support for signatures

RASTA A speech recognition application (rasta) that supports the PLP,

RASTA and Jah-RASTA feature extraction techniques

Figure 3.4: MediaBench benchmark suite (Fritts et al., 1999)
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Figure 3.5: SHARC ADSP-21160N Block Diagram (Analog Devices, 2003)

operations that require simultaneous access to two operands from memory, a small

instruction cache capable of storing up to 32 instructions can help reduce bus and

memory bank conflicts.

Two address generation units (AGUs) (see also figure 2.1) implement complex

address arithmetic independently from the ALUs and, thus, keep the ALUs fully avail-

able for user operations. In addition to the standard addressing modes known from

RISC processors, the SHARC supports post-increment and modulo addressing. Using

these modes, linear data traversals and circular buffers can be implemented very effi-

ciently, as the necessary update of the address of the next item to fetch is computed

in parallel to the current operation. Bit-reversed addressing is a highly specialised ad-

dressing mode commonly utilised to implement the butterfly memory accesses of the

Fast Fourier Transform (FFT). If not used otherwise, the AGUs can also be used for

general integer computations.
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3.2.1.2 Multiprocessing Support

The ADSP-21160 supports the construction of multiprocessor systems without any

external “glue logic”. Up to six SHARCs can be connected to a single system bus

and can share each others’ on-chip memory. In such a system setup, each SHARC in

the cluster has access to every SHARC’s internal memory either by means of single

load/store instructions or by block-wise accesses under control of the Direct Memory

Access (DMA) controller. However, unlike a true shared memory system no single

address space is maintained. The SHARC distinguishes between an internal memory

space for local accesses and a global memory space for remote accesses. As mem-

ory references to remote processors are performed via the slower external system bus,

the programmer must be aware of data locality to optimise memory system perfor-

mance. For multiprocessor systems with more than six systems, a distributed memory

approach is supported by six dedicated link ports enabling the implementation of point-

to-point connections. Links and clusters can be used at the same time, allowing for the

construction of hybrid multiprocessing systems with large numbers of processors.

3.2.2 Analog Devices TS-101S (TigerSHARC)

Analog Devices’ TigerSHARC TS-101S is a 32-bit floating-point DSP aiming at high-

performance applications such as 3G base stations, medical imaging, radar and sonar

processing etc. Although similar in some aspects to its predecessor ADSP-21160, it is

a completely new design with its own distinct features. A TS-101S based multi-DSP

board is used for most experiments and, therefore, this processor is described in more

detail than the other architectures. The following description is based on the block

diagram shown in figure 3.6.

A TS-101S contains a program sequencer, two data address generators, three in-

ternal memory banks, an external port, two processing elements, an I/O processor and

four link ports connected to a system of three pairs of address and data buses. Each

of the processing elements comprises a 32-entry register file, a floating-point ALU, a

multiplier and a shifter. Both processing elements can operate either independently or

in SIMD mode. In this latter mode, a single instruction drives both units to perform
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the same operation, yet on different data. When executing independently, both units

consume an instruction and perform different operations. This last execution mode is

a variation of the VLIW paradigm1 in which operations of different functional units

are explicitly bundled within a long instruction word. More instruction level parallel

processing is offered by the TigerSHARCs capability to exploit subword parallelism.

Each of the two 32-bit processing elements can be directed to perform the same op-

eration on e.g. four 8-bit operands packed into a 32-bit word. Unlike other DSPs,

the TigerSHARC does not offer hardware loops, but comprises a Branch Target Buffer

(BTB) in the Program Sequencer to support efficient loop implementation.

The TigerSHARC contains the logic circuitry necessary to implement bus-based

shared-memory multiprocessor systems as well as distributed memory multiprocessors

based on point-to-point communications. The availability of this specific feature makes

the TigerSHARC an ideal candidate for a wide range of different multi-DSP configura-

tions. Details of the TigerSHARC’s multiprocessing capabilities are explained below.

3.2.2.1 Memory System and Multiprocessing Support

The memory system of the TigerSHARC and its multiprocessing support are closely

related and described together as they depend each other.

6 Mbit of on-chip SRAM are evenly divided into three 128-bit wide memory

blocks. This fast memory can keep up with the processors’ two-cycle delay, i.e. it

can supply the requested data two cycles after the corresponding fetch has been issued.

Three internal address/data bus pairs connect the three internal memory blocks to com-

putational units X and Y, the data address generators J and K, the program sequencer,

the external system bus, and to the DMA and link controllers. By spreading memory

accesses over the buses/memory banks, triple accesses every cycle with up to four 32-

bit words per bus/memory bank become possible. Ideally, program instructions and

data are kept in separate memory banks to avoid conflicting accesses.

Two non-pipelined integer units J and K serve as address generation units, or in

the Analog Devices nomenclature Data Address Generators (DAGs). Each DAG has a

32-port register file storing operands and results of operations. Addressing modes sup-

1Analog Devices calls this mode of operation static superscalar to distinguish it from pure VLIW.
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Figure 3.6: TigerSHARC ADSP-TS101S Block Diagram (Analog Devices, 2003)
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ported include indirect addressing with pre-modify without update or post-modify with

update. Circular buffer implementation is supported by automatic modulo addressing.

External memory is connected to the TigerSHARC through the Host Interface.

Furthermore, this interface implements a Cluster Bus Arbiter for the arbitration of

transactions of several TigerSHARCs on a common system bus. The host interface

to the external bus maps the TigerSHARC’s three internal buses to a single pair of

32-bit address and 64-bit data buses. This bandwidth reduction imposes a penalty to

all external accesses, either to external memory or internal memory of another Tiger-

SHARC connected to the same cluster bus. Additionally, latency of memory accesses

is increased in systems with multiple TigerSHARCs sharing the same bus, as bus arbi-

tration consumes additional cycles.

Transfers of larger data blocks in-between internal and external memory or in-

between different processors in a multiprocessor setting can be delegated to Direct

Memory Access (DMA) controller, which is designed to perform memory transfers

only interrupting the core processor to indicate the termination of such a transfer. As

the DMA controller does not rely on the processor core, data transfers and computation

can be overlapped.

Each TigerSHARC’s internal address space is organised as an unsegmented linear

space as shown in figure 3.7. The processor’s three internal memory banks and register

file are mapped to four non-contiguous areas of the address space with reserved spaces

in-between. In a cluster bus based multiprocessing system, the participating Tiger-

SHARCs’ memory spaces form an extended Global Memory space. Within this space,

each processor’s internal memory space has two representations. In the first case, the

internal memory space of each processor is embedded at the beginning of the global

address space independently of its processor ID. Thus, each processor can address its

own memory in the lower range of the address space. Updates to local data through

accesses to this range are not reflected on the cluster bus. A second representation of

a processor’s internal address space is in the multiprocessor address space. Each of

the up to eight processors has a dedicated address range in the global address space

at which it can be seen and its internal memory accessed from all other processors.

Accesses via this address range are reflected on the bus, and remote data is updated if
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the write operation addresses another processor’s segment in the global address space.

Hence, direct accesses (reading as well as writing) to remote data are immediately vis-

ible to all processors without the need to maintain coherence as only a single copy of

each data item exists.

Figure 3.7: TigerSHARC Global Memory Map (Analog Devices, 2001a)

Four 8-bit link ports can be utilised to connect I/O devices to a TigerSHARC. Alter-

natively, these link ports can also be used to construct a distributed memory multipro-

cessing system with dedicated static links in-between several TigerSHARC processors.

The bi-directional TigerSHARC’s link ports are buffered and allow for data transfers

under control of the DMA controller. Any network topology with a node degree of

up to four can thus be constructed. The Transtech TS-P36 board used in this study

supports fully connected, mesh, and linear chain network configurations.
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3.2.3 Philips TriMedia TM-1300

The Philips TriMedia TM-1300 is a media processor designed for the use as a stan-

dalone processor or as a coprocessor in a host-based system. The TM-1300 is a five-

issue slot Very Large Instruction Word (VLIW) processor with 27 pipelined functional

units. Most operations complete within one clock cycle. Its large homogeneous reg-

ister set comprising 128 32-bit general-purpose registers and a 32-bit linear address

space make the TriMedia a compiler-friendly target, almost like a RISC processor.

VLIW scheduling, highly specialised multimedia and DSP operations as well as SIMD

processing, however, require either manual programmer intervention or advanced com-

pilation techniques to realise the TriMedia’s full performance potential. A block dia-

gram of the TM-1300 is presented in figure 3.8.

Figure 3.8: Philips TriMedia TM-1300 Block Diagram (Alacron, 2003)
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3.2.3.1 Memory System

Unlike most DSPs, the TriMedia does not have on-chip SRAM, but integrated data

(16kB) and instruction caches (32kB) and a main memory interface (MMI) to off-chip

synchronous DRAM (SDRAM). This reflects the fact that many multimedia applica-

tions have storage requirements too large to implement cost-efficiently on-chip. Bus

contention and non-deterministic I/O timing are prevented by dedicated digital video

and audio input/output units and ports.

3.2.3.2 Multiprocessing Support

As the TriMedia TM-1300 has been designed as a single processor solution to media

processing, there is little multiprocessor support available. In fact, the TriMedia’s built-

in data cache complicates the realisation of shared memory multiprocessor systems due

to cache coherence problems. However, distributed memory approaches are feasible

and can be implemented using the PCI/XIO interface. As this interface is much slower

than the TriMedia’s main memory interface, inter-processor communication is costly.

Nonetheless, Philips supplies a software-based shared-memory primitives in its Soft-

ware Development Environment (SDE) built on top of a message-passing architecture

(Philips, 2001b,a).

For video specific multiprocessor applications, a frequently implemented solution,

e.g. the Alacron FastImage1300 (Alacron, 2003), incorporates the digital video input

and output ports to create dedicated point-to-point video data communication paths.

3.2.4 Texas Instruments TMS320C6201

The Texas Instruments TMS320C6201 is a 32-bit fixed-point VLIW DSP issuing up

to eight instruction per clock cycle. The TMS320C6201 has two data paths, each

comprising four execution units (two ALUs, one multiplier, and one adder/subtracter),

sixteen general-purpose registers and paths for register-memory data transfers. Data

can be transfered in-between the two data paths through a bidirectional link. The

C62xx supports 32-bit and 40-bit arithmetic (using adjacent registers) and provides

support for barrel shifting, bit field extraction, exponent detection and normalisation
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(Berkeley Design Technology, Inc., 2000). As hardware looping is not supported,

methods of exploiting instruction level parallelism in loops (e.g. software pipelining)

play a vital role in achieving high performance on this architecture. To keep complexity

low and, thus, increase the potential performance the TMS320C6201 does not have

hardware interlocks to prevent pipeline conflicts. It is the (non-trivial) task of the

compiler to create a valid and efficient instruction schedule.

A block diagram of the Texas Instruments TMS320C6201 is shown in figure 3.9.

Figure 3.9: Texas Instruments TMS320C6201 Block Diagram (Rutronik, 2003)

3.2.4.1 Memory System

The on-chip memory system of the TMS320C62xx series DSPs provides separate ad-

dress spaces for program and data memory. Program and data addresses are transfered

over one 32-bit wide program bus and two 32-bit wide data address buses, respec-

tively. To enable eight instructions to enter the processor simultaneously, the program
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data bus is 256-bit wide. Each bus to data memory is 32-bit wide. The TMS320C6201

has 64kB of program RAM and 64kB of data RAM integrated on-chip.

Data addresses can be stored in any of the 32 general-purpose registers and address

arithmetic is performed by the adders/subtracters of the two data paths. As such, there

are no distinct address generation units, since the same units can also be utilised for

general computations.

External memory is accessed through one External Memory Interface (EMIF). Ad-

dress and data buses are multiplexed between program and data memory accesses.

This and the usually slower external RAM reduces the bandwidth to external memory

significantly.

3.2.4.2 Multiprocessing Support

Similar to the TriMedia, the TMS320C62xx does not directly support shared-memory

multiprocessing. However, the Host Port Interface (C6201), the Expansion Bus (C6202/

C6203/C6204) or the PCI Interface (C6205) can be used to construct distributed mem-

ory multiprocessor systems. Fast inter-processor communication is managed by a

DMA controller operating independently from the processor core.

3.3 Data and Loop Transformations

Performing loop and data transformations in isolation has the disadvantage that a

change in the one domain cannot be easily reflected in the other. A framework ca-

pable of expressing both loop and data transformations equally well provides a much

larger flexibility and simplifies the entire program, i.e. loop and data, restructuring

process.

In the following paragraph an integrated loop and data transformation framework

developed by O’Boyle and Knijnenburg (2002) is introduced. Based on extended ma-

trices and rank-modifying transformations, this algebraic framework allows for the

elimination of expensive array subscripts that may have been introduced as a result of

the application of data transformations by subsequently applying an inverse transfor-

mation to the affected loop.
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3.3.1 Unified Transformation Framework

The concepts of extended matrices and rank-modifying transformations are described

in this section. This paragraph is closely based on O’Boyle and Knijnenburg (2002),

from where the following definitions and theorems are restated.

3.3.1.1 Extended Matrices

Extended matrices are a generalisation of ordinary matrices, which allow individual

entries to be functions including integer division and modulo. Definition 3.1 gives

details of the properties of these additional terms, on entries of a singleton matrix.

Definition 3.1 (Integer Division and Modulo) For a and n ∈ Z, we define

[n× (·)] [a] = [n×a]

[(·)/n] [a] = [a/n]

[(·)%n] [a] = [a mod n]

Based on this notation for single entries, extended matrices are then defined as

follows.

Definition 3.2 (Extended Matrices) An n×m extended matrix is defined as an n×m

array of functions fi j : Z→ Z for 1≤ i≤ n and 1≤ j≤m where fi j is restricted to the

functions in definition 3.1.

Ordinary matrices can be multiplied with vectors. As the entries of extended matri-

ces are functions, function application rather than multiplication is the corresponding

concept for extended matrices. As extended matrices are a generalisation of ordinary

matrices, single entries ai j of a standard integer matrix become ai j×(·) in the extended

concept.

Definition 3.3 (Matrix-Vector Application) The application of an n×m extended

matrix A to a vector bbb ∈ Z
m is a vector ccc = Abbb ∈ Z

m defined as follows. For all

1≤ k ≤ n,

ck =
m

∑
i=1

fkibi.
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Standard integer matrices can be multiplied, and the result is a single integer ma-

trix. Standard matrix multiplication is associative, and not commutative. As before,

multiplication is replaced by function application for extended matrices. Due to the

non-linear nature of integer division and modulo, however, a sequence of combined

extended matrices cannot be reduced to a single extended matrix. Still, for linear ex-

tended matrices, i.e. matrices with linear entries, their composition yields a single

extended matrix. Associativity and non-commutativity remain.

Theorem 3.1 (Matrix Composition) In the case when the extended matrices A and

B are linear, then their composition A◦B can be written as one single extended matrix

C .

3.3.1.2 Rank-Modifying Transformations

Rank-modifying transformations can change the dimensionality of iteration or array

index spaces. As a consequence, loop levels and array dimensions, respectively, might

be added or removed by the application of an appropriate transformation.

Generalised strip-mining and linearisation are fundamental rank-modifying trans-

formations. In their simplest form, a 2-dimensional vector is mapped to a 1-dimensional

vector by the application of Ln1 , and the opposite mapping is performed by Sn1 . Ln1

and Sn1 can be expressed as

Ln1 =
[

1 n1

]

and Sn1 =

[

(·)%n1

(·)/n1

]

(3.1)

where n1 is a constant corresponding to the size of the first index/iterator dimension.

Although Ln1 and Sn1 are singular and do not have any inverse, it is possible to

construct pseudo-inverses L†
n1

and S†
n1

, respectively. L†
n1

and S†
n1

are valid on a subset

D2 of Z
2, i.e. L†

n1
(Ln1(a)) = a,∀a ∈ D, which in practice corresponds to the index

and iteration domains of arrays and loops. The inverse matrices corresponding to the

matrices in equation 3.1 are

L
†
n1

=

[

(·)%n1

(·)/n1

]

and S
†
n1

=

[

1

n1

]

(3.2)
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Obviously, strip-mining and linearisation complement each other, i.e. Ln1 and S†
n1

have the same form, as do Sn1 and L†
n1

. Linearisation of the kth element of an N-

dimensional vector can be achieved by embedding Ln1 within an appropriately sized

general linearisation matrix L

L =









Idk−1 0 0

0 Ln1 0

0 0 IdN−k









(3.3)

where Idm is the the m-dimensional identity matrix. A similar embedding of Sn1 can

be used to construct a generalised strip-mining matrix S . Both L and S have inverse

matrices L
† and S

†.

L and S can be used to perform both loop and data transformations. For loop

transformations, the matrices are applied to the iteration vectors of a loop, whereas

data transformations manipulate the index space of an array.

Given an m-dimensional loop iteration vector III, this can be mapped to a new k-

dimensional vector III′ by

III′ = LIII (3.4)

To account for the change of loop indices, each array access U within the transformed

loop must be updated

U′ = UL
† (3.5)

Finally, the loop bounds must be adjusted. The new iteration space has the form B
′III′≤

bbb′ and is computed as follows

B
′ = XBL

† and bbb′ = Xbbb (3.6)

where

X =

[

L 0

0 L

]

(3.7)

Similarly, L and S can be used to transform the index space of a particular ar-

ray. This change must be reflected in all references to that array throughout the entire

program. Given an n-dimensional index vector JJJ, this can be mapped to a new k-

dimensional vector JJJ′ by

JJJ′ = LJJJ′ (3.8)
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After that, each array access U to the reshaped array in the entire program must be

adjusted

U′ = LU (3.9)

Furthermore, the bounds of the new array index space A′JJJ ≤ aaa′ must be determined

A
′ = XAL

† and aaa′ = Xaaa (3.10)

where

X =

[

L 0

0 L

]

(3.11)

Although loop and data transformations in the unified framework appear to be very

similar, their main difference is that data transformations are left-hand transformations

when applied to array access function, whereas loop transformations are right-hand

transformations. As rank-modifying transformations, i.e. both loop and data trans-

formations, do not change to order in which statements are executed, they are always

legal transformations.

This unified loop and data transformation framework is used in chapters 5 and 7

for high-level transformations and parallelisation, respectively.

3.4 Summary

The benchmark suites DSPstone and UTDSP cover a wide range of different DSP

kernels and applications, whilst still permitting compiler experimentation. Further-

more, the employed low-level coding style reflects many DSP programmers’ efforts

to manually tune their programs for better performance at the cost of increased code

complexity. Together, this makes the two benchmark suites ideal candidates for DSP

compiler research.

Empirical evaluation of the techniques developed later in this thesis is based on

four popular DSPs described in this chapter. The discussion of results in the following

chapters will often refer to this chapter for technical details.

The unified loop and data transformation framework introduced in this chapter is

used for various tasks throughout this thesis. Techniques as different as program re-

covery and locality optimisations can be expressed using a single framework.
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Related Work

In this chapter an overview of other researchers’ work in the same or related fields

is presented. Underlying assumptions and approaches are compared, and the conse-

quences thereof discussed. Furthermore, this chapter describes how the material pre-

sented in this thesis fits into the existing body of scientific work in the field of parallel

DSP compilation.

Section 4.1 gives an overview of Program Recovery techniques as relevant for DSP

domain C compilers. High-level transformations is a vast field, therefore in section

4.2 emphasis is put on DSP specific transformations. Similarly, section 4.3 covers

alternative approaches to parallelisation of DSP source codes.

The design of parallel DSP algorithms and architectures are other highly interest-

ing subjects, but both are beyond the scope of this thesis. In addtion, more specific

references to related work can be found at the end of each chapter in this thesis.

4.1 Program Recovery

4.1.1 Balasa et al. (1994)

In Balasa et al. (1994) a transformation method is introduced that aims at eliminat-

ing modulo expressions of affine indexing functions. This specialised framework is

based on Diophantine equations and Hermite normal forms to derive a sequence of

unimodular transformations and permutations. The resulting loop nest is of higher

59
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dimensionality, but exhibits only affine indexing.

Elimination of modulo index expressions is also the goal of a method presented

in chapter 5.2 of this thesis. The approaches and their complexity, however, differ

significantly.

Although the method proposed by Balasa et al. (1994) can be carried out in poly-

nomial time using only integer arithmetic, deriving the transformation matrix is rather

complex and non-trivial to implement. Furthermore, affine array indices are obtained

at the cost of introducing non-affine loop bounds comprising integer division, floor and

ceil functions, respectively.

The Modulo Removal transformation presented in chapter 5.2, however, is part of

a larger transformation framework that is repeatedly used in the course of program

parallelisation. In its domain, it produces simpler loop bounds, yet eliminates the same

modulo index expressions in the loop body by introducing new loop levels.

4.1.2 Held and Kienhuis (1995)

The paper of Held and Kienhuis (1995) targets programs with integer division, floor,

ceil and modulo in expressions in non-unit stride loop nests. The transformation is part

of a conversion algorithm and tool (HiPars) that constructs single assignment form to

support data dependence analysis.

The presented transformation does not address modulo-based array index func-

tions, but only non-linear expressions determining the program control flow. In a first

step, the permitted non-linear expressions are expressed in terms of integer division.

The algorithm then replaces a div expressions in conditional statements by a sequence

of semantically equivalent IF-statements. As the main goal of the algorithm is not to

rewrite the program in a more compiler-friendly way, but to support subsequent data

dependence analysis a potential performance penalty due to repeated branching is not

relevant. The dependence graph of the transformed graph corresponds to the one of

the original program, which is further transformed.

When executed, programs transformed by this transformation will likely suffer

from severe performance degradation. Because of this, and the inability to deal with

array index functions, the proposed transformation is not suitable for the purpose of
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recovering the class of programs investigated in this thesis.

4.1.3 van Engelen and Gallivan (2001)

The work of van Engelen and Gallivan (2001) is an extension of an early version of

the Pointer Conversion algorithm (Franke and O’Boyle, 2001). Based on induction

variable recognition it can handle a greater variety of recurrence relations amongst

pointers. In DSP and multimedia applications, however, those complex pointer recur-

rences are rarely found.

Restrictions and assumptions of the algorithm are similar to ours. Still, little con-

sideration is given to inter-procedural effects and conflicting index functions in the

presence of control-flow. This paper is a demonstration of the impact of our work in

the field of program recovery, in particular pointer-to-array conversion.

4.2 High-Level Transformations for DSP Codes

4.2.1 Su et al. (1999)

Software pipelining is an instruction scheduling technique for loops, in which sub-

sequent iterations are overlapped to achieve higher ILP. Su et al. (1999) present a

source-to-source loop transformation based on software pipelining. Although C lacks

the ability to express parallel statements, their approach aims at reordering C state-

ments such that manufacturers’ backend compilers can generate more efficient code.

They evaluate their technique on eight DSP kernels for a single target architecture

(Motorola 56300). Average speedups of 16% are achieved.

The rather small set of benchmarks and the restriction to a single target architecture

limits the usefulness of this survey. It is not clear how well their techniques performs

on different architectures or with more advanced compilers. Furthermore, previous

work (Franke, 2000) has shown that the benefits from source-level software pipelining

mainly originate from the increased flexibility in scheduling instructions of the larger

loop body and can easily be achieved (and even outperformed) with much easier to

implement loop unrolling.
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4.2.2 Gupta et al. (2000)

An address optimisation based on a sequence of source-to-source transformations is

shown and evaluated in Gupta et al. (2000). This optimisation relies on explicit array

accesses and does not work with pointer-based programs. Here the pointer-conversion

algorithm can be applied as a preparatory stage that enables the further optimisation.

Although aiming at DSP applications the experimental results come from general-

purpose CPUs. It is not at all obvious if the transformation extends to DSPs as the

authors claim, and a demonstration of this is still outstanding.

4.2.3 Qian et al. (2002)

Qian et al. (2002) evaluate the effectiveness of high-level loop transformations such

as unroll-and-jam and loop unrolling in the context of clustered VLIW architectures,

e.g. the Texas Instruments TMS320C6x. Based on metrics borrowed from software

pipelining, they compute loop unroll factors and unroll-and-jam amounts to apply the

loop under inspection. Experimental results are collected on one simulated (URM)

and one real architecture (TI TMS320C64x), based on a set of 119 loops from a DSP

benchmark set. Speedups in the range of 1.4 to 1.7 were achieved on different machine

configurations.

Loop transformations in this paper are implemented in Memoria, a source-to-source

Fortran transformer based upon the DSystem. The benchmarks, however, are written in

C and were manually translated to Fortran to enable transformation. The transformed

codes were then manually translated back to C. It is not clear whether this translation

process could be automated, in particular, with respect to pointers and other low-level

constructs in the C source. Furthermore, loop unrolling in the TI backend compiler

was switched off for the experimental evaluation. Thus, it becomes not clear how well

their approach performs in comparison to TI’s implementation of loop unrolling.

4.2.4 Falk et al. (2003)

In Falk et al. (2003) two novel control flow transformations applicable to address-

dominated multimedia applications are developed. Aiming at the elimination of data
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transfer and storage overheads introduced by previous transformation stages, Loop

Nest Splitting and Ring Buffer Replacement are partially integrated in the SUIF com-

piler. Loop nest splitting is a generalisation of conventional loop switching, which

makes it possible to deal with loop-dependent if-statements. Ring buffer replacement

tries to replace circular buffers of small size with a set of scalar variables, which in-

cur lower addressing overhead. The effectiveness of the transformations is evaluated

against seven different platforms and two selected benchmarks. Average gains in ex-

ecution time are in the range from 40.2% to 87.7% with average code size overhead

between 21.1% and 100.9%.

Although successful on the chosen benchmarks, both transformations appear to be

highly specific. Furthermore, loop nest splitting relies on a complex and expensive

genetic algorithm.

Ring buffer replacement shares some goals with the modulo removal algorithm pre-

sented in chapter 5.2. As ring buffer replacement employs loop unrolling to eliminate

copy instructions introduced in a previous scalarisation stage, it effectively produces

similar code as our strip-mining based approach at the cost of increased code size. The

strip-mining based technique does not automatically unroll a loop, but leaves this de-

cision to a later stage. Thus, applicability of our algorithm is not so strictly limited to

circular buffers of very small size.

4.2.5 Kulkarni et al. (2003)

Kulkarni et al. (2003) investigate the problem of finding effective optimisation phase

sequences and propose an interactive user guided approach to the phase ordering prob-

lem. As an alternative to manual optimisation, an automated approach based on a

genetic algorithm to search for the most efficient optimisation sequence based on spec-

ified fitness criteria is evaluated.

Among the optimisation stages considered are both high-level and low-level trans-

formations such as loop-invariant code motion and register allocation, respectively.

Unrolling, tiling, and other high-level transformations commonly employed in numer-

ical codes are, however, not considered. Additional measures to prevent interference

of high-level and low-level transformations are necessary, e.g. to prevent register al-
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location before induction variable recognition has been performed. Results are pre-

sented for a relevant embedded benchmark suite (MiBench), but the target architecture

(SPARC) does not necessarily represent the characteristics of typical embedded pro-

cessors.

While the user guided approach to optimisation is a very effective tool for expert

users, the average user might not be able to fully exploit its potential. The automatic

genetic search algorithm marginally outperforms the fixed phase order baseline ap-

proach in some cases, but requires 100 or more generations to achieve this.

This paper presents a very interesting approach to feedback-directed iterative com-

pilation and optimisation for embedded systems. Unfortunately, empirical data is only

collected for a general-purpose CPU and not easily transferable to embedded architec-

tures.

4.3 Parallelisation of DSP Codes

4.3.1 Teich and Thiele (1991)

Teich and Thiele (1991) outline the architecture of a Compiler for Massive Parallel Ar-

chitectures (COMPAR) and point out similarities in the compilation and parallelisation

methodology for different architectures such as processor arrays and MIMD or vector

computers. Sequential programs are captured in a formalism called UNITY, which

employs enumerated quantified equations to express operations performed on linearly

indexed arrays. Stepwise refinement by applying a sequence of transformations aims

at exposing parallelism suitable for the target machine. For conventional multipro-

cessor computers, vectorisation and outer loop parallelisation are suggested, whereas

additional constraints are introduced for processor arrays due to their limited inter-

processor communication capabilities. In a locality maximising stage, data is mapped

onto a mesh of processing elements such that data dependences are mapped onto local

interconnects rather than remote ones. Resource allocation and task scheduling include

loop transformation techniques such as loop skewing for more conventional targets,

and scheduling techniques known from VLIW compilers for processor arrays. In a

control generation stage, conditionals contained in loop bodies are replaced by pred-
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icated statements to cope with non-programmable nodes in processor arrays. Finally,

the transformed program is mapped to the available hardware by means of different

iteration space transformations.

Our approach to parallelisation of DSP sources follows the outline suggested in

this paper. However, major differences originate from alternative representations for

iteration/array index spaces and for transformations. Furthermore, the parallelisation

strategy in this thesis is far more specific (as a concrete programming language and a

well-defined target architecture is considered) and deals with multiple memory spaces

present in real-world multi-DSPs. As no attempt to unify parallelisation for wildly

different target architectures is taken, we are able to present a complete chain of com-

pilation, parallelisation and optimisation for representative benchmark sets.

4.3.2 Kim (1991)

A compiler exploiting ILP for a multi-DSP configuration is presented in Kim (1991).

The OSCAR32 target architecture is a synchronous multiprocessing system built using

AT&T WE-DSP32 processing elements. Interprocessor communication is achieved

through multiple banks of dual-port memory. Unlike many other approaches to DSP-

based parallel processing the OSCAR32 DSP multiprocessor aims at exploiting fine

grain parallelism, i.e. ILP. Each of the processors is a conventional single-issue DSP.

All processors together form a clustered architecture, not unlike more recent VLIW

DSPs, e.g. the TI TMS320C6x. This processor cluster is fed with instruction bundles

consisting of individual operations for each processor. Parallelisation in the OSCAR32

is essentially the identification of parallel instructions and the construction of an effi-

cient schedule.

Although a parallelising compiler, the emphasis of this work is clearly directed

on ILP and not on any form of coarse-grain parallelism. As DSP manufacturers have

adopted the VLIW paradigm in their current products and provide ILP exploiting com-

pilers for their processors, our work is different in that it aims at extracting and exploit-

ing parallelism on a higher level. Fine-grain parallelisation is left to the manufacturers’

backend compilers and supported by the application of sequences of high-level trans-

formations to their input.
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4.3.3 Hoang and Rabaey (1992)

The McDAS software environment for the automatic parallelisation of sequentially

specified program for multiprocessor DSP is presented in Hoang and Rabaey (1992).

Starting with a sequential algorithm implementation in Silage, data dependence anal-

ysis is applied and control and data flow graphs are constructed. In a bottom-up tree

traversal computation time and memory requirements for individual nodes in the pro-

gram are estimated. Loop-level and task-level parallelism exploitation are unified as

independent loop iterations are treated as separate tasks. Special consideration is given

to potential bus contention in the scheduling stage, which takes a description of the

target multiprocessor to produce a static, throughput-maximising schedule. During

code generation circular buffers are inserted between communicating tasks, before C

code is generated as output of McDAS. The generated C output can be mapped onto

distributed-memory architectures as well as onto shared-memory machines. Perfor-

mance evaluations on a 14 processor Sequent Symmetry suggest good speedups and

accurate load balancing estimations.

This interesting compiler processes DSP programs written in Silage, a signal-flow

language developed especially for DSP specification. Unfortunately, Silage as many

other domain-specific languages have found little attention in industry, leaving C the

dominating programming language for actual DSP production system implementation.

The use of C, however, introduces complexities to parallelising compilers such as

the potential aliasing of pointers that obviously have not found consideration in the

McDAS compiler. The introduction of circular buffers as abstract and machine- and

language-independent communication mechanism greatly simplifies code generation,

but it remains unclear how these buffers can be efficiently mapped onto the target ar-

chitecture. The paper gives little indication whether this stage can be automated or was

performed manually. Performance evaluation on a shared-memory Sequent Symmetry

demonstrates the potential usefulness of this approach, however, it remains question-

able whether a real multi-DSP architecture will equally benefit from this approach.
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4.3.4 Koch (1995)

Multiprocessor scheduling of sets of tasks for multi-DSP architectures is the subject

of Koch (1995) and also Bauer et al. (1995). In the thesis of Koch (1995), different

list scheduling heuristics are developed and compared to an approach based on simu-

lated annealing. Bauer et al. (1995) extend this by a genetic algorithm. Case studies

demonstrate the success of their approaches.

Both publications only consider a small part of the parallelisation process and have

restrictions that make them suitable only for a small class of real-world applications.

In the context of task-level parallelism exploitation, efficient scheduling strategies are

nonetheless a very important part of a larger parallelisation framework.

4.3.5 Newburn and Shen (1996)

The PEDIGREE compilation tool developed by Newburn and Shen (1996) is a post-

pass compiler which performs scheduling and partitioning for a multiprocessor. As

such, it does not work on the source codes of the program under inspection, but on

its sequential object code, in this case of the DEC/Compaq Alpha CPU. It tries to

identify program regions of different granularity that can be executed in parallel. This

computation partitioning is followed by a scheduling stage, which constructs a parallel

schedule minimising overall program latency, while taking synchronisation and com-

munication overhead into account. Speedups for 14 benchmarks from the Strategic

Defence Initiative Organization (SDIO) Signal and Data Processing benchmark suite

measured on a simulator show some speedups for two processors, but adding further

processors does not contribute much to the overall performance.

This non-standard, low-level approach to parallelisation assumes a NUMA shared-

memory target architecture. Therefore, computation partitioning without incorporat-

ing data layout has only very limited success. It seems likely that data partitioning

and transformations together with more accurate knowledge of data access patterns

than can be extracted from object code are necessary to achieve better performance, in

particular in presence of multiple address spaces.
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4.3.6 Ancourt et al. (1997)

Ancourt et al. (1997) have developed an automatic mapping technique for DSP appli-

cations onto parallel machines with distributed memory. Using Concurrent Constraints

Logic Programming (CCLP) languages, they show how the simultaneous consideration

of architectural resource constraints and real-time constraints imposed by the overall

system can be integrated into a single framework. Parameterisable processor descrip-

tions and user-controlled system constraints are features to adapt the system to varying

environments. The result of the application of this constraint solver is a static task

mapping onto the available processors. However, construction of the input task graph

and implementation of the produced solution has to be done manually by the user.

Whereas the underlying assumptions about the target architecture closely match

existing architectures, the features of the applications do not seem to be particularly

close to practical needs. For example, only fully parallel nests and perfectly nested

loop are permitted. Loops that do not fall in this category are captured in macro blocks

(similar to library functions) not eligible for parallelisation. Experimental results are

promising, in particular, as the system not only performs parallelisation, but also a re-

stricted Design Space Exploration, i.e. it determines the minimal number of processors

that still satisfy the latency constraint and reduces memory cost.

4.3.7 Karkowski and Corporaal (1998)

A semi-automatic parallelisation framework for DSP codes written in ANSI C is pre-

sented in Karkowski and Corporaal (1998). It combines functional pipelining, data

set partitioning and source-to-source transformations to obtain hierarchical paralleli-

sations. This parallelisation framework is part of a design space methodology which

aims at finding different multi-processor configurations based on the Delft University

MOVE architecture.

As such, this work is probably most similar to ours, yet there are a number of

significant differences. The most important one is the lack of a data partitioning strat-

egy. Although the MOVE design space exploration framework supports physically

distributed memories and private address spaces, the paralleliser does not incorporate
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any data partitioning stage. Instead, it allocates all data to a single processor, to which

other processors send their requests via dedicated bidirectional links. Still, this pes-

simistic communication model delivers reasonable performance. Comparing this with

results obtained on the similar multi-processor TigerSHARC architecture, it seems

likely that the underlying communication cost parameters in the MOVE multiproces-

sor model/simulator might be somewhat overly optimistic. Related to the problem

of lacking data partitioning is the absence of locality optimisations, which have been

shown to be a key factor in achieving high performance (compare chapter 8). How-

ever, this piece of work demonstrates how different parallelisation schemes can be

profitably combined in the context of DSP codes written in ANSI C. It remains unclear

whether the paralleliser can deal with low-level pointer-based codes or is restricted to

Fortran-like C code.

4.3.8 Wittenburg et al. (1998)

The paper of Wittenburg et al. (1998) describes the architecture and design of the

HiPAR-DSP, a SIMD controlled signal processor with parallel data paths, VLIW and

an unconventional memory design. As a speciality, the HiPAR-DSP is built around an

on-chip matrix memory with a virtual 2D address space, which allows for conflict free

accesses to the data stored in it. Each of the up to 16 processing elements has assigned

to it additional instruction and data caches.

The compiler for the HiPAR-DSP only exploits instruction-level parallelism for

the VLIW cores and leaves coarse-grain parallelisation to the programmer. It has inte-

grated non-standard extensions to the C programming language, which support parallel

operations and matrix memory access. Scalar variables can be extended to compound,

matrix type data types. Expressions using variables of this type result in parallel oper-

ation of all data paths on different components of this type.

Using this explicit approach to parallelisation simplifies the design of the compiler

for this architecture. Drawbacks are the increased cost for parallel software develop-

ment and the resulting non-portable code. Conceivably, the HiPAR-DSP would be a

very interesting target for an automatically parallelising compiler.
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4.3.9 Kalavade et al. (1999)

A software environment for a multiprocessor DSP is described in Kalavade et al.

(1999). The target architecture considered in this paper is the single-chip multiproces-

sor Daytona DSP, a bus-based shared-memory computer that employs SIMD-enhanced

SPARC CPUs with 8kB of local memory as processing elements. This local memory

can be configured as instruction cache, data cache, and user-managed buffer. Unfor-

tunately, it is not clear whether this latter configuration results in the creation of a

separate address space or it is embedded in a unified, single address space. Parallelism

extraction and exploitation is fully controlled by the programmer, i.e. there is no sup-

port for automatic parallelisation available in this framework. On the lowest level, the

programmer has to specify vector data types in the code, suitable for the generation of

SIMD instructions by the compiler. On the task level, the user is expected to design the

application as a set of communicating tasks which are then scheduled by a real-time

operating system.

A highly interesting and complete approach to single-chip multiprocessing in the

DSP domain, this work follows more conventional tracks in the use of explicit con-

structs to make parallelism opaque to the programmer. Unlike the work presented in

this thesis, it relies on a real-time operating system to schedule explicitly parallel tasks.

Furthermore, the target architecture provides a single address space (at least when lo-

cal memory is used as cache) that simplifies software memory management. The use

of the SPARC architecture and the shared-memory approach to memory organisation,

however, let this chip-multiprocessor resemble more a conventional SMP computer on

a chip, than a cost and power sensitive multi-DSP.

4.4 Summary

While many compilers struggle with manually “tuned” codes, program recovery is

still a subject in its infancy. Little work has been done to recover more compiler-

friendly codes, while significantly more effort has been spent in more elaborate code

analyses. When these analyses are not integrated in the compiler for the current target,

performance is severely reduced. In such cases, program recovery techniques are very
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valuable tools.

A number of researchers have investigated individual high-level transformations

for DSP codes. However, combined transformations and the search for “good” trans-

formation sequences have found little consideration. Given the vast body of work in

the scientific computing community and the equally numerically intensive character

of many DSP applications, the investigation of well-known high-level transformation

appears very promising.

Automatic parallelisation is a well established subject in scientific computing, but

only very little work has been done to transfer this knowledge to the embedded sys-

tem domain. Existing approaches often do not consider idiosyncracies of real DSP

architectures and the dominant C programming language. Both of which complicate

automatic parallelisation for multi-DSP targets and require specialised approaches.





Chapter 5

Program Recovery

Premature optimization is the root of all evil.

Tony Hoare and Donald E. Knuth

Frequently, optimising compilers are faced with programs making use of certain id-

ioms, which prohibit the immediate application of standard optimisation techniques.

Usually, these idioms are introduced by programmers with the intention to overcome

some specific restrictions of the chosen programming language or certain shortcomings

of the available compiler. However, when such convoluted code is presented to a more

advanced compiler, it often fails to deliver optimal performance since the artificially

introduced constructs cover the intended meaning of the program. In this chapter, two

Program Recovery Transformations that detect and remove two frequently encoun-

tered idiomatic constructs are presented. After their application advanced optimising

compilers can take full advantage of their built-in set of optimising transformations.

Pointer Conversion is a reverse-engineering technique that detects and converts

pointer-based linear array traversals. The transformed program uses easier to analyse

explicit array accesses. This enables the optimising compiler to apply Array Dataflow

Analyses, which in turn enable further Memory Access Optimisations. Programmers

use this problematic idiom because immature compilers could still generate efficient

AGU code (see section 2.2.2.2) for pointer arithmetic and pointer-based memory ac-

cesses. More recent compilers, however, have difficulties in dealing with pointer-based

73
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array accesses as they defeat data dependence analysis.

Modulo Removal is a program recovery transformation substituting modulo opera-

tions in array index functions. Usually, modulo indexing is used to implement circular

buffers in C. As many signal processing algorithms rely on the efficient implementa-

tion of circular buffers, expensive indexing operations are not acceptable. However,

as C does not support circular addressing, programmers have little choice. For opti-

mising and parallelising compilers the situation is even worse, since standard Array

Dataflow Analyses can only handle affine index functions. Conservative assumptions

about data dependences are made in the presence of modulo indexing. Often these ap-

proximations are overly conservative and prevent the application of advanced memory

access optimisations (for single-processor systems) and data partitioning and layout

techniques (for multi-processor systems).

5.1 Pointer Conversion

One major difficulty in the use of high level transformations is the extensive usage

of pointer arithmetic (Liem et al., 1996; Zivojnovic et al., 1994; Numerix, 2000)

which prevents the application of well developed array-based dataflow analyses and

transformations. In fact, in Numerix (2000) programmers are actively encouraged to

use pointer-based code in the mistaken belief that the compiler will generate better

code. Although at one time, these pointer-based programs may have performed well

with the contemporary compiler technology, they frequently make matters worse for

the current generation of optimising compilers. This is precisely analogous to the

development of early scientific codes in Fortran where convoluted code was created to

cope with the inadequacies of the then current compilers but have now become “dusty

decks”, making optimisation much more challenging.

In this section a technique to transform pointer-based programs into an equivalent

array-based form is developed. This technique opens up the opportunity for the appli-

cation of other high-level transformations (see chapter 6).

Pointer conversion consists of two main stages. The first stage determines whether

the program is in a form amenable to conversion and consists of a number of checks.
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These checks err on the conservative side ensuring that any program satisfying these

constraints may be safely considered by the pointer conversion stage. The second

stage gathers information on arrays and pointer initialisation, pointer increments and

the properties of loop nests. This information is used to replace pointer accesses by

the corresponding explicit array accesses and to remove pointer arithmetic completely.

The overall structure of the algorithm is shown in figure 5.4.

The pointer conversion algorithm simply changes the representation of memory

accesses and is largely a syntactic change. Therefore, overlapping arrays and multiple

pointers to the same array that often prevent standard program analysis, do not interfere

with the conversion algorithm.

A motivating example is given in section 5.1.1. Descriptions of the program rep-

resentation formalism and other useful definitions are presented in sections 5.1.2 and

5.1.3. Section 5.1.4 describes the restricted form of programs considered in the algo-

rithm and the checks used to guarantee correctness. This is followed in sections 5.1.5

and 5.1.6 by the actual conversion algorithm based on a dataflow framework. Finally,

an example of the application of the entire algorithm is given in section 5.1.7.

5.1.1 Motivation

Pointer accesses to array data frequently occur in typical DSP programs. Many DSP

architectures have specialised AGUs (see section 2.2.2.2), but early compilers were

unable to generate efficient code for them, especially in programs containing explicit

array references. Programmers, therefore, used pointer-based accesses and pointer

arithmetic within their programs in order to give “hints” to the early compiler on how

and when to use auto-increment addressing modes available in AGUs. For instance,

consider figure 5.1, a kernel loop of the DSPstone benchmark matrix2.c. Here the

pointer increments “encourage” the compiler to utilise the post-increment addressing

modes of the AGU.

If, however, further analysis and optimisation is needed before code generation,

then such a formulation is problematic as such techniques rely on explicit array index

representations and cannot cope with pointer references. In order to maintain correct-

ness, compilers use conservative strategies, limiting the maximal performance of the
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int *p a = &A[0] ;

int *p b = &B[0] ;

int *p c = &C[0] ;

for (k = 0 ; k < Z ; k++) {

p a = &A[0] ;

for (i = 0 ; i < X; i++) {

p b = &B[k*Y] ;

*p c = *p a++ * *p b++ ;

for (f = 0 ; f < Y-2; f++)

*p c += *p a++ * *p b++ ;

*p c++ += *p a++ * *p b++ ;

}

}

Figure 5.1: Original pointer-based array traversal

produced code.

Although general array access and pointer analysis are, without further restrictions,

intractable (Maydan et al., 1995), it is easier to find suitable restrictions of the array

data dependence problem while keeping the resulting algorithm applicable to real-

world programs. Furthermore, as array-based analysis is more mature than pointer-

based analysis within optimising compilers, programs containing arrays rather than

pointers are more likely to be efficiently implemented. In this section, a technique to

regenerate the original accesses with explicit indices is developed. These accesses are

then suitable for further analysis. This translation has been shown not to affect the

performance of the AGU (de Araujo, 1997; Leupers, 1998) and enables the application

of well known high-level code and data transformations.

Figure 5.2 shows the loop with explicit array indices that is semantically equivalent

to the previous loop in example 5.1. Not only it is easier to read and understand for a

human reader, but it is amendable to compiler array dataflow analyses (e.g. Duester-

wald et al., 1993).



5.1. Pointer Conversion 77

for (k = 0 ; k < Z ; k++) {

for (i = 0 ; i < X; i++) {

C[X*k+i] = A[Y*i] * B[Y*k];

for (f = 0 ; f < Y-2; f++)

C[X*k+i] += A[Y*i+f+1] * B[Y*k+f+1];

C[X*k+i] += A[Y*i+Y-1] * B[Y*k+Y-1];

}

}

Figure 5.2: After conversion to explicit array accesses

5.1.2 Program Representation

This section briefly describes the program representation used in the pointer to array

conversion algorithm.

The pointer conversion algorithm is a source-to-source transformation that requires

a high-level intermediate representation preserving C constructs. Therefore, along with

the standard Control-Flow Graph (CFG) a loop tree (Morgan, 1998) where loop struc-

tures, array accesses and pointer arithmetic are easily identifiable is used.

The loop tree represents a partial order on the loops contained in it. The relation

of two loops L1 and L2 of which L2 is contained in the loop body of L1, i.e. L2 is an

inner loop of L1, can be written as L2 ⊂ L1. The ⊂ relation is reflexive, transitive and

anti-symmetrical. An example of the loop tree representation is given in figure 5.3.

5.1.3 Other Definitions

For convenience, the innermost embracing loop of a node x is denoted by inner(x). If

the node x is outside of any loop, then inner(x) =⊥.

Let L be a loop nest, and l an integer specifying a level of the loop nest L. Then

Ll is the loop at level l of the loop nest L. The functions lower(Ll) and upper(Ll)

denote the lower and upper bounds of the loop Ll , and range(Ll) returns the range

of a normalised for loop Ll . These functions can be expressed using the algebraic
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for(k=0; k<Z; k++)

p_a = &A[0] for(i=0; i<X; i++)

for(f=0; f<Y; f++) p_c++p_b = &B[k*Y]

*p_c = 0

p_c = &C[0]

*p_c += *p_a++ * *p_b++

Figure 5.3: DSPstone matrix1 C code and the corresponding loop tree

framework introduced in section 2.3 as

lower(Ll) = LBl (5.1)

upper(Ll) = UBl (5.2)

range(Ll) = upper(L)− lower(L) (5.3)

where LBl and UBl are the corresponding elements from equation 2.1. Alternatively,

the bound expressions can be reconstructed from the iteration space polyhedron BIII≤ bbb

(equation 2.2) using Fourier-Motzkin elimination (Schrijver, 1986). In cases where

the loop bounds are not constant, but expressions in outer iterators, these symbolic

expressions are returned for further processing.

Any node of the loop tree containing a loop header can be contracted to a special

summary node. This type of node is used to summarise the effects of the loop with its

possible inner loops on pointers variables. In later analysis steps, summary nodes can

be handled in the same way as ordinary nodes, i.e. as a single statement.
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5.1.4 Assumptions and Restrictions

In order to facilitate pointer conversion and to guarantee its correctness the overall

requirement can be broken into a number of checks in the first step of the algorithm.

5.1.4.1 Structured loops

Loops are restricted to a normalised iteration range spanning from the lower bound 0

to some upper bound UB with unit stride. We assume interprocedural constant propa-

gation (Callahan et al., 1986; Sagiv et al., 1995; Grove and Torczon, 1993) has taken

place and the upper bound may be a constant or an affine expression containing only

outer loop variables in the case of a loop nest. Structured loops must have single-

entry/single-exit property.

It is easy to determine that all loops conform to this restriction; after loop normal-

isation, all loops Li, i ∈ 1, . . . ,n are checked that upper(Li) is an affine expression of

syntactically enclosing loops L1, . . . ,Li−1, i.e. of the form described in equation 2.1.

5.1.4.2 Pointer assignments and arithmetic

Pointer assignment and arithmetic are restricted in the analysis stage. Pointers may be

initialised to an array element whose subscript is an affine expression of the enclosing

iterators and whose base type is scalar. Simple pointer arithmetic and assignment

are also allowed. Ensuring the restrictions on pointer assignment and arithmetic can

be broken into two stages, the first of which is syntactic. Pointer expressions and
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assignments are restricted to the following syntactic categories:

ptr expr ← ptr(“++”|“--”) (5.4)

| ptr (“+”|“-”) constant

ptr assign ← ptr “=” ptr expr (5.5)

| ptr “=” “&”array“[“a f f ine expr“]”

| ptr “=” “&”var

| ptr “=” array

| ptr “+=” constant

| ptr “-=” constant

Note that dynamic memory allocation and deallocation are implicitly excluded be-

cause of the potentially unbounded complexity of dynamic data structures.

In addition, any pointer use must be dominated by a node that contains the corre-

sponding pointer assignment. In other words, a pointer cannot be used before it has

been correctly initialised. This requirement can be stated more formally:

∀p ∈ P,USE(p) : ∃q ∈ P : q ∈ DEF(q)∧DOM(q, p) (5.6)

where P is the set of pointers, and USE,DEF and DOM are the usual dataflow terms

referring to the use of a variable, its definition and the dominance of one node over

another.

5.1.4.3 Pointers to other pointers

Pointers to pointers are prohibited in our scheme. An assignment to a dereferenced

pointer may have side effects on the relation between other pointers and arrays that

is difficult to identify and, fortunately, rarely found in DSP programs. A conservative

approach is taken where any variable which is declared as a pointer, dereferenced or

assigned an address is considered a pointer variable. Just as pointer to pointers are

prohibited, so are function calls which take addresses of pointers as arguments, as the

pointer may be changed. Thus taking the address of a pointer is prohibited. These

restrictions imply that function pointers are prohibited which is acceptable for DSP

programs as they are rarely, if ever, used.



5.1. Pointer Conversion 81

1. Check Program

(a) Ensure structured loops

(b) Ensure restricted pointer assignment and arithmetic

(c) Check no pointers to pointers

2. Transform

(a) IF legal THEN Gather pointer information using dataflow analysis

(b) IF legal THEN Translate pointers to arrays, remove redundant pointers arithmetic

Figure 5.4: Overall Algorithm

This pointer classification scheme can be realised as a simple, interprocedural non-

iterative algorithm. Any variable identified as a pointer either by its declaration or use,

is labelled as a pointer. The set of pointers is passed into any called function in which

any variable “contaminated” with an already recognised pointer is also included in the

pointer set. If the address of a pointer is taken or a pointed to variable assigned a

pointer value is discovered, the program is rejected. This simple pointer classification

algorithm, described in figure 5.5 will determine potential pointers to pointers occur-

rences. At present, pointer conversion is aborted if any potential pointer to pointer

cases are found.

5.1.4.4 Example

Figure 5.6 shows a program fragment illustrating legal and illegal constructs for pointer

to array conversion. The initialisations of pointers ptr1 and ptr2 are legal; ptr1 is

statically initialised and ptr2 is initialised repeatedly within a loop construct to an

array with an affine subscript.

Pointers ptra, ptrb and ptrc are examples of illegal initialisation; a block of

memory is dynamically allocated and assigned to ptra, whereas the initialisation of

ptrb is illegal because the subscript b[i] is not an affine expression. Finally, the

assignment to ptrc is illegal as there is no dominating definition of ptr.

Pointer arithmetic is restricted in the scheme; the constant increments to pointer
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1. For each procedure P

(a) Forall statements s in the procedure P

i. IF a variable v is declared as a pointer, type * v, used as a pointer * v,assigned

an address of a var, v = & var THEN pointer = pointer ∪v.

(b) Forall statements s in the procedure P

i. IF v,w ∈ pointer and s is of the form * v = w or v = &w THEN my contam =

my contam ∪ { v,w}

ii. return contam = my contam ∩ argument pointers

2. Check (main, /0) where Check (P, inherited pointers) =

(a) Forall statements s in P

i. If s a function call, child contam =child contam ∪ check (s, pointers)

ii. my contam = my contam ∪ child contam

(b) return my contam ∩ arg pointers

3. Propagate (main, /0) where Propagate (P, inherited) =

(a) my contam = my contam ∪ inherited

(b) Forall statements s in P

i. If s a function call, Propagate (s, my contamin∩ actual args)

Figure 5.5: Pointer to pointer analysis
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int array1[100], array2[100];

int *ptr1 = &array1[5]; /* OK */

int *ptr2,*ptra,*ptrb,*ptrc,*ptr;

ptra = (int *) malloc(...); /* Not ok */

ptrc = ptr; /* Not ok */

for(i = 0; i < N; i++) {

ptrb = &a[b[i]]; /* Not ok */

ptr2 = &array2[i]; /* OK */

for(j = 0; j < M; j++) {

...

}

ptr1++; /* OK */

ptr1 += 4; /* OK */

}

ptr2 += x; /* Not ok */

ptr2 -= f(y); /* Not ok */

function1(ptr1); /* OK */

function2(&ptr1); /* Not ok */

Figure 5.6: Example of legal and illegal pointer usage
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ptr1 are legal. However the modification of pointer ptr2 is illegal as they include

compile-time unknown values.

Finally, two examples of passing pointers to functions are also shown. function1

receives a pointer to the array, thus only the content of the array can be changed, but

not the pointer ptr1 itself. However, function2 may change the pointer ptr1, which

is not permissible.

5.1.5 Pointer Analysis Algorithm

Once the program has been checked, the second stage of the algorithm gathers infor-

mation on pointer usage before pointer conversion.

5.1.5.1 Dataflow Information

Information on pointer assignments and modifications is stored at each node of the loop

tree. In particular, for each declared pointer, the mapping between this pointer and an

array, including the position of the pointer within the array, is recorded . Additionally,

the label of the node containing the most recent assignment to each pointer is stored.

The data for a pointer p is stored in a tuple of the form ((a,x,n),o1, . . . ,ol) where

a is the array pointed to, x the index of a specific element p points to, n the node the

assignment to p occurred in, ok the movement of the pointer p in a loop k and l the

number of enclosing loops in the function to be analysed.

After initialisation the elements a,x,n and ok carry the default value ⊥ indicating

that no specific information is available. More precisely, ⊥ denotes the state that the

pointer has not been assigned any array element. Conversely, the value > is used to

express the conflict between different assignments. For example, consider the situation

in figure 5.7. Here, in a node of joining control paths the conflict between p pointing

to a along the one incoming path and p pointing to b along another path is resolved

by setting the corresponding element to >. From this it becomes clear that p has been

assigned at least along one control path, but the specific mapping of p is dependent on

the actual program execution path (denoted by > in the corresponding field).

The number of increments of a pointer must be equal across all control paths reach-

ing a particular statement in order that a pointer reference may be replaced by an array
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V

p=&a[x] p=&a[y]

p:((a,x,n1),o1) p:((a,y,n2),o2)

n1: n2:

n3:

p:((a,T,T),T)

Figure 5.7: Joining control flow and the meet operator

reference. If the number of increments is different on two joining paths, again this

is denoted by > in the appropriate field. Given this requirement, it is now possible

to define the meet operator, which combines the outcome of following one of two

distinct control-flow paths at the point at which they meet e.g. immediately after an

if-statement. The meet operator
V

is formally defined as follows

^

(((a1,x1,n1),o1,1, . . . ,o1,l),((a2,x2,n2),o2,1, . . . ,o2,l)) (5.7)
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((a1,x1,n1),o1,1, . . . ,o1,l)

if ((a1,x1,n1),o1,1,...,o1,l)=((a2,x2,n2),o2,1,...,o2,l)

((a1,x1,n1),o1,1, . . . ,>, . . . ,o1,l)

if a1=a2,x1=x2,n1=n2,o1,k 6=o2,k

((a1,>,n1),>, . . . ,>)

if a1=a2,x1 6=x2,n1=n2

((>,>,>),>)

otherwise

This operator is used in section 5.1.5.3 to determine the effects of pointer usage

throughout the program.
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5.1.5.2 The Flow Functions

The flow functions model the effect of each statement on the pointer-to-array mapping

reaching this statement node. The flow functions have the form f : Lm→ Lm with L the

dataflow information ((a,x,n),o1, . . . ,ol) and m the total number of pointers declared

in the C function being processed. For each node n a flow function fn is defined.

This flow function can be split up into individual functions according to the operation

contained in node n. The individual functions are either Generate, Preserve or Exit

functions.

fn(t1, . . . , tm) = ( f 1
n (t1), . . . , f m

n (tm)) (5.8)

where ti = ((ai,xi,ni),oi,1, . . . ,oi,l)

Generate Functions cover assignments to pointers. An incoming pointer-to-array

mapping is generated or updated for any pointer p. The general form of a generate

function is this:

f p
n (((ap,xp,np),op,1, . . . ,op,l)) = (5.9)



















((v,0,n),op,1, . . . ,0, . . . ,op,l) if p = &v for scalar v

((a,0,n),op,1, . . . ,0, . . . ,op,l) if p = a for an array a

((a,x,n),op,1, . . . ,0, . . . ,op,l) if p = &a[x] for an array a

Preserve Functions handle pointer arithmetic, i.e. pointer movements relative to its

current position. The pointer-to-array mapping is updated according to the operation
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of node n.

f p
n (((ap,xp,np),op,1, . . . ,op,k, . . . ,op,l)) (5.10)

=
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((ap,xp,np),op,1, . . . ,op,k +1, . . . ,op,l)

if p++ and k = inner(n)

((ap,xp,np),op,1, . . . ,op,k−1, . . . ,op,l)

if p-- and k = inner(n)

((ap,xp,np),op,1, . . . ,op,k + c, . . . ,op,l)

if p += c and k = inner(n)

((ap,xp,np),op,1, . . . ,op,k− c, . . . ,op,l)

if p -= c and k = inner(n)

((aq,xq,nq),oq,1, . . . ,oq,k, . . . ,oq,l)

if p = q and q a pointer
...

((ap,xp,np),op,1, . . . ,op,k, . . . ,op,l)

otherwise

Exit Functions represent the transition from statement to loop level. Since Exit

nodes occur at the end of a loop body, exit functions have the task of summarising

the effects of the individual statements in the loop body. The result represents the

overall effect of a particular loop level on the pointer mapping.

f p
n (((ap,xp,np),op,1, . . . ,op,k, . . . ,op,l)) = (5.11)

((ap,xp,np),op,1, . . . ,op,k, . . . ,op,l)

To compute the total effect of a statement performing pointer arithmetic in a loop

nest, the total number of iterations of each individual loop must be known. Given a

generic loop nest in figure 5.8, the total number of iterations of the innermost loop is

N

∑
i0=0

f1(i0)

∑
i1=0

f2(i0,i1)

∑
i2=0

· · ·
fn(i0,...,in−1)

∑
in=0

1 (5.12)
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for(i0 = 0; i0 < N; i0 ++)

{

\* pointer incremented by m0,pre * \

for(i1 = 0; i1 < f1(i0); i1 ++)

{

\* pointer incremented by m1,pre * \
...

for(in = 0; in < fn(i0, . . . , in−1); in ++)

{

\* pointer incremented by mn *\

}

\* pointer incremented by m1,post * \

}

\* pointer incremented by m0,post * \

}

Figure 5.8: Loop nest with pointer increments
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where fk(i0, . . . ik−1) is the number of iterations of the kth nested loop, 1 ≤ k ≤ n. In

the same way, the total number of iterations of an inner loop in level k can be expressed

as

X(k) =
N

∑
i0=0

f1(i0)

∑
i1=0

f2(i0,i1)

∑
i2=0

· · ·
fk(i0,...,ik−1)

∑
ik=0

1 (5.13)

Such terms are frequently encountered in analysing loop nests and can be enumer-

ated using the Omega Calculator (Pugh, 1994) or methods based on Ehrhart polyno-

mials (Clauss, 1996).

Given equations 5.12 and 5.13, the total effect of the pointer increments of a pointer

p in the entire loop nest can be derived as follows:

X(n)×mn+ (5.14)

X(n−1)× (mm−1,pre +mn−1,post)+

. . .

X(0)× (m0,pre +m0,post) =

∑n−1
k=0(X(k)×mk,pre +mk,post)+X(n)×mn

where mk,pre,mk,post is the size of the pointer increment in loop k before entering and

after exiting, respectively, the k +1 loop as shown in figure 5.8.

For rectangular iteration spaces and constant numbers of pointer increments on

each loop level, the total number of pointer increments evaluates to affine expressions

dependent on the iteration variables. Otherwise, if all upper loop bounds are affine

expressions in the outer index variables, the resulting expressions are polynomial func-

tions of the index variables.

Once the effects of individual loop levels have been analysed, the pointer conver-

sion algorithm can use this information and compute the total effect of a statement

containing pointer arithmetic in a loop nest. This computation based on the infor-

mation gathered in the analysis stage is part of the conversion algorithm described in

section 5.1.6.
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5.1.5.3 Equation System

The flow functions specify the effects of a statement locally, i.e. on a per node or

statement basis. All flow functions together form an equation system whose solution

is the global dataflow solution. This solution has its representation in the IN[n] and

OUT [n] sets associated with each node.

Solving the dataflow equation starts with all pointers initialised to a default value,

i.e.

∀p : ((ap,xp,np),op,1, . . . ,op,l) = ((⊥,⊥,⊥),⊥) (5.15)

resulting in

IN[n] = (((⊥,⊥,⊥),⊥), . . . ,((⊥,⊥,⊥),⊥)) (5.16)

The equation system is solved by visiting all nodes in reverse postorder beginning

at the start node no and computing the IN[n] and OUT [n] sets as follows:

OUT [n] = fn(IN[n]) (5.17)

IN[n] =
^

m∈pred(n)

OUT [m] (5.18)

Only a single iteration is required to propagate the pointer mapping values. Thus,

its runtime complexity is O(N) with N the number of nodes in the CFG. Unlike iterative

dataflow analysis this algorithm does not compute any fix point. The transition from

statement to loop level is done at the end of the loop body when the flow function of

the loop node is computed.

5.1.6 Pointer Conversion Algorithm

In a second pass over the CFG, step 2b in the algorithm, pointer accesses and arith-

metic are replaced and removed, respectively. Replacement is based on the dataflow

information gathered during the analysis stage. From this information, the index ex-

pressions of the array accesses are constructed.

A pointer reference can only be replaced if its array a and offset o components of

the tuple ((a,x, l),o1, . . . ,ol) are unambiguous. This is the case when a,o 6∈ {⊥,>}.
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The information required for the conversion of a pointer access into an array access

is contained in the computed dataflow values IN. The necessary components for the

construction of the array access are:

1. The array name A,

2. the initial offset at the location of the first pointer assignment offsetinit ,

3. and a linear expression in outer iterators f (i1, . . . , ilevel).

Figure 5.9 shows the pointer conversion algorithm. It operates on the loop nest

from the innermost loop to the outermost loop. On each level each pointer-based access

is analysed, and an explicit array access replacing the original access is constructed.

Information is gathered from the IN sets of the current node and the exit nodes of the

enclosing loops. Based on this information, the new access is computed.

If there are uses of the pointer following the transformed loop which cannot be

eliminated by the pointer conversion algorithm, an additional statement with an update

of the pointer taking into account the total effect of the loop on the pointer must be

inserted immediately after the loop.

The example in the following section illustrates the application of the pointer con-

version algorithm on the matrix1 program.

5.1.7 Example

In figure 5.10, each node of the matrix1 program together with its associated dataflow

information for the pointer p c is shown. The rightmost column (p c→ c) of figure

5.10 contains the expressions, which together form the explicit array access, and are

constructed during pointer conversion.

From the IN set of node 8, the mapping of pointer p c onto the array C can be read

off. Additionally, the initial offset offsetinit = 0 and the entry offset offsetentry = 0 are

stored at this node. The contributions to linear function f come from the exit nodes of

the surrounding loops. Putting together the subexpressions as described in the previous

section results in the explicit memory access C[k∗X + i] for node 8. In a similar way the

assignment *p c = 0 in node 6 can be replaced. After the replacement of all accesses
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• From inner loop to outer loop:

1. For all pointer-based accesses in loop-level level

(a) Select next pointer-based access based on pointer p in node n

(b) Construction of explicit array reference A[I]

i. Inspect IN p
n = ((a,x, l),o1 , . . . ,ol)),a,x, l,ok 6∈ {⊥,>}.

ii. Determine array A = a.

iii. Determine index I = offset init +offsetentry + f (i1, . . . , ilevel ).

A. Determine offset init = x.

B. Determine offsetentry = ∑level
i=1 oi.

C. Determine linear function f (i1, . . . , ilevel ).

f (i1, . . . , ilevel ) =
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0, if ok =⊥,∀k

0, if ok = 0,∀k

∑level
k=1 X(k)×o′k where o′k from IN p

exitk

if inner(n) =⊥

∑level
k=1 X(k)× ck

if n is re-assigned in loop level l

and ck =







0, if k ≤ level

o′k from IN p
exitk

,otherwise

(c) Replace pointer-based access with A[I]

2. Delete all pointer expressions modifying p from loop

Figure 5.9: Pointer Conversion Algorithm
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Node Original program p c:((a,x,n),k,i,f p c→ c

int A[N],B[N],C[N];

int *p a, *p b, *p c; → ((⊥,⊥,⊥),⊥,⊥,⊥)

1 p c = &C[0]
In ((⊥,⊥,⊥),⊥,⊥,⊥)

Out ((C,0,1),⊥,⊥,⊥)

2 for(k=0; k<Z; k++)
In ((C,0,1),⊥,⊥,⊥)

Out ((C,0,1),0,⊥,⊥)

{

3 p a = &A[0];
In ((C,0,1),0,⊥,⊥)

Out ((C,0,1),0,⊥,⊥)

4 for(i=0; i<X; i++)
In ((C,0,1),0,⊥,⊥)

Out ((C,0,1),0,X ,⊥)

{

5 p b = &B[k*X];
In ((C,0,1),0,0,⊥)

Out ((C,0,1),0,0,⊥)

6 *p c = 0;
In ((C,0,1),0,0,⊥)

Out ((C,0,1),0,0,⊥)

7 for(f=0; f<Y; f++)
In ((C,0,1),0,0,⊥)

Out ((C,0,1),0,0,0)

{

8 *p c += *p a++ * *p b++;
In ((C,0,1),0,0,0) C, offsetinit = 0, offsetentry = 0

Out ((C,0,1),0,0,0)

9 } /* Exit f loop */
In ((C,0,1),0,0,0) c3× i3 = 0× f

Out ((C,0,1),0,0,0)

10 p c++
In ((C,0,1),0,0,0)

Out ((C,0,1),0,1,0)

11 } /* Exit i loop */
In ((C,0,1),0,1,0) c2× i2 = 1× i

Out ((C,0,1),0,1,0)

12 } /* Exit k loop */
In ((C,0,1),0,1,0) c1× i1 = X× k

Out ((C,0,1),0,1,0)

Figure 5.10: Dataflow solution for matrix1



94 Chapter 5. Program Recovery

via the pointer p c, the statements containing pointer arithmetic on p c can be deleted.

Finally, after ensuring that no further use of p c remains, the declaration of the pointer

can be discarded. p a and p b are treated in a similar manner. The final program is

shown in figure 5.2.

This example will be used as a running example throughout this thesis. In section

5.3, both the original and the transformed version of the the program are juxtaposed

and further discussed.

5.2 Modulo Removal

Modulo addressing is a frequently occurring idiom in DSP programs. In this section,

a new technique to remove modulo addressing by transforming the program into an

equivalent linear form, if one exists, is developed. This transformation uses rank-

modifying transformation framework (O’Boyle and Knijnenburg, 2002), which ma-

nipulates extended linear expressions including mods and divs. In O’Boyle and Kni-

jnenburg (2002) this was mainly used to reason about reshaped arrays, here it is used

to formalise a program recovery technique.

Modulo recovery is also considered in Balasa et al. (1994) where a large, highly

specialised framework based on Diophantine equations is presented to solve modulo

accesses. It, however, introduces costly floor, div and ceil functions and its effect

on other parts of the program is not considered.

In section 5.2.1, a simple example is used to motivate the following work. Before

the modulo removal algorithm is presented in section 5.2.4, a short introduction to the

used notation is given in section 5.2.2. Assumptions and known restrictions of the

modulo removal are described in 5.2.3. A larger example is given towards the end of

this chapter in section 5.2.5.

5.2.1 Motivation

The code in figure 5.11, box (1), is typical of C programs written for DSP processors

and contains fragments from the UTDSP benchmark suite. Circular buffer access is a

frequently occurring idiom in DSP programs and is typically represented as a modulo
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expression in one or more of the array subscripts as can be seen in the second loop

nest. Such non-linear expressions will again defeat most data dependence techniques

and prevent further optimisation and parallelisation.

In the presented program recovery scheme, the modulo accesses are removed by

applying a suitable strip-mining transformation to give the new code in box (2), figure

5.11. Repeated strip-mining gives the code in box (3).

5.2.1.1 Benefit of Modulo Removal

The modulo-free form is now amendable to further analysis and transformation. Al-

though the new code contains linear array subscripts, these are easily optimised by

code hoisting and strength reduction in standard native compilers.

Another possibility of taking advantage of the modulo-free form of the program

comes from the fact that the order of memory accesses has not been changed by the

employed strip-mining transformation. This implies that any data flow information

valid for a modulo-free form is also valid for the original version of a given program.

As a consequence, results from an array data flow analysis (e.g. Duesterwald et al.,

1993) can be transferred from the modulo-free program back to the original code.

Knowledge of the dependence information enables other transformations, including

parallelisation, while retaining the modulo-based accesses for further processing (e.g.

exploitation of modulo-addressing modes of the AGUs, see 2.2.2.2).

5.2.2 Notation

Before the modulo removal algorithm is described, the notation used in this section is

introduced. The loop iterators can be represented by a column vector III = [i1, i2, . . . , iM]T

where M is the number of enclosing loops. Note the loops do not need to be perfectly

nested and occur arbitrarily in the program. The loop ranges are described by a system

of inequalities defining the polyhedron or iteration space BIII ≤ bbb. The data storage of

an array can also be viewed as a polyhedron. Array indices JJJ = [ j1, j2, . . . , jN]T are

used to describe the array index space. This space is given by the polyhedron AJJJ ≤ aaa.

It is assumed that the subscripts in a reference to an array can be written as UIII + uuu,

where U is an integer matrix and uuu is a vector. Thus in figure 5.11, box(3) the array



96 Chapter 5. Program Recovery

int e[32][32], f[32], g[32][8], h[32][4];

for (i = 0 ; i < 32 ; i++) {

for (j = 0 ; j < 32 ; j++) {

e[i][j] = f[i] * g[i][j%8] * h[i][j%4];

}

}

(1) Original Code

int e[32][32], f[32], g[32][8], h[32][4];

for (i = 0 ; i < 32 ; i++) {

for (j1 = 0 ; j1 < 4 ; j1++) {

for (j2 = 0 ; j2 < 8 ; j2++) {

e[i][8*j1+j2] = f[i] * g[i][j2] * h[i][j2%4];

}

}

}

(2) Code after strip-mining

int e[32][32], f[32], g[32][8], h[32][4];

for (i = 0 ; i < 32 ; i++) {

for (j1 = 0 ; j1 < 4 ; j1++) {

for (j2 = 0 ; j2 < 2 ; j2++) {

for (j3 = 0 ; j3 < 4 ; j3++) {

e[i][8*j1+4*j2+j3] = f[i] * g[i][4*j2+j3] * h[i][j3];

}

}

}

}

(3) Code after repeated strip-mining

Figure 5.11: Example showing Modulo Removal
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declaration f[32] is represented by
[

−1

1

]

[ j1]≤

[

0

31

]

(5.19)

i.e. the index j1 ranges over 0≤ i1 ≤ 31. The loop bounds are represented in a similar

manner and the subscript of f, f[i], is simply

[

1 0
]

[

i1

i2

]

+

[

0

0

]

(5.20)

When discussing larger program structures, the notion of computation sets is use-

ful, where Q = (BIII ≤ bbb,(si|Qi)) is a computation set consisting of the loop bounds,

BIII ≤ bbb and either enclosed statements (s1, . . . ,sn) or further loop nests (Q1, . . . ,Qn).

5.2.3 Assumptions and Restrictions

The algorithm is restricted to simple modulo expressions of the syntactic form

(aρ× iρ)%cρ (5.21)

where iρ is an iterator, and aρ,cρ are constants and ρ∈ 1, . . . ,m is the index of the refer-

ence containing the modulo expression. More complex references are highly unlikely

but may be addressed by extending the approach below to include skewing.

Furthermore, it is assumed that all constants c j are integer multiples of each other,

i.e. ∃k : lcm(c1, . . . ,cm) = ck. Although this restriction might appear serious, prac-

tically it does not restrict the applicability and effectiveness of the modulo removal

algorithm. In fact, many DSP programs only maintain one circular buffer per loop and

even in those with more than one, the buffer sizes are often related as required.

5.2.4 Modulo Removal Algorithm

In this section, the modulo removal algorithm is described and discussed. The algo-

rithm itself is presented in figure 5.12. Essentially, the algorithm performs a number

of strip-mining transformations to eliminate modulo operations in index functions of

array accesses before it outputs the modulo-free program.
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1. Construction of the Computation Set Q = (BIII ≤ bbb,(si|Qi))

(a) Construction of the Equation System of the loop under consideration

(b) Matrix Representation of the equation system BIII ≤ bbb

2. Construction of the Generalised Strip-Mining Matrix S

(a) Computation of the Least Common Multiple l = lcm(c1, . . . ,cm)

(b) Construction of the Special Transformation Matrix

Sl =

[

(.)/l

(.)%l

]

and the Special Pseudo-Inverse

S
†
l =

[

l 1
]

(c) Construction of the Generalised Strip-Mining Matrix S and its Pseudo-Inverse S †

S =









Id k−1 0 0

0 Sl 0

0 0 IdN−k









and S
† =









Id k−1 0 0

0 S
†
l 0

0 0 IdN−k









3. Computation of new Iteration Space and Loop Bounds

(a) Computation of new loop Bounds bbb′′′ =

[

Id 0

0 S

]

bbb

(b) Computation of new loop Iterators III′′′ = SIII

(c) Computation of new Coefficients B′ = XBS † , where X =

[

S 0

0 S

]

(d) Construction of new Equation System B ′III′′′ ≤ bbb′′′

4. Update of Array References

(a) Update all Array References U ′ = US † in si

5. Go to step 1, until all modulo operations in array accesses have been removed.

Then proceed with step 6.

6. Code Generation

Figure 5.12: Modulo Removal Algorithm
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In step 1 of the algorithm, the computation set Q of the loop under consideration

is constructed. For this, an equation system describing the iteration space and loop

bounds is constructed (step 1a) and expressed in matrix representation (step 1b). Step

2 serves as a precomputation stage, in which the Generalised Strip-Mining Matrix

S and its Pseudo-Inverse S† are computed. These matrices are constructed of the

Special Strip-Mining Matrix Sl and its Pseudo-Inverse (step 2b), which in turn rely

on the least common multiple l of the constants c j from array index functions (a j×

i j)%c j (step 2a). Then a loop strip-mining transformation S is applied to the loop nest

(step 3). The particular formulation used is based on rank-modifying transformations

(O’Boyle and Knijnenburg, 2002), which unify loop and data transformations in an

algebraic transformation framework. New loop bounds B ′ (step 3a), iterators (step

3b) and coefficients (step 3c) are computed and together they describe the polyhedron

B
′III′′′ ≤ bbb′′′. In step 4 the array accesses are updated to represent the new loop indices.

Remaining modulo operations are eliminated by iterating over steps 1-4 until no more

modulos can be found in any array index function. Finally, a code generation stage

outputs the transformed program for further processing.

As most DSP programs contain only a very small number of different modulo con-

stants c j, the algorithm usually terminates after only one or two iterations. In general,

the number of iterations is bounded by the number m of modulo accesses in the loop

body. The cost of a single iteration is dominated by the computation of the new coef-

ficients (step 3c), which is dependent on the size of the matrix S . As the size of the

matrix S is bounded by the dimension N of the index space (step 2c), the computation

in step 3c has asymptotic cost O(N3). Thus, the overall runtime of the modulo removal

algorithm is O(m×N3). Usually, both m and N are very small and fixed, such that the

algorithm has nearly constant runtime for almost all practical problems.

The memory requirements of the modulo removal algorithm mainly originate from

the matrices to be stored. As before, the cost are dominated by the matrix S . Conse-

quently, the overall memory requirement is bounded by O(N2).
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5.2.5 Example

In this section, the previously presented algorithm is applied to the example in figure

5.11, box (1).

1. Construction of the Computation Set Q.

(a) Equation System.

(−1)i+0 j ≤ 0

0i+(−1) j ≤ 0

1i+0 j ≤ 31

0i+1 j ≤ 31

(b) Matrix Representation BIII ≤ bbb.















−1 0

0 −1

1 0

0 1















[

i

j

]

≤















0

0

31

31















2. Construction of the Generalised Strip-Mining Matrix S .

(a) Computation of the Least Common Multiple l.

Let l be the least common multiple of c j. In figure 5.11, box(1), it is c1 = 8,

c2 = 4 from the access to g and h and hence l = 8.

(b) Construction of Sl and S
†
l .

S8 =

[

(.)/8

(.)%8

]

S
†
8 =

[

8 1
]
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(c) Construction of S and S†.

S =









1 0

0 (.)/8

0 (.)%8









S
† =

[

1 0 0

0 8 1

]

3. Computation of new Iteration Space and Loop Bounds

(a) Computation of bbb′′′ =

[

Id 0

0 S

]

bbb.

bbb′′′ =

























1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 (.)/8

0 0 0 (.)%8







































0

0

31

31















=

























0

0

0

31

3

7

























(b) Computation of III′′′ = SIII.

III′′′ =









1 0

0 (.)/8

0 (.)%8









[

i

j

]

=









i

j/8

j%8









=









i

j1

j2








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(c) Computation of B
′ = XBS

†, where X =

[

S 0

0 S

]

.

B
′ =

























1 0 0 0

0 (.)/8 0 0

0 (.)%8 0 0

0 0 1 0

0 0 0 (.)/8

0 0 0 (.)%8







































−1 0

0 −1

1 0

0 1















[

1 0 0

0 8 1

]

=

























−1 0

0× (.)/8 −1× (.)/8

0× (.)%8 −1× (.)%8

1 0

0× (.)/8 1× (.)/8

0× (.)%8 1× (.)%8

























[

1 0 0

0 8 1

]

=

























−1 0 0

0 −1 0

0 0 −1

1 0 0

0 1 0

0 0 1

























(d) Construction of Equation System B ′III′′′ ≤ bbb′′′.
























−1 0 0

0 −1 0

0 0 −1

1 0 0

0 1 0

0 0 1

































i

j1

j2









≤

























0

0

0

31

3

7

























4. Update of Array References

(a) Update all Array References U ′ = US† in si.
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i. Array reference: e[i][j]

From this reference

UIII +uuu =

[

1 0

0 1

][

i

j

]

+

[

0

0

]

=

[

1i+0

1 j +0

]

and

U′ =

[

1 0

0 1

][

1 0 0

0 8 1

]

=

[

1 0 0

0 8 1

]

are constructed. So the new reference becomes U ′III′′′+uuu =

[

1 0 0

0 8 1

]









i

j1

j2









+

[

0

0

]

=

[

i

8 j1 +1 j2

]

i.e. e[i][8*j1+j2].

ii. Array reference: f[i]

The one-dimensional reference f[i] is considered as a shortform of

the multi-dimensional reference f[i][0]. As before

UIII +uuu =

[

1 0

0 0

][

i

j

]

+

[

0

0

]

=

[

1i+0

0 j +0

]

and

U′ =

[

1 0

0 0

][

1 0 0

0 8 1

]

=

[

1 0 0

0 0 0

]

are constructed. Thus, the new reference is U ′III′′′+uuu =

[

1 0 0

0 0 0

]









i

j1

j2









+

[

0

0

]

=

[

i

0

]

i.e. f[i][0] or f[i], respectively.

iii. Array reference: g[i][j%8]

Again,

UIII +uuu =

[

1 0

0 (.)%8

][

i

j

]

+

[

0

0

]

=

[

1i+0

0i+ j%8

]
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and

U′ =

[

1 0

0 (.)%8

][

1 0 0

0 8 1

]

=

[

1 0 0

0 0 1

]

are constructed. The new reference becomes U ′III′′′+uuu =

[

1 0 0

0 0 1

]









i

j1

j2









+

[

0

0

]

=

[

i

j2

]

i.e. g[i][j2].

iv. Array reference: h[i][j%4]

Analogously,

UIII +uuu =

[

1 0

0 (.)%4

][

i

j

]

+

[

0

0

]

=

[

1i+0

0i+ j%4

]

and

U′ =

[

1 0

0 (.)%4

][

1 0 0

0 8 1

]

=

[

1 0 0

0 8(.)%4 1(.)%4

]

Thus, U ′III′′′+uuu =

[

1 0 0

0 8(.)%4 1(.)%4

]









i

j1

j2









+

[

0

0

]

=

[

i

8( j1)%4+1( j2%4)

]

Since 8( j1)%4 = 0,∀ j1 the new reference turns out to be h[i][j2%4].

5. At this stage all but one modulo operation in array references have been elim-

inated. The program has been transformed into the form shown in figure 5.11,

box (2). A further iteration of the strip-mining transformation (not presented

here) eliminates the last modulo expression.

6. Code Generation

The result of this stage is shown in figure 5.11, box (3).
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5.3 Running Example

In this section a real-world example program that will be used throughout this thesis

is introduced. It will be used to demonstrate different program transformation tech-

niques. matrix1 is a matrix multiplication kernel from the DSPstone benchmark suite

(Zivojnovic et al., 1994). Starting with the original pointer-based version, all transfor-

mations stages necessary to obtain a parallel high-performance implementation will be

shown in the following chapters of this thesis.

static TYPE A[X*Y] ;

static TYPE B[Y*Z] ;

static TYPE C[X*Z] ;

STORAGE CLASS TYPE *p a = &A[0] ;

STORAGE CLASS TYPE *p b = &B[0] ;

STORAGE CLASS TYPE *p c = &C[0] ;

STORAGE CLASS TYPE f,i,k ;

for (k = 0 ; k < Z ; k++)

{

p a = &A[0] ; /* point to the beginning of array A */

for (i = 0 ; i < X; i++)

{

p b = &B[k*Y] ; /* take next column */

*p c = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

*p c += *p a++ * *p b++ ;

p c++ ;

}

}

Figure 5.13: Pointer-based matrix1 program from DSPstone
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static TYPE A[X*Y] ;

static TYPE B[Y*Z] ;

static TYPE C[X*Z] ;

STORAGE CLASS TYPE f,i,k ;

for (k = 0 ; k < Z ; k++)

{

for (i = 0 ; i < X; i++)

{

C[k*X+i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[k*X+i] += A[i*Y+f] * B[k*Y+f] ;

}

}

Figure 5.14: matrix1 after Pointer Conversion

5.3.1 Pointer Conversion

The initial matrix multiplication kernel matrix1 from the DSPstone benchmark suite is

presented in figure 5.13. Two matrices stored in the linear arrays A and B are multiplied,

and the resulting matrix is stored in the array C.

The code has been manually tuned to assist the compiler in effective address code

generation and vectorisation of the innermost loop. The code makes extensive use of

pointer arithmetic for array traversals such that even a simple compiler can immedi-

ately map pointer increments onto post-increment addressing operations provided by

DSP architectures. Furthermore, the matrix A is stored row-wise, whereas matrices

B and C are stored column-wise in linear arrays. As a result of this data layout, the

innermost loop is easily vectorisable for a DSP with SIMD capabilities. However,

these program transformations are only able to support relative poor compilers at the

cost of obfuscating the programmer’s original intention. More sophisticated compil-

ers with advanced built-in transformations are most likely to fail to achieve optimal
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performance, since their analyses are not designed to cope with code written in this

style.

Application of pointer conversion as described earlier in this chapter produces the

code in figure 5.14. The pointer-based accesses to the arrays A, B and C have been

replaced by equivalent explicit array accesses. Pointer declarations and initialisations

have been dropped. The array-based version of the code is amendable to array dataflow

analysis enabled transformations, whereas many compilers fail to optimise the pointer-

based code.

Details of the analysis and conversion of this example program can be found in

section 5.1.

5.3.2 Modulo Removal

Modulo removal is not only useful as a preprocessing stage, but can also support

eliminating modulo index expression introduced by other transformations. Again, the

matrix1 program is taken to illustrate this purpose.

During later stages of parallelisation the code presented in figure 5.15 is generated

(see also section 7.5.5). The arrays A, B and C have been transformed from originally

one dimension in figure 5.13 to three dimensions, and the references to the three arrays

have been adjusted. Due to strip-mining of the k-loop, two new loops have been cre-

ated: The outer k1-loop, which has been distributed across several processors and has

no explicit representation in the code in figure 5.15, and the inner k2-loop with Z/4

iterations. A constant MYID has been introduced to represent individual iterations of

the implicit k1 loop. References to arrays B and C are affine, but the reference to the

array A contains non-linear mod and div expressions.

Strip-mining the i loop by X/4 and updating the array references accordingly, re-

sults in the program shown in figure 5.16. Potentially expensive and analysis defeating

mod and div expressions have been traded in against another level of loop nesting.

The index expression of the reference to C has become slightly more complex, but is

still within the “compiler-friendly” class of affine expressions in outer loop induction

variables.

A step-by-step description of the calculations carried out to transform the program
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#define MYID 0

STORAGE CLASS TYPE f,i,k2 ;

for (k2 = 0 ; k2 < Z/4 ; k2++)

{

for (i = 0 ; i < X; i++)

{

C[MYID][k2][i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[MYID][k2][i] += A[i/(X/4)][i%(X/4)][f]*B[MYID][k2][f];

}

}

Figure 5.15: matrix1 program with modulo index expressions

into the form in figure 5.16 is left out since it closely follows the example presented in

section 5.2.5.

5.4 Summary

In this section, two program recovery transformations have been developed. Pointer

Conversion eliminates pointer-based array traversals, which can be frequently found

in manually tuned DSP codes and defeat standard program analyses. The conver-

sion of pointer-based array accesses into explicit array accesses enables array dataflow

analyses and advanced code and data transformations. Using a single pass dataflow

framework for the analysis, and a further pass for the substitution of pointer-based ar-

ray accesses into explicit array accesses, this transformation is efficient enough to be

included into production compilers. Furthermore, this program recovery transforma-

tion is a key enabler of other performance improving transformations, which will be

discussed in chapter 6.

Modulo Removal eliminates another programming idiom frequently used in DSP

codes, namely modulo indexing of arrays. Due to lacking support of circular buffers
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#define MYID 0

STORAGE CLASS TYPE f,i1,i2,k2 ;

for (k2 = 0 ; k2 < Z/4 ; k2++)

{

for (i1 = 0 ; i1 < 4; i1++)

{

for (i2 = 0; i2 < X/4; i2++)

{

C[MYID][k2][(X/4)*i1+i2] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[MYID][k2][(X/4)*i1+i2] += A[i1][i2][f] * B[MYID][k2][f];

}

}

}

Figure 5.16: matrix1 program after modulo removal

in the C programming language, programmers frequently resort to difficult to analyse

modulo-based array indexing. While this approach is portable, the resulting code is

often very inefficient. The modulo removal transformation introduced in this chapter

eliminates modulo indexing by strip-mining the surrounding loop appropriately. The

transformed index expressions are affine and can be analysed using standard array

dataflow analyses. This opens up the opportunity for further performance enhancing

transformations.

In chapter 6, the application and effectiveness of both program recovery transfor-

mations developed in this chapter are discussed based on the empirical evaluation of a

DSP-specific benchmark suite.





Chapter 6

High-Level Transformations for

Single-DSP Performance Optimisation

Efficient implementation of DSP applications is critical for many embedded systems.

Optimising C compilers largely focus on code generation and scheduling, which, with

their growing maturity, are providing diminishing returns. In this chapter another

approach based on high-level source-to-source transformations is empirically evalu-

ated. While program performance already benefits from the application of individual

transformations, the full potential is only realised when several transformations are

combined. However, the identification of a successful transformation sequence is a

non-trivial task and static approaches often fail due to the complex interaction be-

tween high-level transformations, the backend compiler and the target architecture.

Furthermore, static analysis is usually prohibited by the fact that compiler manufactur-

ers rarely document the low-level transformations applied by their compilers. Iterative

exploration of the transformation space, on the other hand, does not assume any knowl-

edge of the backend compiler and is yet able to find effective transformation sequences.

This is achieved by alternating transformation and execution stages and selecting the

best option afterwards.

High-level techniques are applied to the DSPstone benchmarks on four platforms:

TriMedia TM-1000, Texas Instruments TMS320C6201, Analog Devices SHARC ADSP-

21160 and TigerSHARC TS101. On average, the best transformations give a factor of

111
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2.21 improvement across the platforms. In certain cases a speedup of 5.48 is found

for the SHARC, 2.95 on the TigerSHARC, 7.38 for the TM-1 and 2.3 for the C6201.

These results certainly justify further investigation into the use of high-level techniques

for embedded systems compilers.

6.1 Introduction

Digital signal processing and media processing are performance critical applications

for embedded processors. This demand for performance has led to the development

of specialised architectures (see section 2.2), with application programs hand-coded in

assembly. More recently as the cost of developing an embedded system becomes dom-

inated by algorithm and software development, there has been a move towards the use

of high-level programming languages, in particular C. As in other areas of computing,

programming in C is much less time consuming than hand-coded assembler, but this

comes at the price of a less efficient implementation when compared to hand-coded

approaches (Frederiksen et al., 2000).

To trade off the often conflicting goals of reducing application development time

and increasing code performance there has been much interest in optimising compiler

technology, where the compiler is responsible for automatically “tuning” the program

(de Araujo, 1997; Leupers, 1998; Timmer et al., 1995; Sair et al., 1998; Bhattacharyya

et al., 2000). This work has primarily focused on efficient code generation or schedul-

ing of the low-level instructions.

However, code generation and to a lesser extent scheduling are platform specific.

More significant is the fact that they are relatively mature techniques and there is a

diminishing rate of return for increasingly sophisticated approaches. In Timmer et al.

(1995), for instance, a scheduler is developed for a particular in-house core that is

optimal in the majority of cases. Thus, if performance is to be increased further, it is

worth considering alternative approaches.

One such approach is to examine high-level transformations. These are inher-

ently portable and have been shown to give significant performance improvement for

general-purpose processors (Kisuki et al., 2000), yet there is little work on their im-
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pact on embedded applications perhaps due to the historical bottom-up approach to

embedded systems.

One major difficulty in the use of high-level transformations is that the preferred

application language is C, which is not very well suited to optimisations. Extensive

usage of pointer arithmetic (Liem et al., 1996; Zivojnovic et al., 1994; Numerix, 2000)

prevents the application of well developed array-based dataflow analyses and transfor-

mations. However, in section 5.1 of this thesis a technique to transform pointer-based

programs into an equivalent array-based form has been developed, which opens the

opportunity for the application of more extensive high-level transformations.

There has been limited work in the evaluation of high-level transformations on

embedded systems performance. In Bodin et al. (1998) the tradeoff between code

size and execution time of loop unrolling has been investigated and in Kandemir et al.

(2000) the impact of tiling on power consumption has been evaluated. Although power

consumption and also code size are very important issues for embedded systems they

are not the primary focus of this work. Rather the focus is on techniques to improve

execution time assuming a fixed amount of embedded memory. The impact of sev-

eral high-level transformations on the DSPstone (Zivojnovic et al., 1994) benchmark

suite is empirically evaluated on four different embedded processors. It is shown that

by selecting the appropriate sequence of transformations in an iterative transformation

framework, average execution time can be improved by a factor of 2.43, justifying fur-

ther investigation of high-level transformations within embedded systems compilers.

This chapter is organised as follows. Section 6.2 provides a motivating example

illustrating the application and effect of high-level transformations. Section 6.3 de-

scribes the transformations investigated and is followed in section 6.4 by an example.

The evaluation of individual transformations is covered in section 6.5. A description

of an iterative search strategy which finds “good” transformation sequences is given in

section 6.6. In section 6.7 the results for combined transformations are presented and

analysed. A discussion of related work can be found in section 6.8, and section 6.9

concludes.
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6.2 Motivation

Pointer conversion, a program recovery transformation presented and discussed in sec-

tion 5.1, is a key enabler of many other program transformations. For instance, con-

sider figure 6.11, a kernel loop of the DSPstone benchmark matrix2.c. In a misguided

attempt to “optimise” the code generation for this program, the programmer has in-

troduced pointer accesses to array elements and pointer arithmetic to express linear

array traversals. However, an advanced compiler with built-in array dataflow analyses

might often fail to achieve optimal performance due to conservative assumptions about

pointer aliasing.

int *p a = &A[0] ;

int *p b = &B[0] ;

int *p c = &C[0] ;

for (k = 0 ; k < Z ; k++) {

p a = &A[0] ;

for (i = 0 ; i < X; i++) {

p b = &B[k*Y] ;

*p c = *p a++ * *p b++ ;

for (f = 0 ; f < Y-2; f++)

*p c += *p a++ * *p b++ ;

*p c++ += *p a++ * *p b++ ;

}

}

Figure 6.1: Original pointer-based array traversal

Figure 6.2 shows the loop after pointer conversion, i.e. pointer-based accesses

and pointer arithmetic have been substituted by explicit array accesses. Once in an

array-based form, further program transformations may also be applied. Figure 6.3

shows the example loop after application of pointer conversion and delinearisation.

1For convenience reasons figures 5.1 and 5.2 from section 5.1 have been duplicated here.
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for (k = 0 ; k < Z ; k++) {

for (i = 0 ; i < X; i++) {

C[X*k+i] = A[Y*i] * B[Y*k];

for (f = 0 ; f < Y-2; f++)

C[X*k+i] += A[Y*i+f+1] * B[Y*k+f+1];

C[X*k+i] += A[Y*i+Y-1] * B[Y*k+Y-1];

}

}

Figure 6.2: After conversion to explicit array accesses

Delinearisation is the transformation of one-dimensional arrays into multi-dimensional

arrays (O’Boyle and Knijnenburg, 2002). In this example, the arrays A, B and C are now

two-dimensional arrays. This data representation enables more aggressive compiler

transformations such as data layout optimisations (O’Boyle and Knijnenburg, 2002).

for (k = 0 ; k < Z ; k++) {

for (i = 0 ; i < X; i++) {

C[k][i] = A[i][0] * B[k][0];

for (f = 0 ; f < Y-2; f++)

C[k][i] += A[i][f+1] * B[k][f+1];

C[k][i] += A[i][Y-1] * B[k][Y-1];

}

}

Figure 6.3: Example loop after delinearisation

6.3 High-Level Transformations

Converting pointer-based programs enables a number of powerful high-level transfor-

mations. The transformations investigated are selected based on the characteristics of
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the processors and the benchmark suite. As the benchmarks mostly perform numerical

processing of array data in loops, transformations extensively studied in the area of

scientific computation are chosen (Bacon et al., 1994). Initially, the impact of pointer

to array conversion is evaluated in isolation. Next, loop unrolling is selected as it can

increase the size of a loop body potentially exposing more instruction-level parallelism

(TM-1, C6201, TigerSHARC). This transformation is independent of previous pointer

conversion and is applied in isolation and also in combination with pointer conversion.

The remaining transformations rely on pointer to array conversion. Delinearisation,

tiling and padding potentially improve memory access times (TM-1,TigerSHARC),

vectorisation supports the exploitation of SIMD parallelism on the SHARC and, fi-

nally, scalar replacement reduces the number of accesses to memory (all architec-

tures).

The pointer conversion algorithm developed in chapter 5.1 is implemented in the

experimental Octave compiler. All other transformations are implemented in the SUIF

research compiler (Hall et al., 1996).

After applying the transformations on a source-to-source level, the resulting code

is input to the corresponding C compilers of the SHARC (VisualDSP++ 2.0, Release

3.0.1.3), TigerSHARC (VisualDSP++ 3.0, compiler version 6.2.0.7), the Philips Tri-

Media TM-1 (compiler version 5.3.4) and the Texas Instruments TMS320C6201 (com-

piler version 1.10). Generally, the most aggressive optimisation level is selected (for

both the baseline case and the transformed programs) to evaluate performance gains

from high-level transformations over built in low-level code optimisations. Perfor-

mance data is collected by executing the programs on the manufacturers’ simulators

(SHARC, TriMedia, C6201) or real hardware (TigerSHARC).

6.4 Example

Most of the transformations discussed in this chapter are well explained in advanced

textbooks on compiler construction (Muchnick, 1997; Appel, 1998). Only array delin-

earisation is somewhat special and usually not well covered in literature. The following

example demonstrates its application on the matrix1 program introduced in chapter
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5.3 and also prepares the program for parallelisation as described later in chapter 7.

After converting linear pointer-based array traversals into a semantically equivalent

form based on explicit array accesses, the matrix1 program is in a form shown in

figure 6.4. All arrays are one-dimensional, and the index computation for each access

is explicit.

static TYPE A[X*Y] ;

static TYPE B[Y*Z] ;

static TYPE C[X*Z] ;

STORAGE CLASS TYPE f,i,k ;

for (k = 0 ; k < Z ; k++)

{

for (i = 0 ; i < X; i++)

{

C[k*X+i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[k*X+i] += A[i*Y+f] * B[k*Y+f] ;

}

}

Figure 6.4: Linear array based matrix1 program

Application of a data transformation originally devised in O’Boyle and Knijnen-

burg (2002) transforms the code into the form shown in figure 6.5. In this new version,

the arrays are two-dimensional, and the array address arithmetic is implicitly hidden in

the array references.

The immediate effect of this transformation very much depends on the compiler’s

ability to generate efficient code for single and multi-dimensional array accesses. Some

compilers might even produce identical code for both versions. In a larger context,

however, the benefits of array delinearisation originate from its role as an enabler of

other transformations, e.g. intra-array padding and further data layout transformations
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used in conjunction with parallelisation (see chapter 7).

static TYPE A[X][Y] ;

static TYPE B[Z][Y] ;

static TYPE C[Z][X] ;

STORAGE CLASS TYPE f,i,k ;

for (k = 0 ; k < Z ; k++)

{

for (i = 0 ; i < X; i++)

{

C[k][i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[k][i] += A[i][f] * B[k][f] ;

}

}

Figure 6.5: Delinearised matrix1 program

6.5 Transformation-oriented Evaluation

In this section, the effects of each transformation in isolation are examined. Their

impact on the benchmarks’ behaviour is shown in figures 6.6 to 6.18.

6.5.1 Pointer Conversion

Converting pointers to arrays based on the algorithm described in section 5.1 enables

many high-level transformations and can often support the native compiler to perform

more accurate analysis such as dependence testing. It was successfully applied to all of

the benchmarks and its performance impact varies from program to program and across

the four platforms. The TriMedia often benefits from the transformation (see figure
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6.6), while the SHARC consistently performs worse. It has a variable but usually ben-

eficial impact on the C6201 and the TigerSHARC. In the case of n complex updates

on the TriMedia, a 2.18 speedup can be observed, while there is a slowdown of 0.63

for the same program on the SHARC.

Figure 6.6: Performance implications of pointer conversion

Pointer to array conversion in isolation has a mixed impact. Examination of the

generated assembler code has revealed that the main benefit for the TriMedia comes

from improved data dependence analysis in nested loops. In the case of the C6201 and

the TigerSHARC, however, the generated code is frequently identical, perhaps due to

the greater maturity of the native compiler. In the case of the SHARC, the generated

code is similar but the AGU is not efficiently exploited. Most importantly, however, is

that pointer conversion enables further transformations discussed below. Apart form

unrolling, none of the remaining transformations can be applied without the use of
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pointer to array conversion. Furthermore, the largely negative impact of pointer to

array conversion for the SHARC is offset by SIMD vectorisation, which relies on an

array-based form of the program.

Although the focus is on performance rather than code size, it is worth noting that

the effect of pointer to array conversion varies across the benchmarks and platforms

giving in some cases upto a 10% reduction in object code size and a 34% increase in

one case.

6.5.2 Unrolling

Unrolling was applied to two versions of each program; with and without pointer re-

covery. Different unroll factors upto a maximum of 20 were evaluated and the best

results are shown in figure 6.7.

Loop unrolling can increase the ILP for VLIW machines, but is often not very ef-

fective for the SHARC. Here loop unrolling of the pointer-based versions of the lms

and n real updates programs deteriorates the performance. Just a rather small pro-

gram (mat1x3) can benefit from total unrolling, whereas loop unrolling shows little or

no effect on the other benchmarks. On the SHARC architecture, the array-based pro-

grams usually slow down after loop unrolling, apart from matrix1, matrix2, fir2dim

and mat1x3. On the TriMedia, the TigerSHARC and the C6201 it generally improves

performance and does best on the array form of the program. For these VLIW proces-

sors, loop unrolling increases the number of instructions in the loop body and, thus,

gives the scheduler more flexibility to construct an efficient schedule. On average,

the unrolled programs perform better after pointer conversion. However, the specific

benefits vary from program to program, and from architecture to architecture. More

advanced compilers, such as the compilers for the C6201 and the TigerSHARC, benefit

less and in a more unpredictable way from unrolling than simpler compilers do.

The best unroll factors are considered here, but performance does in fact vary with

respect to unroll factor as can be seen in figure 6.8. After some initial gains from

unrolling, performance stabilises from a certain point on. In more extreme cases of

unrolling, performance rapidly decreases after further unrolling if, for example, the

unrolled loop exceeds the size of the tiny instruction cache. Increased code size and
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Figure 6.7: Performance of unrolled loops before (top) and after (bottom) pointer con-

version
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available instruction memory in embedded systems generally limits the unroll factor.

Figure 6.8: Influence of the unroll factor (n real updates, TriMedia)

Figure 6.9 juxtaposes the n real updates ADSP-21160 assembly codes gener-

ated after pointer conversion only and combined pointer conversion and loop unrolling,

respectively. Only the loop body of the loop under inspection performing the com-

putation D[i] = C(i) + A(i) * B(i) for all i is shown. Whereas the loop body

after pointer conversion takes six instructions and also utilises the ADSP-21160’s ca-

pabilities to execute an arithmetic operation in parallel with a memory operation, the

unrolled version is more complex. With its 26 instructions the code size has grown

by a factor of 4.33. Although the compiler is able to identify the sequential traver-

sal of the arrays and therefore generates a loop with a fixed number of iterations and

uses post-increment mode for memory accesses, it also generates unnecessary code for

the increment of the loop induction variable by two. Repeated loading, updating and

storing of index registers wastes additional cycles. The resulting performance of the

unrolled loop is far worse than of the loop after pointer conversion only. This exam-

ple shows that loop unrolling even with small unroll factors is not always beneficial,

especially on the ADSP-21160.

Due to the complex interaction with the manufacturer’s compiler and the under-
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Pointer Conversion

lcntr=1024, do(pc, L$x-1) until lce;

r4=dm(i3,m6);

F12=F2*F4, r11=dm(i1,m6);

F1=F11+F12, r2=dm(i2,m6);

dm(i0,m6)=r1;

L$x:

Pointer Conversion and Loop Unrolling

lcntr=512, do(pc, L$x-1) until lce;

r2=dm(i2,2);

r4=dm(i3,2);

i4=dm(-5,i6);

F12=F2*F4, r11=dm(i1,2);

i5=dm(-6,i6);

F1=F11+F12, r13=i4;

r15=r13+r5, dm(i0,2)=r1;

r0=dm(i4,m5);

r6=dm(i5,m5);

F14=F0*F6, r8=i5;

i4=dm(-4,i6);

r12=R8+r5, r11=dm(i4,2);

i5=dm(-3,i6);

F7=F11+F14, r4=i4;

dm(-4,i6)=r4;

dm(i5,2)=r7;

r10=i5;

dm(-3,i6)=r10;

dm(-5,i6)=r15;

dm(-6,i6)=r12;

L$x:

Figure 6.9: Comparison of SHARC assembly code for n real updates after Pointer

Conversion and after Pointer Conversion and Loop Unrolling, respectively
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lying architecture, it is very hard to estimate the optimal unroll factor for the Tiger-

SHARC. In fact, Analog Devices recommends not to perform source-level loop un-

rolling, but to leave this task to their compiler (Analog Devices, 2001b). After in-

vestigating the effects of this high-level transformations for the TigerSHARC, it was

found that source-level loop unrolling can significantly improve performance despite

other claims. A careful choice of the unroll factor (e.g. in an iterative compilation

framework), however, is very important to improve program performance on this ar-

chitecture.

6.5.3 SIMD vectorisation

This transformation inserts explicit parallelisation directives and is only applicable on

the ADSP-21160 with its two coupled functional units. Where applicable it generally

gives good performance except in the two cases where the overhead of changing to

SIMD mode is greater than the work available. Both dot product and matrix1x3

have small trip counts and the cost of switching to SIMD mode outweighs the benefit

of vectorisation. Array recovery is necessary for this transformation even though, on

its own, array recovery decreases performance on the 21160, as shown in figure 6.7. In

one case, SIMD vectorisation gives a speedup up of 5.48, due to parallel use of both

vector units, use of both buses and improved code generation as a side effect of the

pointer to array conversion.

6.5.4 Delinearisation

Delinearisation transforms a one-dimensional array into a higher dimensional array

and is applicable to four of the benchmarks shown in figure 6.11. Those programs

contain previously linearised two-dimensional array traversals. Delinearisation sup-

ports dependence analysis, especially for the TriMedia, and allows further loop and

data transformations. Overall it is generally beneficial for the TriMedia and C6201,

but costly for the SHARC and TigerSHARC. The negative impact on the SHARC’s

performance is due to slightly more complex code generated for the two dimensional

array accesses preventing AGU exploitation.
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Figure 6.10: Speedup due to SIMD processing on the ADSP-21160 (SHARC)
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Figure 6.11: Speedup due to Array Delinearisation
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6.5.5 Array padding

This transformation is primarily used to reduce data cache conflicts and is as such only

suitable for the TriMedia. For this processor, it improves execution time in those cases

where it is applicable (see figure 6.12).

Although generally beneficial on the TriMedia and sometimes on the TigerSHARC,

array padding is effectively applicable to only three programs on two architectures and

hence may be of limited general use.

fir2dim matrix1 matrix2

Padding TriMedia 1.20 1.11 1.08

Tiling
TriMedia 1.21 1.00 1.00

C6201 0.99 2.11 0.68

Figure 6.12: Speedup due to Delinearisation, Padding and Tiling

6.5.6 Loop Tiling

Loop tiling improves data locality and increases cache utilisation for the TriMedia. It

also improves some codes on the TI C6201, although it is configured without any data

cache. In effect, the size of the working set is matched to the memory line size of

the local memory (see figure 6.12). In the case of matrix2, the slowdown is due to

the overhead of additionally introduced loops, which is not offset by increased locality.

This is also the case for the other cacheless architectures, where loop tiling consistently

degrades performance.

Loop tiling is a very important transformation for all architectures considered here

as soon as the data set does not fit into the on-chip memory as a whole and must be

stored in larger, but slower external memory. This is, however, beyond the scope of

this work and is subject of the large body of work in the field of software-controlled

caching, (e.g. Kondo et al., 2002).
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6.5.7 Scalar Replacement

Scalar replacement eliminates redundant array accesses and is based on a technique

developed in Duesterwald et al. (1993). As shown in figure 6.13, it generally improves

the performance on the TriMedia for those benchmarks where it is applicable, but is

more variable for the other three architectures.

Figure 6.13: Speedup due to Scalar Replacement

6.5.8 Summary

The above results show that transformations can have a significant impact on perfor-

mance. However, this impact is not always beneficial and varies depending on the

machine and benchmark. Furthermore, combinations of transformations are not con-

sidered. In the next section combined transformations and their impact on performance
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are investigated.

6.6 Iterative Search

Most optimising compilers perform their transformations based on static program anal-

yses without incorporating feedback on the effectiveness of the applied transforma-

tions. Many of those compilers even perform a fixed sequence of transformations in

a static order. The reason for choosing such an approach is its low complexity. In the

general-purpose computing domain, it is often not desirable to let the compiler search

for an optimal transformation sequence for a program that takes just seconds to ex-

ecute even without any optimisations. In the DSP domain, however, the situation is

very different. Highly specialised processors perform time-critical tasks over and over

again, so that code performance is paramount. To a certain extent, increased compila-

tion and optimisation times are acceptable if the resulting code performs significantly

better than codes produced by standard compilation techniques. Based on this obser-

vation, an iterative feedback-driven approach to DSP high-level code transformation is

presented in this section.

6.6.1 Iterative Optimisation Framework

In figure 6.14 an overview of an iterative compilation and optimisation framework is

given. C source code enters the system and is translated into an Intermediate Represen-

tation (IR) by the front-end. The generated IR must be suitable to express high-level C

constructs such that a later stage can convert this IR back to C. The IR is then passed

on to a Transformation Engine. This transformation engine is driven by an Optimi-

sation Engine and fetches its Transformation Rules from an attached Transformation

Database. The transformation engine applies a transformation as directed by the op-

timisation engine to its input and passes the transformed program on to a C Code

Generator. This module translates the IR back to C code, which is then in turn fed into

an existing C compiler and linker for the target architecture. Linker information such

as the memory footprint of the compiled program is passed back to the optimisation

engine, which decides on the further optimisation strategy based on this and additional
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timing information gathered from profiled program execution.

Figure 6.14: Overview of the iterative compilation/optimisation framework

The implementation uses the infrastructure provided by the Stanford SUIF com-

piler (front-end, IR-to-C translator, transformations) and the DSP manufacturers’ C

compilers and simulators. In the following section a simple, but effective implementa-

tion of the iterative search algorithm as used in the optimisation engine of figure 6.14

is described.

6.6.2 Iterative Search Algorithm

For all but very small sets of transformations it is impossible to perform an exhaustive

search of all possible transformation sequences and parameters. Any practical search

algorithm must therefore trade in some “accuracy” for better runtime, i.e. it might not

find the optimal, but a sufficiently “good” solution in acceptable time.
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The iterative search algorithm employed in this work is based on following heuris-

tic principle: Individual transformations are explored first in isolation, then “success-

ful” candidates are concatenated to obtain potentially better combined transformation

sequences. Transformations are grouped in three categories according to their effect

on further transformations. Enablers are transformations that do not necessarily im-

prove a program’s performance on their own, but enable other performance-enhancing

transformations. Performers are the actual performance increasing transformations,

and Adaptors are transformations that are usually applied very late in a sequence of

transformations. Adapters usually adapt a program to a specific compiler or architec-

ture. Examples of enablers are pointer conversion and delinearisation, whereas loop

unrolling and scalarisation are examples of performers. The opposite of pointer con-

version, i.e. the conversion of array expressions into pointers (Liem et al., 1996), or

the substitution of specific patterns of C code with more efficient non-standard built-in

functions (Bodin et al., 1998) belong to the class of the adaptors. This search strategy

does not always find an optimal solution, but in practice it has proven to find good

solutions in reasonable time.

Different search strategies have been investigated by other researchers. In Fursin

et al. (2002), a random search strategy for numerical Fortran algorithms is evaluated,

and Falk (2001) proposes neural network based search and optimisation, but without

giving empirical results. Since the main goal of this work is to provide evidence of the

effectiveness of high-level transformations in the DSP domain, a simple, but effective

search algorithm has been chosen.

In figures 6.15 to 6.16 the iterative search algorithm is presented. The algorithm

maintains a working list L which initially only contains the original program. Itera-

tively enablers and a randomly selected performer are applied to member of the work-

ing list. The resulting program is stored back to the working list after transformation.

Results of enablers are always added to the working list, while programs transformed

by performers are only considered if their performance has been improved. After a pre-

defined number of iterations, this process terminates and the best program is selected

for further post-processing.

More formally, the algorithm can be described as follows. Let T = {T1,T2, . . . ,Tn}
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be a set of transformations and TE (Enablers), TP (Performers) and TA (Adaptors) dis-

tinct subsets of T such that TE ⊂ T , TP ⊂ T , TA ⊂ T and TE ∪ TP ∪ TA = T . A

transformation Tk is a function Tk : P×
� n −→ P taking a program p ∈ P , where P is

the set of all programs, and n integer parameters2. Tk produces a transformed program

p′ ∈ P as its result.

6.7 Results and Analysis

Since the main focus of high-performance signal processing is on runtime perfor-

mance, emphasis during benchmarking is on execution time speedup. Code size and

power consumption are important constraints but are beyond the scope of this thesis.

Nonetheless, fixed memory size has been considered and restricts the legality of certain

transformations.

6.7.1 Benchmark-oriented Evaluation

In figure 6.17, the results for the selected set of benchmarks are summarised. For each

benchmark program and each architecture the maximum speedup achieved is shown.

Figure 6.18 lists the transformations needed to obtain these speedups.

Highlighting the best performance is justified by the fact that an expert programmer

or a feedback-directed compiler tries several different options before selecting the best

one.

6.7.1.1 matrix1

The matrix1 benchmark computes the product of two matrices. After pointer con-

version of the original program several different transformations and analyses can be

applied to this program. For the ADSP-21160 delinearisation and subsequent SIMD-

style parallelisation result in a speedup of 5.48. The transformed program utilises both

2In the interest of a simpler presentation, transformations are restricted to those with integer param-
eters. This, however, does not restrict the generality of the presented iterative search algorithm, which
can be easily extended to more general parameters of different types
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Input: Program pin ∈ P , Bound B ∈ �
Output: Program pout ∈ P

1. Measure baseline case.

Execute & profile pin;

tbaseline = time(pin);

2. Optimisation space exploration.

working list L = {(pin, tbaseline)};

steps = 0;

While (steps < B) Do

Select p ∈ L;

For all t ∈ TE

If t applied to p is legal Then

insert t(p) to L;

Select randomly t ∈ TP

If t applied to p is legal Then

Select r ∈ � n

Execute & profile tr(p);

If time(tr(p)) < time(p) Then

insert (tr(p), time(tr(p))) to L;

EndIf

steps = steps+1;

EndWhile

3. Machine and compiler specific post-processing.

Select program p ∈ L with minimal runtime tmin

Apply post-processing algorithm to p (see figure 6.16)

4. Output.

Return program p.

Figure 6.15: Iterative search algorithm for exploring the high-level transformation space
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Input: Program pin with runtime timein.

Output: Program pout with runtime timeout .

timemin = timein;

pmin = pin;

Select transformation t ∈ TA and parameters r ∈ � n

If tr is applicable and legal Then

p′ = tr(pmin);

Execute & profile p’;

if time(p′) < tmin then

pmin = p′;

tmin = time(p′);

Return (pmin, tmin)

Figure 6.16: Machine and compiler specific post-processing

datapaths of the Analog Devices processor and also its two memory banks can be used

in parallel, whereas the original program makes poor usage of the available resources.

The TriMedia benefits most from a delinearised version of the array-based program

to which scalarisation, loop unrolling and padding have been applied. Each transfor-

mation applied on its own already increases the performance, but in combination a

speedup of 3.82 can be observed. Loop unrolling increases the flexibility of the in-

struction scheduler to fill the five issue slots of the TM-1 with instructions since the

new loop body has more instructions to chose from. Scalarisation reduces the number

of memory accesses whereas padding reduces the number of cache conflicts. The situ-

ation is similar for the TI C6201 and the TigerSHARC, although the best performance

is achieved with just array recovery and loop unrolling together. The execution speed

can be more than doubled on the C6201 architecture, and increased by 37% on the

TigerSHARC.
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Figure 6.17: Best overall performance for combined transformations
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Benchmark
Architecture

SHARC 21160 TriMedia TM-1 TI C6201 TigerSHARC TS101

matrix1 PC,D,SIMD PC,D,S,P(1),U(9) PC,U(3) PC,U(6)

matrix2 (Original) PC,P(1),U(5),S PC,U(3) U(3)

matrix1x3 PC,U(total) PC,U(total) PC,U(total) U(2)

fir PC,SIMD(part.) PC,U(8) PC,U(15) PC,U(6)

fir2dim PC,S PC,D,S,U PC,S,U,AC PC,S,U(3)

convolution PC,SIMD U(10) U(8) (Original)

n real updates PC,SIMD PC,U(3) U(9) (Original)

n complex updates PC,SIMD(part.) PC,D,S,U(2) PC,D,S PC,U(6)

dot product (Original) PC,U(total) (Original) (Original)

iir biquad N sections PC,D,S PC,U(5) (Original) (Original)

lms PC,SIMD(part.) PC,U(11) PC,U(7) PC,U(6)

(PC = Pointer Conversion, U = Loop Unrolling (Factor), D = Delinearisation, P = Array Padding (Size), AC = Array Conversion)

Figure 6.18: Best transformation sequences for the DSPstone benchmark suite

6.7.1.2 matrix2

This program is based on the same matrix multiplication algorithm as matrix1, but in

this implementation the first and last iteration of the inner loop are peeled off. Origi-

nally intended as a hint to the compiler to create efficient code for the available AGUs

and to avoid the otherwise necessary accumulator clear operation before the loop, this

transformation prevents the exploitation of SIMD parallelism on the ADSP-21160.

Since the required double-word alignment of array data in SIMD loops is violated, the

matrix2 benchmark cannot take benefit of parallel loops unless it is “re-transformed”

back into the more regular form of matrix1. Still, pointer conversion and loop un-

rolling can be applied and yield a speedup of 1.16.

For VLIW architectures the situation is different. On the TriMedia a speedup of

3.52 can be achieved after array recovery, padding, scalarisation and 5-fold unrolling.

The TI DSP, unlike the SHARC, benefits from the differences of the matrix2 im-

plementation, after array recovery and 3-fold unrolling a speedup of 2.39 is possible.
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This speedup mainly results from array recovery with unrolling contributing only a

small percentage. The inspection of the assembly code generated by the compiler re-

veals a more efficient inner loop due to a higher degree of instruction-level parallelism.

After array recovery the number of operations in the loop is not only smaller, but the

number of operations executed in parallel is higher. Explicit array accesses increase

the efficiency of the data dependence analysis supporting the compiler built-in software

pipelining transformation.

Unrolling can still improve the performance by 20% on the TigerSHARC. Never-

theless, the absolute performance of matrix2 does not reach that of matrix1 on this

architecture due to inferior data alignment.

6.7.1.3 matrix1x3

This program computes the matrix product of a 3× 3 matrix and a 3× 1 vector in a

simple loop with few iterations. For the ADSP-21160 array recovery and total loop

unrolling of the very small loop can speed up the execution by a factor of 1.93. The

largest speedup on the TriMedia can be achieved with total loop unrolling of either

the pointer or array-based version of the program. Although loop unrolling in general

increases the code size, it is well justified in this case as the loop iteration range as

well as the loop body are both very small. On the C6201 total loop unrolling of the

array-based code also can be accounted for the largest possible speedup, but the perfor-

mance gain on this architecture is smaller than on the TriMedia. On the TigerSHARC,

unrolling accounts for the largest performance improvement. Although padding helps

improve performance on its own, it does not contribute to any combined transforma-

tion. Several different unroll factors for the pointer as well as the array-based codes

yield the same maximal performance.

6.7.1.4 fir

This program is an implementation of a Finite Impulse Response (FIR) filter and con-

tains a single loop. After array recovery this loop is amendable to loop reversal and

loop splitting, before one of the resulting loops can be SIMD parallelised. After this

transformation, a speedup of 1.32 is achieved. Since the other loop contains a memory
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access to a non double-word aligned array element, this loop must be executed sequen-

tially. Further transformations in order to overcome this restriction are possible, but are

beyond standard compiler analysis. Loop unrolling of the array-based loop gives the

best results on the TriMedia and the TigerSHARC. 8-fold and 6-fold unrolling result in

speedups of 2.20 and 2.18, respectively. On the C6201 the same set of transformations

accounts for the largest speedup, which is 1.08. Again, the achieved speedup is smaller

on the TI processor than the TriMedia or the TigerSHARC.

6.7.1.5 fir2dim

This code is a two-dimensional FIR filter. In theory, the fir2dim benchmark could be

parallelised for the ADSP-21160, but the compiler is overly restrictive with the use of

the SIMD loop directive. In sequential execution mode, scalarisation can be applied

after array recovery of the program and a speedup of 1.66 is obtained. Unlike the other

programs where scalarisation cannot improve the performance, fir2dim benefits from

this transformation because it can be applied across the three inner loops where redun-

dant memory accesses are removed. The compiler is not able to remove these accesses

without this high-level code transformation. On the TriMedia a speedup of 7.38 is pos-

sible after array recovery, delinearisation, scalarisation and total unrolling of the three

small inner loops. Similarly, on the TigerSHARC a speedup of 2.95 can be realised by

pointer conversion, scalarisation and unrolling. For the C6201 a pointer-based version

of the program achieved the best performance, but only after it has been converted into

the array-based representation which allowed the application of array dataflow analy-

sis and scalarisation. After scalarisation and loop unrolling the program was converted

back into the pointer-based form which gave an overall speedup of 1.02. Although the

speedup is small, this example shows that it is possible to apply transformations that

could not be applied to the pointer-based program. In addition, it is possible to go back

to pointer-based code when this appears to improve the overall performance.

6.7.1.6 convolution

This convolution code can easily be parallelised for the ADSP-21160 after array recov-

ery and the execution time is reduced to 25.9% of the original time. For the TriMedia
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10-fold loop unrolling does best, it results in a speedup of 3.56. Similarly, the largest

speedup on the C6201 is achieved with 8-fold unrolling. The increased size of the loop

body provides the TriMedia and TI compiler with an increased flexibility for instruc-

tion scheduling and reduces the number of NOP-operations. On the TigerSHARC the

unmodified, original program performs best.

6.7.1.7 n real updates

The main computational loop in this program can be easily parallelised for the ADSP-

21160 and a speedup of 3.91 is achieved. The TriMedia benefits most from pointer

conversion and unrolling. Array recovery helps the compiler to prove independence

of different memory accesses, whereas loop unrolling increases the number of instruc-

tions in the loop body. The maximum speedup achievable on the TriMedia is 3.78.

However, the maximum speedup on the C6201 is rather small, 1.02, and due to 9-

fold loop unrolling of the pointer-based code. Again, on the TigerSHARC the original

program exhibits the best performance.

6.7.1.8 n complex updates

Full SIMD parallelisation fails due to an overly restrictive compiler, but it is still pos-

sible to take advantage of the two functional units of the ADSP-21160 after array

recovery, loop splitting and parallelisation of one of the resulting loops. For the Tri-

Media array recovery once again was proven to be useful supporting other transforma-

tions such as delinearisation and scalarisation. Together with 2-fold loop unrolling, a

speedup of 2.52 was obtained. The same set of transformations but without unrolling

also achieved the largest speedup on the C6201. The TigerSHARC benefits most of

pointer conversion and 6-fold loop unrolling.

6.7.1.9 dot product

The original pointer-based program performs best on the ADSP-21160. SIMD par-

allelisation is applicable, but the overhead involved in switching from sequential to

SIMD mode and back is larger than the benefit obtained from parallel processing.
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Also loop unrolling is not beneficial as it increases the execution time. In contrast,

loop unrolling of either the pointer or array-based program results in a speedup of 4.6

on the TriMedia. This VLIW architecture clearly benefits and can take advantage of

the removal of the loop construct during instruction scheduling. The original loop with

just two iterations causes many NOP operations and branch penalties, which can be

eliminated by complete unrolling. The TI compiler handles the loop as well as the

unrolled straight-line code, so the runtime of the original program cannot be improved

by unrolling. The same is true for the TigerSHARC.

6.7.1.10 iir biquad N sections

This is a benchmark that implements an Infinite Impulse Response (IIR) filter with

N biquad sections. SIMD parallelisation cannot be applied to this program due to a

loop-carried data dependence in its loop body. However, the sequential version for the

ADSP-21160 can be improved by array recovery, delinearisation and scalarisation giv-

ing a speed up to a factor of 1.14. Array recovery and 5-fold unrolling gives the best

performance with a speedup of 4.41 on the TriMedia. An inspection of the compiler

generated assembly code shows a much tighter packing of operations into machine

instructions, i.e. the number of wasted issue slots filled with NOPs is significantly re-

duced. Experiments on the C6201 were less successful due to technical problems with

this program in the available simulation environment. However, initial results show

only small chances of achieving a significant speedup due to a good performance of

the original code. Once again, the TigerSHARC compiler produces the best perform-

ing executable from the unmodified, i.e. original source code.

6.7.1.11 lms

lms is the kernel of a Least Mean Square (LMS) filter. The lms program contains two

loops that can both benefit from SIMD parallelisation. After array recovery, loop rever-

sal is applicable, so that the Analog Devices compiler accepts the first loop as a SIMD

loop. An overall speedup of 1.70 is achieved on the ADSP-21160. The TriMedia, the

C6201 and also the TigerSHARC architecture benefit most from array recovery and

loop unrolling and speedups of 3.16, 1.56, and 2.70, respectively, are possible.
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6.7.2 Architecture-oriented Evaluation

Overall the TriMedia benefits the most from high-level transformations with an av-

erage speedup of 3.69, the C6201 the least with a speedup of 1.39 and the SHARC

and TigerSHARC somewhere in between with an average speedups of 2.31 and 1.57,

respectively.

6.7.2.1 TriMedia

In all but one case, the best optimisation for each program required pointer to array

conversion. This alone can improve performance on the TriMedia as can be seen in

figure 6.6. The most important benefit of pointer conversion, however, is that it en-

ables further transformations such as delinearisation, padding and scalar replacement.

Although unrolling was useful in all cases, it required additional transformations in all

bar one case to give the best performance. The TriMedia, in general, benefited most

from the application of combined transformations. This is mainly due to its more com-

plex architecture, in particular the combination of a 5-way VLIW processor and an

on-chip cache. Finally, the success of high-level transformations on the TriMedia are

also in part due to its relatively immature compiler.

6.7.2.2 TI C6201

The C6201 benefits least of all from the application of high-level transformations. Yet

even with a mature native compiler, it is possible to get on average a speedup of 1.39. In

all but four cases pointer to array conversion was required to get the best performance,

two of those cases being when no optimisation gave any improvement. Unrolling was

once again useful in exposing ILP especially when combined with pointer to array

conversion. Unlike the TriMedia, shorter transformation sequences seemed to perform

best. The C6201 rarely benefited from scalar replacement as the native compiler was

largely capable of detecting redundant memory accesses in all but two cases.
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6.7.2.3 SHARC

The SHARC experiences the highest speedup when its SIMD capabilities can be ex-

ploited. Although pointer to array conversion always degrades performance in iso-

lation, when combined with SIMD vectorisation it provides significant performance

improvement. Overly restrictive requirements on the pragma directive prevented fuller

exploitation of the SHARC SIMD capabilities.

6.7.2.4 TigerSHARC

Although the TigerSHARC bears some similarity to its predecessor, the Analog De-

vices SHARC, it responds very differently to high-level transformations. The maturer

compiler does not expect the programmer to indicate the usage of SIMD parallelisation

any more, but performs this task automatically. Pointer conversion still is an impor-

tant transformation that either enables other high-level transformation or supports the

manufacturer’s compiler. All but four programs significantly gain performance from

combined transformations with pointer conversion and loop unrolling being the most

effective ones.

6.7.2.5 Summary

Overall, selecting the appropriate high-level transformation gives on average a 2.21

speedup across the four platforms investigated. In 31 out of 44 cases, pointer to array

conversion contributes to the increased performance and in only three cases the best

performance was gained with transformations other then pointer to array conversion.

6.8 Related Work and Discussion

There has been little work in evaluating the impact of transformation sequences on

real DSP processors. In Andreyev et al. (1996) a heuristic optimisation method is

presented that strongly relies on the information of how a certain compiler for a specific

processor exploits high-level program constructs for code generation. This approach is

very restricted in the sense that it cannot be easily transferred to a different processor or
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even a different compiler for the same processor. Although aimed at DSP applications

the authors only present few results for a general-purpose processor (Intel Pentium).

An address optimisation based on a sequence of source-to-source transformations

is shown and evaluated in Gupta et al. (2000). This optimisation relies on explicit array

accesses and does not work with pointer-based programs. Here the pointer-conversion

algorithm can be applied as a preparatory stage that enables the further optimisation.

Although aiming at DSP applications the experimental results come from general-

purpose CPUs. It is not at all obvious if the transformation extends to DSPs as the

authors claim, and a demonstration of this is still outstanding.

Software pipelining as a source-to-source transformation in the context of DSP ap-

plications is investigated in Wang and Su (1998) and Su et al. (1999). The combined

effect of different optimisations is neglected apart from two normalisation transfor-

mations (renaming and loop distribution) needed by this approach. The evaluation of

the effectiveness of the presented transformation is performed on a single architecture

(Motorola DSP56300) where it achieved good results, albeit for a small set of bench-

mark programs.

The effect of unroll-and-jam and scalar replacement for imperfectly nested loops is

evaluated in Song and Lin (2000). A simple heuristic method is used to determine the

unroll factor and the results are compared with strip-mining, loop distribution and loop

unrolling. The SC140 processor serves as the target architecture for the experimental

evaluation. The results are promising, although the number of benchmark programs is

very small and only a single architecture has been considered.

One of the main reasons that there has been little evaluation of transformation

sequences is due to the pointer-based nature of many of the benchmarks. The pointer

conversion algorithm developed in this thesis allows for an efficient reconstruction of

explicit array accesses and enables many further transformations.

In this chapter it has been demonstrated that combining array recovery and high-

level transformations can lead to excellent single-processor performance. However,

finding a “good” transformation sequence is a difficult task. There has been much

work investigating the use of static analysis to determine the best transformation order

(Kandemir et al., 1999). This approach is highly attractive in the context of general-
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purpose computing as the analysis is typically a small fraction of the compilation time.

Transformation selection based on static analysis is a fast, but unfortunately frequently

inaccurate approach. Feedback-directed approaches have proved promising where ac-

tual runtime data is used to improve optimisation selection.

In the OCEANS project (Barreteau et al., 1998) high and low-level optimisations

within an iterative compilation framework for embedded VLIW processors were inves-

tigated. Experimental results for the TriMedia TM-1000 show that such an approach

has promise. More recently, the use of iterative compilation has been further investi-

gated, where different optimisations are selected and evaluated, with the eventual best

performing one selected (Kisuki et al., 2000). Such an approach has a much longer

compilation time, but this is not a major issue in embedded systems. Using such an

approach, a compiler can automatically find the best speedups shown in figure 6.17.

6.9 Conclusion

In this chapter, empirical evidence of the usefulness of the application of high-level

transformations to DSP applications has been given. The evaluation considers four dif-

ferent embedded platforms. Selecting the appropriate transformation using an iterative

transformation framework gives on average a 2.21 speedup across the four platforms

investigated. The programs considered are relatively straightforward kernels and fu-

ture work will investigate larger applications to determine where the potential scope

for high-level optimisations is even greater.

Key enabler of most of evaluated high-level transformations is the pointer conver-

sion transformation developed in chapter 5.1.

Given the empirical evidence justifying the use of high-level transformations, a

compiler strategy exploiting such transformations is proposed. An iterative approach to

optimisation selection has been investigated, implemented and found useful in practice.

Future work will consider the integration of high-level optimisation with low-level

code selection and scheduling, as well as more advanced search strategies.
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Parallelisation for Multi-DSP

Multi-processor DSPs offer a cost-effective method of achieving high performance

which is critical for many embedded application areas. However, porting existing uni-

processor applications to such parallel architectures is currently complex and time-

consuming. There are no commercially available compilers that will take existing

sequential DSP programs and map them automatically onto a multi-processor machine

(Rijpkema et al., 1999). Instead, users are typically required to rewrite their code as a

process network or a set of communicating sequential processes (Lee, 1995) . Such an

approach is well known to be highly non-trivial and error-prone, possibly introducing

deadlock.

Rewriting an application in a parallel manner is a highly specialised skill. What

is needed is a tool that takes existing programs and maps them automatically onto the

new multi-processor architecture efficiently. Although there has been over 20 years

of research into auto-parallelising compilation in scientific computing (Gupta et al.,

2000), this has not taken place in the embedded domain. This is due to two main rea-

sons: (i) DSP programs are written in C rather than Fortran (Hiranandani et al., 1992)

and make extensive use of pointer arithmetic and (ii) the distributed memory space of

multi-processor DSPs is difficult to compile for. These two problems are approached

by using the pointer conversion technique developed in section 5.1 and a new address

resolution technique, based on a novel data transformation scheme, that allows par-

allelisation for multiple address spaces without introducing complex (and potentially

deadlocking) message passing code. By embedding these two techniques into an over-

145
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all parallelisation strategy, an auto-parallelising C compiler for DSP applications that

outperforms existing approaches has been developed.

This chapter is structured as follows. Section 7.1 provides a motivating example

and is followed in section 7.2 by a description of the auto-parallelisation scheme. Sec-

tion 7.3 describes the approach to partitioning in detail, and in section 7.4 a new data

address resolution technique is introduced. A larger example is given in section 7.5.

This is followed by a short review of related work in section 7.6 and some concluding

remarks in section 7.7.

7.1 Motivation & Example

Auto-parallelising compilers that take as input sequential code and produce parallel

code as output have been studied in the scientific computing domain for many years.

In the embedded domain, multi-processor DSPs are a more recent compilation target.

At first glance, DSP applications seem ideal candidates for auto-parallelisation; many

of them have static control-flow and linear accesses to matrices and vectors. However,

auto-parallelising compilers have not been developed due to the widespread practice of

using post-increment pointer accesses (Zivojnovic et al., 1994). Furthermore, multi-

processor DSPs typically have distributed address spaces removing the need for expen-

sive memory coherency hardware. This saving at the hardware level greatly increases

the complexity of the compiler’s task.

7.1.1 Memory Model

This work exploits the fact that although multi-processor DSP machines typically have

multiple address spaces, part of each processor’s memory space is visible from other

processors, unlike pure message-passing machines. However, unlike single address

space machines, a processor must know both the identity of the remote processor and

the location in memory of the required data value. For example, figure 7.21 shows

the global memory map of a multi-processor system comprising the Analog Devices

TigerSHARC processor. Each processor has its internal address space for accesses to

1Identical to figure 3.7 in chapter 2.2.
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Original Code (1) Pointer Conversion (2)

for (i = 0 ; i <=15 ; i++)

*p_d++ = *p_c++ + *p_a++ * *p_b++ ;

for (i = 0 ; i <=15 ; i++)

D[i] = C[i] + A[i] * B[i] ;

Partitioned Data (3) Address Resolution(4)

#define z 0

for (i = 0; i<=7; i++)

D[z][i] = C[z][i] + A[z][i] * B[z][i];

#define z 0

int D0[8]; /* local */

extern int D1[8]; /* remote */

int *D[2] ={D0,D1};

for (i = 0; i<=7; i++)

D[z][i] = C[z][i] + A[z][i] * B[z][i];

Figure 7.1: Example showing partitioning and translation scheme

local data. These accesses are purely local and not reflected on the external bus. In

addition, the processors’ memories form a global address space where each processor

is assigned a certain range of addresses. This global address space is used for bus-

based accesses to remote data where the global address (or equivalently the remote

processor’s identity and the data’s local address) must be known.

A novel technique which combines single-address space parallelisation approaches

with a novel address resolution mechanism has been developed. For linear accesses,

it determines at compile time the processor and memory location of all data items.

Non-linear accesses are resolved during runtime by means of a simple descriptor data

structure.

7.1.2 Example

The example in figures 7.1 and 7.3 illustrates the main points of this chapter. The

code in figure 7.1, box (1) is typical of C programs written for DSP processors; it is
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Figure 7.2: TigerSHARC global memory map (Analog Devices, 2001a)

part of the n real updates routine from the DSPstone benchmark suite. The use of

post-increment pointer traversal is a well know idiom (Zivojnovic et al., 1994). This

form, however, will prevent many optimising compilers from performing aggressive

optimisation and will prevent attempts at parallelisation. The second box (2) in figure

7.1 shows the program after pointer conversion.

Figure 7.3(a) presents a diagram showing the corresponding data layout of one of

the arrays, D. The pointers are replaced with array references based on the loop iterator.

SPMD owner-computes parallelisation based on data and computation partitioning and

distribution across the processor nodes is straightforward here. There is just one array

dimension and one loop, both of which are partitioned by the number of processors.

In this example, it is assumed there are two processors. Partitioning is achieved by

strip-mining (O’Boyle and Knijnenburg, 2002) each array to form a two-dimensional

array whose inner index corresponds to the two processors. For instance, the array D

is now partitioned such that D[0][0...7] resides on processor 0 and D[1][0...7]
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Figure 7.3: Data layout for figure 7.1

resides on processor 1. The iterator is similarly partitioned to iterate over the work

allocated to it, 0 . . .7. The partitioned code for processor 0 (as specified by z) is shown

in figure 7.1, box (3). The code for processor 1 is identical except for #define z 1.

The diagram in figure 7.3(b) illustrates the new data layout for array D, where each row

of the strip-mined array resides on a separate processor.

Although there are other methods of partitioning code and data, this approach al-

lows for a simple translation to multiple address spaces. In fact, for single address

space machines, this would be sufficient. However, the programming model of multi-

DSPs requires remote, globally-accessible data to have a distinct name to local data2.

Thus, each of the sub-arrays are renamed: D[0][0...7] becomes D0[0...7] and

D[1][0...7] becomes D1[0...7]. On processor 0, D0 is declared as a variable re-

siding on that processor while D1 is declared extern. For processor 1, the reverse

declaration is made, i.e. D0 is extern.

2Otherwise they are assumed to be private copies.
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To access both local and remote data, a local pointer array is set up on each pro-

cessor (see box (4) of figure 7.1). The array contains two pointer elements (as two

processors are assumed), which are assigned to the start address of the local arrays

on the two processors. The original name of the array D[][] is used as the name of

pointer array *D[] Then, this array is initialised to point to the two distributed arrays

int *D[2] = {D0,D1}. This is shown diagrammatically in figure 7.3(c). Using the

original name means that exactly the same array reference form in all uses of the ar-

ray D as in the single address case can be used. Hence, the array references shown in

figure 7.1, box(4), have not changed. This has been achieved by using the fact that

multi-dimensional arrays in C are arrays of arrays and that higher dimensions arrays

are defined as containing an array of pointers to sub-arrays3. From a code generation

point of view this greatly simplifies implementation and avoids complex and difficult

to automate message passing.

7.2 Parallelisation

The overall parallelisation algorithm is shown in figure 7.4. Pointer to array conversion

is first applied to enable data dependence analysis. Once the program is in a pointer-

free form, standard data dependence analysis is applied to determine if the program

is parallel and if so, a check to see if the amount available justifies parallelisation4 is

applied.

7.3 Partitioning and Mapping

Data parallelism in DSP programs is exploited by partitioning data and computation

across the processors using an owner-computes, SPMD model of computation. Choos-

ing the best data partition has been studied for many years (Lim et al., 1999) and is

NP-complete. In this work, a simple method exploiting parallelism and reducing com-

munication is used; more advanced partitioning schemes, e.g. affine partitioning (Lim

3As defined in section 6.5.2.1 of the ANSI C standard paragraphs 3 and 4.
4Currently, the parallelised loop trip count is multiplied by the number of operations and checked

whether it is above a certain threshold before continuing.
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1. Convert pointers to arrays

2. IF pointer free THEN perform data dependence analysis

(a) IF parallel and worthwhile

i. Determine data partition

ii. Partition + transform data and code

iii. Perform address resolution

3. Parallel Code Generation

Figure 7.4: Overall parallelisation algorithm

et al., 1999), could also be used instead. The key point here is that the partitioning

and mapping approach makes the processor identifier explicit, which is exactly what is

needed to statically determine whether data is local or remote.

7.3.1 Notation

Before describing the partitioning and mapping approach, the notation used is briefly

described. The loop indices or iterators can be represented as an M×1 column vector

III = [i1, i2, . . . , iM]T where M is the number of enclosing loops. The loop ranges can

be described by a system of inequalities defining the polyhedron or iteration space

BIII ≤ bbb, where B is a (`×M) integer matrix and bbb a (`× 1) vector. The data storage

of an array A can also be viewed as a polyhedron. Formal indices JJJ = [ j1, j2, . . . , jN]T

are introduced, where N is the dimension of array A, to describe the array index space.

This space is given by the polyhedron AJJJ ≤ aaa, where A is a (2N×N) integer matrix

and aaa a (2N× 1) vector. It is assumed that the subscripts in a reference to an array

A can be written as UIII + uuu, where U is a (N×M) integer matrix and uuu is a (N× 1)

vector.
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7.3.2 Partitioning

Data arrays are partitioned along those dimensions of the array that may be evaluated

in parallel and minimise communication. Determining those index dimensions that

may be evaluated in parallel, in general, gives a number of options and, therefore, a

simple technique to reduce communication based on data alignment is used.

If two array references have every element in a certain dimension corresponding

to the same index space points then they are aligned. i.e. a[i][j] and b[i][k] are

aligned on the first index but not on the second. If two arrays are aligned with respect to

a particular index, then no matter how those individual array elements are partitioned,

any reference with respect to this index will always be local. Partitioning based on

alignment tries to maximise the rows that are equal in a subscript matrix.

Let δ(x,y) be defined as follows:

δ(x,y) =

{

1 x = y∧ x 6= 0

0 otherwise
(7.1)

This function determines whether two subscripts are non-zero and equal. The function

H(i) defined as:

H(i) = ∑
t

δ(U1
i ,Ut

i ) (7.2)

which measures how well a particular index i of an array use, U t , is aligned with the

array definition, U1. For each index the value of H is calculated, the index with the

highest value being the one to partition along.

This technique is applied across all statements and in general there will be conflict-

ing partition requirements. Currently, only those statements in the deepest nested loops

are considered as they dominate execution time and calculate the value of H across all

these statements for different parallel indices i. The index with highest value for H,

imax,H , determines the index to partition along.

A partition matrix P is constructed:

Pi =

{

eT
i if i = imax,H

0 otherwise

}

(7.3)
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where eT
i is the ith row of the identity matrix Id . Also a sequential matrix S containing

those indices not partitioned such that P +S = Id is constructed.

Original Code (1) Partitioned Code and Data (2) Address Resolution(3)

int y[32][32];

for (i=0; i<32; i++)

for (j=0; j<32; j++)

y[i][j]=a[i][j]

* h[31-i][j];

int y[4][8][32];

for(z=0; z<4; z++)

for (i=0; i<8; i++)

for (j=0; j<32; j++)

y[z][i][j]=a[z][i][j]

* h[3-z][7-i][j];

#define z 0

int y0[8][32];

extern int y1[8][32],

y2[8][32],

y3[8][32];

int *y[4] ={y0,y1,y2,y3};

for (i=0; i<8; i++)

for (j=0; j<32 ; j++)

y[z][i][j]=a[z][i][j]

* h[4-z][8-i][j];

Figure 7.5: Partition and translation with communication of array h

In the example in figure 7.5, box(1), H(0) = 1,H(1) = 2, imax,H = 1 and therefore

P =

[

0 0

0 1

]

and S =

[

1 0

0 0

]

(7.4)

7.3.3 Mapping

Once the array indices to partition along have been determined, strip-mining the in-

dices J based on the partition matrix P and strip-mine matrix Sp produces the new

domain J ′ where Sp is defined as

Sp =

[

(.)p

(.)%p

]

(7.5)

and p is the number of processors. Embedding of Sp produces a generalised strip-

mine matrix S . For further details see O’Boyle and Knijnenburg (2002). Let T be the
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mapping transformation where

T = PS +S (7.6)

Thus the partitioned indices are strip-mined and the sequential indices left unchanged.

The new indices are given by

JJJ′′′ = TJJJ (7.7)

The new array bounds are then found:
[

T O

O T

]

AT
−1JJJ′′′ ≤

[

T O

O T

]

aaa (7.8)

and array accesses are updated accordingly

U′ = TU (7.9)

In general, without any further loop transformations, this will introduce mods and

divs into the array accesses. However, by applying a suitable loop transformation, in

this case T , this can be recovered.

Applying T to the enclosing loop iterators and updating the access matrices gives

III′′′ = T III (7.10)

where
[

T O

O T

]

BT
−1III′′′ ≤

[

T O

O T

]

bbb (7.11)

and

U′′ = TUT
−1 (7.12)

7.3.4 Algorithm

In figures 7.6 and 7.7 detailed step-by-step descriptions of the proposed partitioning

and mapping algorithms are presented. They can be directly implemented in any

framework that supports extended matrices as introduced in O’Boyle and Knijnenburg

(2002).

Whereas the partitioning algorithm in figure 7.6 is independent of the specific target

architecture and computes the most suitable array index to partition along, the mapping

algorithm in figure 7.6 requires the number of processors to be known.
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1. Computation of alignment H(i) for all statements in the innermost loop body and all

indices i.

H(i) = ∑
t

δ(U1
i ,Ut

i )

2. Determination of imax,H .

Determine imax,H ∈ {i|∀ j : H(i)≥ H( j)}.

3. Construction of partition matrix P .

P =

{

eT
i if i = imax,H

0 otherwise

}

where eT
i is the ith row of the identity matrix Id .

4. Construction of sequential matrix S.

S = Id−P

Figure 7.6: Partitioning Algorithm
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1. Construction of the Transformation Matrix T .

(a) Construction of the Strip-Mine Transformation Matrix

Sp =

[

(.)/p

(.)%p

]

and its Pseudo-Inverse

S
†
p =

[

p 1
]

where p is the number of processors.

(b) Construction of the Generalised Strip-Mining Matrix S and its Pseudo-Inverse S †

S =









Id k−1 0 0

0 Sl 0

0 0 IdN−k









and S
† =









Id k−1 0 0

0 S
†
l 0

0 0 IdN−k









(c) Construction of the Transformation Matrix T .

T = PS +S

2. Computation of new Array Index Space.

(a) Computation of new Array Indices JJJ′′′.

JJJ′′′ = T JJJ

(b) Computation of new Array Bounds A′JJJ′′′ ≤ aaa′′′.

[

T O

O T

]

AT
−1JJJ′′′ ≤

[

T O

O T

]

aaa

3. Computation of new Iteration Space and Loop Bounds

(a) Computation of new loop iterators III′′′.

III′′′ = T III

(b) Computation of new loop bounds B ′III′′′ ≤ bbb′′′.

[

T O

O T

]

BT
−1III′′′ ≤

[

T O

O T

]

bbb

4. Update of Array References U ′′III′′′+uuu.

Update all array references U ′′ = U′T−1 = TUT−1.

Figure 7.7: Mapping Algorithm
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7.4 Address Resolution

Two problems arise with partitioning on a multiple address space architecture such as

the TigerSHARC: (a) Separate local name spaces for variables, and (b) addressing of

remote data.

The first problem can be solved by renaming the partitioned arrays as follows.

Once an array is partitioned and mapped across several processors, each local partition

has to be given a local name to distinguish it from other partitions on other processors.

Therefore a new name equal to the old one suffixed by the processor identity number

is introduced. Thus, in a four processor system, X will be replaced by four local

arrays X0,X1,X2,X3. To make one of these arrays local and the others remote but

still accessible, the remote arrays’ declarations have to be changed to extern. The

addresses of such external arrays will be resolved by the linker.

The second problem arises when a reference, e.g. a[i], is translated into the new

form of partitioned arrays. The original reference always refers to array a, while the

new reference must be able to refer to the potentially remote arrays a0, . . . ,a3. This

problem is solved by introducing a small lookup table, which contains start addresses

of the different array partitions. Each access will refer to this table to determine the

corresponding array, before the actual access is performed.

A complete description of the address resolution algorithm is given in the following

section.

7.4.1 Algorithm

In order to minimise the impact on code generation, a pointer array of size p is in-

troduced which points to the start address of each of the p sub-arrays. Unlike the

sub-arrays, this pointer array is replicated across the p processors and is initialised by

an array initialisation statement at the beginning of the program. The complete algo-

rithm is given in figure 7.8 where the function insert inserts the declarations. Figure

7.5, box (3), shows the declarations inserted for one of the arrays, y. The declarations

for the remaining arrays are omitted due to space.

The only further change is the type declaration whenever the arrays are passed into
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1. For each program qi ∈ 1, . . . p

(a) For each arrayName

i. For j ∈ 1, . . . , p

A. IF ( j 6= i) THEN insert (extern)

B. insert(TYPE arrayName j[N/p];)

ii. insert (TYPE *arrayName[p] = ()

iii. For j ∈ 1, . . . , p−1

A. insert (arrayName j ,)

iv. insert (arrayNamep ,);)

Figure 7.8: Address Resolution Algorithm

function. The type declaration is changed from int[][] to *int[] and this must be

propagated interproceduraly. Once this has been applied no further transformation or

code modification is required.

7.4.2 Synchronisation

It is beyond the scope of this thesis to describe synchronisation placement, though this

is essential for correct execution. All cross-processor dependences are marked and a

graph based algorithm is used to insert the minimal number of barrier synchronisations

(Tseng, 1995; Han and Tseng, 1998).

7.5 Example

In this section, a demonstration of the previously developed algorithm is given for a

larger example. Starting with the array recovered and delinearised matrix1 program

from the DSPstone benchmark suite, all parallelisation steps are shown. The resulting

parallel program can be either run directly, or further optimised (e.g. access localisa-

tion or single-processor optimisations).
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7.5.1 Sequential program

Figure 7.9 shows the sequential matrix1 program after pointer conversion and delin-

earisation. The parallelisation of this program is explained in the following paragraphs.

#define X 16

#define Y 16

#define Z 16

static TYPE A[X][Y] ;

static TYPE B[Z][Y] ;

static TYPE C[Z][X] ;

STORAGE CLASS TYPE f,i,k ;

for (k = 0 ; k < Z ; k++)

{

for (i = 0 ; i < X; i++)

{

C[k][i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[k][i] += A[i][f] * B[k][f] ;

}

}

Figure 7.9: matrix1 program after Pointer Conversion and Delinearisation

In figures 7.10 and 7.11 the array declarations, individual array accesses and loop

bounds for the matrix1 program in figure 7.9 are shown in matrix representation.

These matrices will be used in the subsequent partitioning and mapping stages.

7.5.2 Partitioning

1. Computation of alignment H(i).

The innermost loop contains only one statement with four array references.
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1. Array declarations AJJJ ≤ aaa

(a) A[X][Y]














−1 0

0 −1

1 0

0 1















[

j1

j2

]

≤















0

0

15

15















(b) B[Z][Y]














−1 0

0 −1

1 0

0 1















[

j1

j2

]

≤















0

0

15

15















(c) C[Z][X]














−1 0

0 −1

1 0

0 1















[

j1

j2

]

≤















0

0

15

15















2. Array accesses UIII +uuu

(a) A[i][f]
[

0 1 0

0 0 1

]









k

i

f









+

[

0

0

]

(b) B[k][f]
[

1 0 0

0 0 1

]









k

i

f









+

[

0

0

]

(c) C[k][i]
[

1 0 0

0 1 0

]









k

i

f









+

[

0

0

]

Figure 7.10: Array declarations and array accesses for matrix1



7.5. Example 161

1. Loop bounds BIII ≤ bbb

























−1 0 0

0 −1 0

0 0 −1

1 0 0

0 1 0

0 0 1

































k

i

f









≤

























0

0

0

15

15

15

























Figure 7.11: Loop bounds for matrix1

Three of those reference are uses, and one is a definition. In particular, the ref-

erences are U1 = C[k][i], U2 = C[k][i], U3 = A[i][f], U4 = B[k][f]. As

each of the array references has two indices, H(0) and H(1) must be computed.

It is H(0) = δ(U1
0 ,U1

0)+δ(U1
0 ,U2

0)+δ(U1
0 ,U3

0)+δ(U1
0 ,U4

0) = 1+1+0+1 =

3, and H(1) = δ(U1
1 ,U1

1)+δ(U1
1 ,U2

1)+δ(U1
1 ,U3

1)+δ(U1
1 ,U4

1) = 1+1+0+

0 = 2.

2. Determination of imax,H .

As the maximum value of H(i) is reached for i = 0, it is imax,H = 0. This means,

data partition is performed along the first index.

3. Construction of the partition matrix P .

Partitioning along the first index gives

P =

[

Id 0

0 0

]

4. Construction of the sequential matrix S.

Analogously, it is

S = Id −P =

[

0 0

0 Id

]
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7.5.3 Mapping

1. Construction of the Transformation Matrix T .

(a) Construction of Sp and S†
p

S4 =

[

(.)/4

(.)%4

]

and

S
†
4 =

[

4 1
]

(b) Construction of S and S†

S =









Idk−1 0 0

0 Sl 0

0 0 IdN−k









and S
† =









Id k−1 0 0

0 S
†
l 0

0 0 IdN−k









(c) Construction of T and T−1.

T =









(.)/4 0

(.)%4 0

0 1









and

T
−1 =

[

4 1 0

0 0 1

]

for data transformations, and

T =















(.)/4 0 0

(.)%4 0 0

0 1 0

0 0 1















T
−1 =









4 1 0 0

0 0 1 0

0 0 0 1









for loop transformations.
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2. Computation of new Array Index Space A′JJJ′′′ ≤ aaa′′′.

(a) Computation of new Array Indices JJJ′′′.

JJJ =
[

j1 j2
]T

is the original index vector. Its elements correspond to the

dimensions spanned by the array declarations A,B and C. The new array

indices are

JJJ′′′ = TJJJ =









(.)/4 0

(.)%4 0

0 1









[

j1

j2

]

=









( j1)/4

( j1)%4

j2









=









j′1
j′′1
j2









(b) Computation of new Array Bound A′JJJ′′′ ≤ aaa′′′.

[

T O

O T

]

AT
−1JJJ′′′ ≤

[

T O

O T

]

aaa

• Array A[X][Y]

Applying the transformation above gives

A
′ =

[

T O

O T

]

AT
−1

=

























(.)/4 0 0 0

(.)%4 0 0 0

0 1 0 0

0 0 (.)/4 0

0 0 (.)%4 0

0 0 0 1







































−1 0

0 −1

1 0

0 1















[

4 1 0

0 0 1

]

=

























−1 0 0

0 −1 0

0 0 −1

1 0 0

0 1 0

0 0 1
























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and

aaa′′′ =

[

T O

O T

]

aaa

=

























(.)/4 0 0 0

(.)%4 0 0 0

0 1 0 0

0 0 (.)/4 0

0 0 (.)%4 0

0 0 0 1







































0

0

15

15















=

























0

0

0

3

3

15

























and altogether

























−1 0 0

0 −1 0

0 0 −1

1 0 0

0 1 0

0 0 1

































j′1
j′′1
j2









≤

























0

0

0

3

3

15

























Thus, array A has the form A[4][4][16] after partitioning and map-

ping.

• Array B[Z][Y]
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Applying the same transformation as above results in

























−1 0 0

0 −1 0

0 0 −1

1 0 0

0 1 0

0 0 1

































j′1
j′′1
j2









≤

























0

0

0

3

3

15

























The new declaration of B is B[4][4][15].

• Array C[Z][X]

Analogously,

























−1 0 0

0 −1 0

0 0 −1

1 0 0

0 1 0

0 0 1

































j′1
j′′1
j2









≤

























0

0

0

3

3
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























Hence, C[4][4][15] is the new declaration of array C.

3. Computation of new Iteration Space and Loop Bounds B ′III′′′ ≤ bbb′′′.

(a) Computation of new loop iterators III′′′ = T III.

III′′′ =















(.)/4 0 0

(.)%4 0 0

0 1 0

0 0 1























k

i

f









=















k/4

k%4

i

f















=















k′

k′′

i

f















(b) Computation of new loop bounds B ′III′′′ ≤ bbb′′′.

[

T O

O T

]

BT
−1III′′′ ≤

[

T O

O T

]

bbb
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Computing the left and right side of this inequality individually, this gives

B
′ =

[

T O

O T

]

BT
−1

=

[

T O

O T

]

























−1 0 0
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


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
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


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
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













and similarly

bbb′′′ =

[

T O

O T

]

bbb

=


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
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
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


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
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























7.5. Example 167

i.e. the new loop bounds are


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


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



















k′

k′′

i

f












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


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


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










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










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The upper loop bounds of the k′, k′′, i and f loops are 4, 4, 16 and 16,

respectively.

4. Update of array accesses U ′′III′′′+uuu.

U′′ = TUT
−1

• Array access C[k][i]

U′′ =









(.)/4 0

(.)%4 0

0 1









[
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0 1 0

]
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
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i.e.

U′′III′′′+uuu =
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



+









0

0

0









Hence, the access has the form C[k’][k’’][i].
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• Array access A[i][f]

U′′III′′′+uuu =









0 0 (.)/4 0

0 0 (.)%4 0

0 0 0 1












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i
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


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+
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
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0

0

0






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Hence, the access has the form A[i/4)][i%4][f].

• Array access B[k][f]

U′′III′′′+uuu =









1 0 0 0

0 1 0 0

0 0 0 1






















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i
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













+









0

0

0









Hence, the access has the form B[k’][k’’][f].

At this stage, the program shown in figure 7.12 is generated. Its data arrays are

partitioned and the outer loop is strip-mined. The next step is to parallelise this loop

across four processors, which is described in the following section.

7.5.4 Address Resolution

Figure 7.13 shows the matrix1 program (for processor 0 of a four processor machine)

after partitioning, mapping and address resolution. Following three relevant changes

have been made: (a) the outer (parallel) loop has been dropped and replaced by four

program copies with unique identifiers equal to the indices of the k1 loop, (b) the array

declarations have been replaced with distributed array declarations such that each of

the four programs and, therefore, each processor hosts only a single part of each array

locally, (c) descriptor data structures carrying the addresses as seen from a specific

processor have been introduced to all programs5.

5For the ease of presentation, certain type casts that are necessary to make the program in figure
7.13 and in most subsequent examples fully ANSI-C compliant have been left out. A fully ANSI-C
compliant versions of the program in figure 7.13 can be found in the appendix.
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#define X 16

#define Y 16

#define Z 16

static TYPE A[4][4][Y] ;

static TYPE B[4][4][Y] ;

static TYPE C[4][4][X] ;

STORAGE CLASS TYPE f,i,k1,k2 ;

for (k1 = 0 ; k1 < 4 ; k1++)

{

for (k2 = 0; k2 < 4; k2++)

{

for (i = 0 ; i < X; i++)

{

C[k1][k2][i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[k1][k2][i] += A[i/4][i%4][f] * B[k1][k2][f] ;

}

}

}

Figure 7.12: matrix1 program after Partitioning and Mapping
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The original declarations of the arrays A,B and C have been replace by more com-

plex declarations. Each array is split into four parts according to the previous par-

titioning and mapping stage. One part is declared to reside locally on processor 0.

The remaining parts of the arrays are declared extern, i.e. they are included into the

namespace of the program for processor 0, yet without allocating space for them. Fur-

thermore, an array of pointers is created for each distributed array. This array contains

as many entries as there are processors, i.e. four entries in this example. Unlike the

distributed arrays which reside on different processors without data replication, the de-

scriptor data structure is replicated on each processor and initialised with the addresses

of the partial data arrays. Any subsequent access to such a distributed array involves

two steps. E.g. the access C[k1][k2][i] first selects the k1-th element of the local

C data descriptor to determine the address (i.e. processor ID and local address) of the

relevant partial array, before the actual element is either locally or remotely accessed.

Each appearance of the index k1 is replaced by the unique ID MYID of the pro-

gram/processor. MYID represents exactly one value of the original k1 loop. Thus, each

instantiation of the program corresponds to one iteration of the dropped k1 loop. The

explicit k1 loop in figure 7.12 has been implicitly unrolled and distributed over four

program copies that run on different processors. Hence, the first index of each array

access does not only uniquely specify a particular iteration of the former k1 loop, but

also the location of the data.

7.5.5 Modulo Removal

In a final step, expensive modulo index expressions in the reference to array A are

eliminated. By strip-mining the i loop without applying any data transformation, the

mod and div expression disappear from the array reference and are replaced by more

“compiler-friendly” affine index expressions.

By construction, the transformation T which introduces mod and div index expres-

sions is known. Applying T to the enclosing loop iterators and updating the array

access matrices, however, recovers a modulo-free form. This transformation is applied

to the program in figure 7.13 where it eliminates integer division and modulo in the

reference to array A.
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#define X 16

#define Y 16

#define Z 16

#define MYID 0

static TYPE A0[4][Y] ; /* Distributed declaration of A */

extern static TYPE A1[4][Y] ;

extern static TYPE A2[4][Y] ;

extern static TYPE A3[4][Y] ;

static TYPE B0[4][Y] ; /* Distributed declaration of B */

extern static TYPE B1[4][Y] ;

extern static TYPE B2[4][Y] ;

extern static TYPE B3[4][Y] ;

static TYPE C0[4][X] ; /* Distributed declaration of C */

extern static TYPE C1[4][X] ;

extern static TYPE C2[4][X] ;

extern static TYPE C3[4][X] ;

static TYPE *A[4] = {A0, A1, A2, A3} ; /* Descriptor A */

static TYPE *B[4] = {B0, B1, B2, B3} ; /* Descriptor B */

static TYPE *C[4] = {C0, C1, C2, C3} ; /* Descriptor C */

STORAGE CLASS TYPE f,i,k2 ;

for (k2 = 0 ; k2 < 4 ; k2++)

{

for (i = 0 ; i < X; i++)

{

C[MYID][k2][i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[MYID][k2][i] += A[i/4][i%4][f]*B[MYID][k2][f];

}

}

Figure 7.13: matrix1 program after Parallelisation and Address Resolution
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The resulting program after modulo removal is shown in figure 7.14. The i has

been split into two new loops i1 and i2, and references to A, B and C have been updated

accordingly.

#define MYID 0

/* Array Declarations dropped */

STORAGE CLASS TYPE f,i1,i2,k2 ;

for (k2 = 0 ; k2 < 4 ; k2++)

{

for (i1 = 0 ; i1 < 4; i1++)

{

for (i2 = 0; i2 < 4; i2++)

{

C[MYID][k2][4*i1+i2] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

C[MYID][k2][4*i1+i2] += A[i1][i2][f] * B[MYID][k2][f];

}

}

}

Figure 7.14: matrix1 program after Modulo Removal

7.6 Related Work

Although a tremendous amount of work in automatic parallelisation can be found in the

world of High-Performance Computing, there is little work on parallelising compilers

for Multi-DSP.

A good overview of existing parallelisation techniques is given by Gupta et al.

(1999). Cache-coherent multiprocessors with distributed shared memory are the sub-
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ject of Chandra et al. (1997). Although compilers for such machines must incorporate

data distribution and data locality increasing techniques (Carr et al., 1994; Tseng et al.,

1995), they are not faced with the problem of multiple, but globally-addressable ad-

dress spaces. Compiler-Implemented Shared Memory (CISM) as described by Larus

(1993) and Hiranandani et al. (1992) is a method to establish shared memory on

message-passing computers. However, these approaches assume separate distributed

address spaces and require complex run-time bookkeeping. Paraguin (Ferner, 2003) is

a compiler that generates message-passing code, but this compiler is still in its infancy

and requires user directives to drive its parallelisation.

An early paper (Teich and Thiele, 1991) described how DSP programs may be par-

allelised but gave no details or experimental results. Similarly, in Kalavade et al. (1999)

an interesting overall parallelisation framework is described but no mechanism or de-

tails of how parallelisation might take place is provided. In Lorts (2000) the impact of

different parallelisation techniques is considered, however, this was user-directed and

no automatic approach provided. In Karkowski and Corporaal (1998) a semi-automatic

parallelisation method to enable design-space exploration of different multi-processor

configurations based on the MOVE architecture is presented. However, no integrated

data partitioning strategy was available and data keeping is centralised. Furthermore,

in the experiments, communication was modelled in their simulator and thus the issue

of mapping parallelism combined with distributed address spaces was not addressed.

7.7 Conclusion

In this chapter a new compiler parallelisation approach that maps C programs onto

multiple address space multi-DSPs has been developed. Existing approaches to paral-

lelisation are not well suited for architectures with multiple visible address spaces. By

using a novel data transformation and an address resolution mechanism, single-address

space like parallel code can be generated for a multiple address space architecture with

resorting to message passing. The generated code is easy to read and amenable to

further sequential optimisation.





Chapter 8

Localisation and Bulk Data Transfers

Exploiting data locality greatly improves runtime performance, especially on comput-

ers with complex memory hierarchies. While standard SMP machines rely on caches

and additional hardware to maintain cache coherence, DSPs take a minimalistic ap-

proach without caches and only provide fast on-chip memories. Thus, program trans-

formations maximising data locality, e.g. Carr et al. (1994); Lam (1994), are not im-

mediately applicable and useful for DSP codes. Instead, an optimising compiler for

multi-DSPs must be able to additionally prove data locality and to optimise data ac-

cesses based on this information.

In this chapter, three different techniques for improving the parallel multi-DSP per-

formance by exploiting locality are presented. The first technique separates local and

remote accesses within a loop. Loops are split into smaller loops, such that the resulting

accesses are either exclusively local or remote. The second technique, Localisation,

optimises provably local accesses by removing the descriptor look-up previously in-

troduced by address resolution. Finally, provably remote accesses are vectorised and

optimised through the use of DMA transfers.

This chapter is organised as follows. In section 8.1 a motivating example is pre-

sented. The separation of local and remote accesses is subject of section 8.2. Optimi-

sations of local accesses are discussed in section 8.3, before the vectorisation of remote

accesses is explained in section 8.4. This is followed by a larger example in section

8.5 and the presentation of empirical results from different benchmarks in section 8.6.

The chapter is finished by a discussion of related work in section 8.7 and a conclusion

175
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in section 8.8.

8.1 Motivation

In the previously developed parallelisation scheme, descriptors to resolve accesses to

possibly remote arrays have been introduced. While these descriptors guarantee cor-

rectness of the parallel program, they introduce some indirection overhead for each

array access. Furthermore, the compiler cannot exploit lower latency and higher band-

width of local memory as each access can be potentially remote. Eliminating indirec-

tion for provably local accesses enables the compiler to identify local array access and

to optimise them accordingly. This is achieved during Localisation.

A second problem arises from the physically distributed organisation of memory in

multi-DSP. Unlike many other processors, DSPs usually do not contain (possibly co-

herent) caches, but contain fast software-managed on-chip memories, and, if required,

slower but larger off-chip memory. Data transfers between different memories and

processors can be sped up through the use Direct-Memory Access (DMA) engines that

operate autonomously and in parallel to the CPU core, once a transfer has been set

up. Under this scheme, transfers of infrequent, but large messages are favoured over

frequent, but small messages. To convert individual accesses to remote data into bulk

data transfers is the goal of Access Vectorisation (Li and Chen, 1991).

Naive SMP parallelisation is not sufficient to achieve any speedup over the sequen-

tial program. In particular, the additional overhead and excessive communication slow

down the matrix1 program to about 10% of its sequential performance (second bar in

figure 8.1). Partitioning and address resolution further penalise parallel performance

due to the increased number of memory accesses (third bar in figure 8.1). Combin-

ing partitioning, address resolution, localisation and access vectorisation, however,

improves performance dramatically. In fact, a linear performance increase on four

processors can be observed for this particular program (rightmost bar in figure 8.1).

The concepts presented in this chapter are illustrated in an example, before a the-

oretical framework is developed in the following sections. Figure 8.2 contains a small

program after parallelisation and address resolution. While this program has been cor-
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Figure 8.1: Impact of parallelisation, partitioning & address resolution and localisation

rectly parallelised, its performance is generally poor (see figure 8.1). The reason for

this lies in the backend compiler’s inability to distinguish between local and remote

accesses to arrays a, b and c. Further support is required to make local and remote

accesses explicit. Index set splitting can isolate local and remote accesses to c in sep-

arate loops, which are then amendable to further optimisation. Figure 8.3 shows the

effects of this transformations. The j1 loop effectively determines the location of the

access to c and has been split into three individual loops with ranges: 0 . . .(MYID−1),

MY ID, and (MYID+1) . . .4.

The array reference c[j1][j2] in the second loop of figure 8.3 is provably local,

since the only value j1 can take on is MYID. Therefore, the indirection step via the

data descriptor can be dropped and replaced by an immediate access to c0 (as MYID

= 0). This change is shown in figure 8.4. The locality of the access to c0 has been

made explicit for the backend compiler, which can, for example, generate accesses

considering higher bandwidth to and shorter latencies of local memory. In the first and

third loop, c[j1][j2] always references remote data since j1 never takes on the value

MYID. Hence, this remote access can be optimised based on this “remoteness” guar-
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#define MYID 0

int a0[8];

extern int a1[8],a2[8],a3[8];

int b0[8];

extern int b1[8],b2[8],b3[8];

int c0[8];

extern int c1[8],c2[8],c3[8];

int *a[4] = {a0,a1,a2,a2};

int *b[4] = {b0,b1,b2,b2};

int *c[4] = {c0,c1,c2,c2};

for(i = 0; i < 32; i++)

for(j1 = 0; j1 < 4; j1++)

for(j2 = 0; j2 < 8; j2++)

a[MYID][i] += b[MYID][i] * c[j1][j2];

Figure 8.2: Example program after parallelisation and address resolution (MYID = 0)
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#define MYID 0

/* Array Declarations dropped */

for(i = 0; i < 7; i++) {

/* a0, b0 local */

/* c remote */

for(j1 = 0; j1 < MYID; j1++)

for(j2 = 0; j2 < 8; j2++)

a[MYID][i] += b[MYID][i] * c[j1][j2];

/* a0, b0, c0 local */

for(j1 = MYID; j1 < MYID+1; j1++)

for(j2 = 0; j2 < 8; j2++)

a[MYID][i] += b[MYID][i] * c[j1][j2];

/* a0, b0 local */

/* c remote */

for(j1 = MYID+1; j1 < 4; j1++)

for(j2 = 0; j2 < 8; j2++)

a[MYID][i] += b[MYID][i] * c[j1][j2];

}

Figure 8.3: Example program after separation of local and remote accesses
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antee. The individual accesses to remote elements of c can be bundled or vectorised.

The difference to vectorisation in the message-passing world (Palermo et al., 1994) is,

however, that the presented method does not rely on message passing but perform a

simpler one-sided remote fetch operation (Message Passing Interface Forum, 1997).

#define MYID 0

/* Array Declarations dropped */

for(i = 0; i < 7; i++) {

/* a0, b0 local */

/* c remote */

for(j1 = 0; j1 < MYID; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * c[j1][j2];

/* a0, b0, c0 local */

for(j1 = MYID; j1 < MYID+1; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * c0[j2];

/* a0, b0 local */

/* c remote */

for(j1 = MYID+1; j1 < 4; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * c[j1][j2];

}

Figure 8.4: Example program after optimisation of local accesses

After index set splitting and localisation, only the first and the third of the j1 loops

contain remote accesses to array c. In the next step, these remote accesses are hoisted

and placed in separate Load Loops. Data is kept in local temporary buffers, which

are used in the Computational Loops instead. The effect of this transformation is
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that the computational loops become entirely local, while the load loops can be further

optimised. Figure 8.5 contains the example program after the references to c[j1][j2]

have been isolated in separate load loops.

In the last transformation step, the individual accesses to remote data elements are

merged and replaced by calls to DMA routines. DMA transfers have the advantage

of requiring just a fixed, small number of bus transactions to request one large chunk

of remote data. Generally, the additional costs for setting up such a transfer amortise

already for small data block sizes. Consequently, many programs perform better (see

rightmost bar of figure 8.1) after this transformation due to a dramatic decrease of

communication latency. Figure 8.6 shows the example program after DMA transfers

have been inserted.

The final program as depicted in figure 8.6 is amendable to further transformations.

For example, the load loops can be hoisted out of the i loop at the cost of increased

memory requirements. Furthermore, despite the substantial modifications the program

is still amendable to the transformations evaluated in chapter 6.

8.2 Access Separation

Separation of local and remote accesses is the key factor to enable access optimisations

such as Localisation and DMA transfers. An approach to the Array Access Separation

Problem (AASP) that does not rely on expensive techniques such as Access Region

Analysis (Creusillet and Irigoin, 1995) is developed. Instead, it exploits properties of

the partitioning and mapping algorithm of chapter 7.3 to achieve the same result whilst

consuming fewer resources.

A brief overview of the standard approach to the AASP is given, before approach

exploiting explicit processor IDs is described.

8.2.1 Standard Approach

The standard approach to solving the AASP is to determine the range of loop index

values that produce references to local arrays. To achieve this, sophisticated techniques

that can deal with complex shapes of arrays, loops and index functions have been
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#define MYID 0

/* Array Declarations dropped */

for(i = 0; i < 7; i++) {

/* Load Loop */

/* Copy remote data to local temp buffer */

for(j1 = 0; j1 < MYID; j1++)

for(j2 = 0; j2 < 8; j2++)

temp[j1][j2] = c[j1][j2];

/* Compute Loop */

/* Reference to temp, entirely local */

for(j1 = 0; j1 < MYID; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * temp[j1][j2];

/* Compute Loop */

for(j1 = MYID; j1 < MYID+1; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * c0[j2];

/* Load Loop */

/* Copy remote data to local temp buffer */

for(j1 = MYID+1; j1 < 4; j1++)

for(j2 = 0; j2 < 8; j2++)

temp[j1][j2] = c[j1][j2];

/* Compute Loop */

/* Reference to temp, entirely local */

for(j1 = MYID+1; j1 < 4; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * temp[j1][j2];

}

Figure 8.5: Example program after introduction of load loops
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#define MYID 0

/* Array Declarations dropped */

/* Compute Loop */

/* Reference to temp */

for(i = 0; i < 7; i++) {

/* Load Loop */

for(j1 = 0; j1 < MYID; j1++)

DMAget(&(temp[8*j1]), &(c[j1][0]), 8);

for(j1 = 0; j1 < MYID; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * temp[8*j1+j2];

/* Compute Loop */

for(j1 = MYID; j1 < MYID+1; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * c0[j2];

/* Load Loop */

for(j1 = MYID+1; j1 < 4; j1++)

DMAget(&(temp[8*j1]), &(c[j1][0], 8);

/* Compute Loop */

/* Reference to temp */

for(j1 = MYID+1; j1 < 4; j1++)

for(j2 = 0; j2 < 8; j2++)

a0[i] += b0[i] * temp[8*j1+j2];

}

Figure 8.6: Example program with inserted DMA transfers
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developed (Creusillet and Irigoin, 1995; Hoeflinger et al., 1996). A simple technique

for affine array index function is shown below. Given this restriction, the formulation

of the AASP is relatively easy. Using the same notation as in chapter 7, affine array

references can be described by UIII + uuu, the global and local array index spaces by

AJJJ ≤ aaa and A′JJJ ≤ aaa′′′, respectively, and the loop bounds by BIII ≤ bbb.

Substitution of JJJ in A′JJJ ≤ aaa′′′ by JJJ = UIII +uuu and extending the resulting constraint

system by BIII≤ bbb results in a description of the new loop bounds for which the accesses

are local. Substituting

JJJ = UIII +uuu (8.1)

in

(A′JJJ ≤ aaa′′′) = (A′(UIII +uuu)≤ aaa′′′) = A
′UIII +A

′uuu≤ aaa′′′ (8.2)

results in

A
′UIII ≤ aaa′′′−A

′uuu (8.3)

Incorporating the original loop bound constraints results in

[

A′U
B

]

III ≤

[

aaa′′′−Auuu

bbb

]

(8.4)

which is the restricted range of the loop B ′III ≤ bbb′′′ in which it produces local array

accesses.

This iteration space B ′III ≤ bbb′′′ can be split from the original iteration space and the

corresponding loop further optimised. The main problem, however, is to compute the

iteration space of the resulting remote loop, i.e.

(BIII ≤ bbb)− (B ′III ≤ bbb′′′) (8.5)

This computation requires the subtraction of two sets (Hoeflinger et al., 1996), an

operation which is often prohibitive due to its high complexity.

To accomplish the full separation of local and remote accesses, the computation

above must be repeated for each array and each remote location (i.e. each processor).

That is, for each processor x and for all processors z ∈ {1, . . . , p}\{x}

B
xIII ≤ bbbx∩ (BzIII ≤ bbbz∧ JJJz = UIIIz +uuu) (8.6)
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must be determined. This approach is clearly not feasible for anything more complex

than most trivial examples.

An alternative approach to access separation which exploits a property of the em-

ployed partitioning scheme to reduce its complexity is presented in the following sec-

tion.

8.2.2 Access Separation Based on Explicit Processor IDs

Array access separation is greatly simplified when the explicit processor ID introduced

by partitioning and mapping algorithm of chapter 7 is incorporated. To identify local

accesses only the location determining indices of a given array reference must be con-

sidered. The relevant indices are known at this stage as they have been previously used

to construct the partition matrix P . The points in the iteration space of the embrac-

ing loop nest where these location determining indices equal the processor ID produce

local accesses.

Any such array reference identified as mixed local and remote is taken as a basis

for the splitting of the iteration set of its embracing loop. Despite the fact that this

transformation splits the iteration set of a loop, it is usually referred to as Index Set

Splitting (Griebl et al., 2000). Three new loops are constructed, which together cover

the entire iteration space of the original loop. The first loop spans from the lower

bound of the original loop to just below the current processor ID, MYID. The second

loop contains a single iteration for MYID, and the last loop covers the iterations from

MYID+1 to the upper bound of the original loop. If partitioning has been performed

along several dimensions, index splitting must also be performed on each of them.

In general, this loop transformation can be described as follows. For each dimen-

sion partitioned, the index set of the corresponding loop is split into three adjacent

subranges (before split point, on split point, and after split point) each of which is

represented by a new loop on the same nesting level as the original loop. The second

subrange, however, only consists of a single point, i.e. a single iteration. Thus, the

loop for this single iteration can be collapsed and its loop body exposed.

Theorem 8.1 Partitioning a loop nest along d dimensions produces n = 2× d + 1

resulting loops.
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Proof 8.1 The induction hypothesis to proof theorem 8.1 is n = 2×d +1 for d dimen-

sions to partition along.

1. Base case (d = 1)

Index set splitting along a single dimension splits a single loop into three adja-

cent subranges, i.e. the total number of loops after index set splitting is three. It

is n = 2×1+1 = 3.

2. Induction step (d→ (d +1))

It is assumed that index set splitting has been applied to d dimensions and that

n = 2×d +1 loops have been created on the outermost nesting level. Further in-

dex set splitting of inner loops of the “prologue” and “epilogue” loops does not

expose new loops to the outermost nesting level, but only increases the number of

loops in their loop bodies. Only the single iteration “middle” loop is dismantled

and contributes to the creation of three new loops on the outermost nesting level

(see figure 8.7). It holds n = 2×d +1−1+3 = 2×d +3 = 2× (d +1)+1 for

the number of resulting loops. �

In the example in figure 8.7, splitting is performed first along the dimension of the

i-loop, and then along the j-loop. The single loop nest in figure 8.7(a) is converted into

three loops in figure 8.7(b), and repeated index set splitting produces five loop nests

(loops 1, 2.1, 2.2, 2.3, and 3) in figure 8.7(c).

Technically, index set splitting is performed by appropriately constraining the iter-

ation set BIII ≤ bbb of the loop to split by a set of constraints C0, C1 and C2. These three

constraints represent the cases < MY ID, = MY ID and > MY ID where MY ID is the

ID of the current processor. Formally, for each remote reference, the original loop is

partitioned into n separate loop nests using index set splitting:

Q(BIII ≤ bbb,Q1) 7→ Qi(BIII ≤ bbb∧Ci,Q1),∀i ∈ 0, . . . ,n−1 (8.7)

where n = 2d + 1 and d is the number of dimensions partitioned. This transforma-

tion (7→) maps a computation set Q with the iteration space BIII ≤ bbb and an enclosed

computation set Q1 onto a sequence of n appropriately constrained computation sets

Qi.
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00: for(i = 0; i < 4; i++) {

01: for(j = 0; j < 4; j++) {

02: for(k = 0; k < 4; k++) {

03: ...

04: }

05: }

06: }

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

(a) Original loop nest

00: /* Loop 1 */

01: for(i = 0; i < MYID; i++) {

02: for(j = 0; j < 4; j++) {

03: for(k = 0; k < 4; k++) {

04: ...

05: }

06: }

07: }

08:

09: /* Loop 2 */

10: for(j = 0; j < 4; j++) {

11: for(k = 0; k < 4; k++) {

12: ...

13: }

14: }

15:

16: /* Loop 3 */

17: for(i = MYID+1; i < 4; i++) {

18: for(j = 0; j < 4; j++) {

19: for(k = 0; k < 4; k++) {

20: ...

21: }

22: }

23: }

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

(b) Splitting the i-loop

00: /* Loop 1 */

01: for(i = 0; i < MYID; i++) {

02: /* Loop 1.1 */

03: for(j = 0; j < MYID; j++) {

04: for(k = 0; k < 4; k++) {

05: ...

06: }

07: /* Loop 1.2 */

08: for(k = 0; k < 4; k++) {

09: ...

10: }

11: /* Loop 1.3 */

12: for(j = MYID+1; j < 4; j++) {

13: for(k = 0; k < 4; k++) {

14: ...

15: }

16: }

17: }

18:

19: /* Loop 2.1 */

20: for(j = 0; j < MYID; j++) {

21: for(k = 0; k < 4; k++) {

22: ...

23: }

24: }

25:

26: /* Loop 2.2 */

27: for(k = 0; k < 4; k++) {

28: ...

29: }

30: }

31:

32: /* Loop 2.3 */

33: for(j = MYID+1; j < 4; j++) {

34: for(k = 0; k < 4; k++) {

35: ...

36: }

37: }

38:

39: /* Loop 3 */

40: for(i = MYID+1; i < 4; i++) {

41: /* Loop 3.1 */

42: for(j = 0; j < MYID; j++) {

43: for(k = 0; k < 4; k++) {

44: ...

45: }

46: /* Loop 3.2 */

47: for(k = 0; k < 4; k++) {

48: ...

49: }

50: /* Loop 3.3 */

51: for(j = MYID+1; j < 4; j++) {

52: for(k = 0; k < 4; k++) {

53: ...

54: }

55: }

56: }

(c) Splitting the i- and j-loops

Figure 8.7: Example illustrating index set splitting
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For the program in figure 8.2 partitioning is performed along one dimension, hence

n = 3. The constraints resulting from intersecting 0, . . . ,3 with < MY ID, = MY ID and

> MY ID, respectively, are

C0 : 0≤ j1 ≤ (MYID−1) (8.8)

C1 : j1 = MY ID (8.9)

C2 : (MY ID+1)≤ j1 ≤ 3 (8.10)

From this, the program in figure 8.3 is generated.

Exploiting explicit processor IDs as introduced by the parallelisation scheme de-

scribed in chapter 7 eliminates the need for expensive access region analyses to sepa-

rate local and remote array references.

8.3 Local Access Optimisations

After separating local and remote references, accesses to local arrays can bypass the

array descriptor data structure introduced as part of the address resolution mechanism.

One level of indirection for each array access can be eliminated, thus the number of

memory accesses is reduced significantly. In addition, references to local data are made

explicit such that the backend compiler is enabled to produce more efficient code.

Checking each array reference whether it accesses local data is simple, once local

and remote accesses have been separated. It is assumed that single iteration loops as

introduced by index set splitting have been collapsed and their constant index propa-

gated. A simple check whether the location determining indices of an array reference

are constant and equal to the processor ID, MYID, is sufficient to prove an array access

local. If this is the case, the lookup in the data descriptor can be dropped and, instead,

the local array partition is accessed directly.

This is a simple syntactic transformation. Given an array reference X [UIII +uuu], the

dimension δ ∈ 0, . . . ,N− 1 of partitioning and the syntactic concatenation operator :

it is

X [UIII +uuu] 7→ X : uδ[UδIII +uuuδ] (8.11)
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where X is the name of a descriptor array, uδ the δ’th component of uuu, and UδIII +

uuuδ the index vector resulting from removing the δ’th component of the vector UIII +

uuu (projection). This transformation replaces an indirect array reference based on a

descriptor lookup with an immediate reference to the corresponding local array.

For example, in figure 8.3 the reference a[MYID][i] with constant MY ID, e.g.

MY ID = 0, is replaced by a0[i]. Applying this to all references with constant first

index in the example in figure 8.3 produces the code in figure 8.4, where all accesses

to a0, b0 and c0 can be statically identified as local by the backend compiler.

8.4 Remote Access Vectorisation

Repeated reference to a remote data item will incur multiple remote accesses. Bundling

remote references in a bulk DMA data transfer gives better performance due to amor-

tised transfer costs. In this section, the isolation and subsequent transformation of

remote array accesses is explained. Temporal and spatial locality is considered, and

DMA-based data transfers are automatically inserted.

8.4.1 Load Loops

Load loops are introduced to separate local from remote accesses. Remote references

are hoisted from the original loop and placed inside the load loop, where the remote

data is copied into a locally allocated temporary buffer. The Compute Loop refers to

that buffer instead and operates entirely on local data.

The transformation is of the form

Q 7→ (Q1, . . . ,QK) (8.12)

where K− 1 is the number of remotely accessed arrays in Q. A single loop nest Q

is distributed so that there are now K loop nests, K− 1 of which are load loops. In

example 8.4, there is only one remote array, hence K = 2.

In general, there exists more than one loop embracing a remote reference. Hence,

there are several options on how far to hoist the reference as to maximise performance.

Given that data dependences permit, hoisting to the outermost level surely increases
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performance most as the number of transfers is minimised. However, the required

temporary buffer space also increases and the restricted amount of available memory

might be prohibitive.

Possible solutions to this problem is discussed in the following paragraph in the

context of data buffer allocation.

8.4.1.1 Data buffer allocation

Before any remote access optimisation can take place, sufficient storage to hold tem-

porary data must be allocated. Two methods for the allocation data buffer storage are

presented. The first one is fast, but entirely static and does not necessarily utilise all

available memory. The second approach is more flexible, but of higher complexity

since it requires two compilation passes. In the first pass, the remaining memory avail-

able for buffers is determined, and in the second pass the loop nest is split at a level

such that most benefit can be taken from the available storage.

A simple method for the allocation of data buffers is to chose a fixed size s of

available storage, and check that the remote data fits, i.e.

‖Ul,...,nIIIl,...,n‖ ≤ s (8.13)

where Ul,...,n and IIIl,...,n are the projected access matrix U and the projected iteration

vector III for a particular nesting level l of a loop nest. Equation 8.13 determines the

range of accessed array elements at levels l, . . . ,n of a loop nest and from this the

absolute memory requirements are determined.

In figure 8.8 an algorithm is presented that determines the level of hoisting for a

given fixed buffer size s. Starting at the outermost possible, i.e. legal with respect

to data dependences, loop of a loop nest the condition in equation 8.13 is repeatedly

checked until a level is reached where the available buffer is large enough to keep the

remote data. Further hoisting the load operation results in smaller number of expensive

remote accesses, but may increase the size of the temporary data buffer. Inspecting

loop nests from the outermost to the innermost level minimises the number of remote

accesses, whilst meeting the given buffer size constraint.

As this approach is not very flexible, another dynamic approach is proposed and

presented in figure 8.9. After compiling and linking the program without reserving



8.4. Remote Access Vectorisation 191

1. Parameters

Given: loop nest Q with depth n, access matrix U, buffer size constraint s.

2. Determine level of hoisting

(a) Level l = 1;

(b) While (‖Ul,...,nIIIl,...,n‖> s) And (l ≤ n) Do

l = l +1;

3. Code generation

(a) Insert load loops at level l.

(b) Allocate buffer of size s.

Figure 8.8: Static algorithm to determine level of hoisting

any data buffers, the total amount of memory used by the program can be determined

from the linker log files. Comparing this value to the known total memory of the target

processor gives the available size storage s available for buffering. With this value,

a buffer of maximal size can be allocated without exceeding the processor’s on-chip

memory limit. This value also determines the splitting level the loop nest as in the first

approach.

8.4.2 Access Vectorisation

Up to this point, remote accesses have been isolated and moved into separate Load

Loops. The following transformation sequence substitutes these loops with explicit

calls to DMA functions, which automate the transfer of larger data blocks.

First, temporal locality in the load loops is exploited such that redundant loops

can be dropped. Then, accesses to remote data must be transformed into unit stride

order allowing DMA engines to access the data sequentially. As local data buffers

are organised as linear arrays, but accesses in the compute loops might assume multi-

dimensional arrays, these accesses must be linearised to match the actual linear buffer



192 Chapter 8. Localisation and Bulk Data Transfers

1. Code generation

Generate program without load loops and temporary data buffers.

2. Compile and link

Compile program, generate memory usage log.

3. Determine buffer size

Determine remaining memory space in data memory segment.

4. Allocate buffer

Determine level of hoisting, generate load loops and allocate temporary buffer as in

algorithm 8.8.

Figure 8.9: Dynamic data buffer allocation algorithm

organisation. Finally, strip-mining the load loops and replacing the assignment state-

ments of the innermost loop with DMA functions convert the loop into its final form.

8.4.2.1 Locality Optimisation

Temporal locality in the load loops corresponds to an invariant access iterator or the

null space of the access matrix, i.e. N (U). There always exists a transformation T ,

found by reducing U to Smith-Normal form (Ayres, 1962) that transforms the iteration

space such that the invariant iterator(s) is innermost and can be removed by Fourier-

Motzkin elimination (Schrijver, 1986). There are no invariant iterators in the load

loops of figure 8.5.

8.4.2.2 Unit-Stride Transformation

To copy a block of remote data in a single transfer, it must be accessed in unit stride

order. This can be created by a simple loop transformation T , T = U.

In example 8.5, T is the identity transformation as the accesses in the load loop is

already in stride-1 order.
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8.4.2.3 Access Linearisation

All remote data is finally copied into the same linear temporary buffer. The original

remote arrays, however, might be of higher dimension. If this linear buffer organisation

is not yet present, the temporary array and all the accesses to it must be linearised

throughout the program. This is done with following data transformation

U′t = LUt (8.14)

In the example, L =
[

8 1
]

. Array accesses are transformed from temp[j1][j2]

to temp[8*j1+j2] in figure 8.6.

8.4.2.4 DMA Transfers

A DMA transfer requires the addresses of the remote data and the local buffer, and the

amount of data to be transferred. Insertion of a DMA call effectively vectorises the

load loop and replaces the innermost loop. The start address of the remote data can be

computed using the array base address and the lower loop bound. The vector stride is

equal to the loop range. Thus, the remote array reference is transformed as follows

UM = 0,uM = min(Im) (8.15)

where the M’th row corresponding to the innermost index is deleted in the array ac-

cess matrix U and min(Im) denotes the lower loop bound of the innermost loop. The

reference to the temporary array is similarly updated, and Im is eliminated by Fourier-

Motzkin elimination. Also non-constant lower loop bounds are subject to Fourier-

Motzkin elimination. Constant non-zero offsets to the temporary buffer are adjusted

by shifting of the corresponding elements of the constant offset vector uuu and propagat-

ing this index shift to the sites of its use. Finally, the assignment statement is replaced

by a generic DMA transfer call DMAget(&tempref, &remoteref, size) to the pro-

duce the final code.

For example, the j2 loop in the first load loop in figure 8.5 is vectorised by the

insertion of a DMA call. As a consequence, the loop is dropped and the reference

c[j1][j2] is converted to c[j][0] as shown in figure 8.6. The vector stride in this

example is eight as this is the loop range of the eliminated j2 loop.
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8.5 Example

In this section, the matrix multiplication kernel matrix1 is again used to demonstrate

the transformation developed in this chapter.

The initial parallel matrix1 program after partitioning, mapping, address resolu-

tion and parallelisation is shown in figure 8.10. In this program, accesses to array A are

not constantly local or remote, because of their dependence on the loop iterator i1 in

the first position of the reference A[i1][i2][f]. Index set splitting is applied on the

i1 loop to separate local and remote accesses to A.

#define MYID 0

/* Array Declarations dropped */

STORAGE CLASS TYPE f,i1,i2,k2 ;

for (k2 = 0 ; k2 < 4 ; k2++)

{

for (i1 = 0 ; i1 < 4; i1++)

{

for (i2 = 0; i2 < 4; i2++)

{

C[MYID][k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

{

C[MYID][k2][4*i1+i2] += A[i1][i2][f] * B[MYID][k2][f];

}

}

}

}

Figure 8.10: Initial parallel matrix1 program

Figure 8.11 shows the program after the i1 loop has been split into three separate
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loops, of which the second one contains only one iteration and is entirely local. As

there is only one iteration, the loop header of this second loop can be dropped, and all

occurrences of i1 in the loop body can be substituted by MYID. Identifying the local

array accesses is straightforward, since this amounts to searching for array references

with a constant first index equal to the current processor ID (MYID). Descriptor lookups

for local accesses are dropped, because local data arrays can always be accessed di-

rectly. The result of this localisation optimisation is also shown in figure 8.11. Since

MYID = 0 is assumed in this example, references to A[MYID], B[MYID] and C[MYID]

are converted to A0, B0 and C0, respectively.

The second loop of the program in figure 8.11 and the accesses to B and C in the

other loops are now entirely local. Only the first and third loop contain remote refer-

ences to A. As the array A is referenced element-wise, many cycles are wasted in bus

transactions. Vectorising remote accesses greatly improves efficiency. In a first step,

the accesses to the array A are hoisted from the relevant loops and placed in Load Loop.

Remote data is copied to a local temporary buffer, which is then used in the Compute

Loop. In the example in figure 8.11, there are four different options as to where to

place the load loop:

1. In front of the f loop, or

2. in front of the i2 loop, or

3. in front of the i1 loop, or

4. in front of the k2 loop.

Each of the possible options has its specific advantages and disadvantages as sum-

marised in figure 8.12.

Hoisting the accesses to A out of the outermost loop k2 clearly minimises the num-

ber of transactions, but might easily exceed the memory resources since the entire A

matrix must fit onto each processor in addition to the partitions of B and C. Obviously,

the savings on memory resources from placing the load loop in front of the i1 loop

are minimal over placement in front of the k2 loop. The number of bus transactions

is increased significantly, while the memory requirements on individual processors are
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#define MYID 0

/* Array Declarations dropped */

STORAGE CLASS TYPE f,i1,i2,k2 ;

for (k2 = 0 ; k2 < 4 ; k2++) {

for (i1 = 0 ; i1 < MYID; i1++) {

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*i1+i2] += A[i1][i2][f] * B0[k2][f];

}

}

/* i1 loop dropped */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*MYID+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*MYID+i2] += A0[i2][f] * B0[k2][f];

}

for (i1 = MYID+1 ; i1 < 4; i1++) {

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*i1+i2] += A[i1][i2][f] * B0[k2][f];

}

}

}

Figure 8.11: matrix1 program after separation of local/remote accesses and optimisa-

tion of local array accesses
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Option # of transactions Local buffer size Comments

(in front of)

f 3× Z
4 ×

X
4 Y One remote row of A buffered locally

i2 3× Z
4

X
4 ×Y One remote block of A buffered locally

i1 3× Z
4 up to 3× X

4 ×Y A completely stored locally on some processors

k2 3 3× X
4 ×Y A completely stored locally on all processors

(original) 3× Z
4 ×

X
4 ×Y 1 One remote element of A fetched at a time

Figure 8.12: Memory requirements and total number of communications for different

Load Loop placements in the matrix1 example

not reduced. Placing the load loops in front of the i2 and f loops, respectively, further

increases the number of transactions, but reduces the storage requirements to the local

temporary buffer.

For the subsequent transformations it is assumed that up to X
4 ×Y elements can

be buffered locally without exceeding any processor’s on-chip memory limit. Thus,

remote accesses can be safely hoisted out the f and i2 loops, but not further.

In the program in figure 8.13 remote accesses have been isolated in load loop,

but are still performed element-wise. In the next step, the two innermost loops are vec-

torised and replaced by a call to a DMA transfer routine. The effect of this replacement

is that only one transfer per remote processor is performed within the i1 loop rather

than one transfer per remote data element. This dramatically reduces the communi-

cation time, and, therefore, improves the overall performance. Figure 8.14 shows the

corresponding code excerpt. Furthermore, all accesses to the temporary buffer temp

have been linearised for more flexible use.

Neither the k loop nor the i2 loop of the example in figure 8.13 cause a temporal

reuse of elements of the array A. Therefore, no further transformation is necessary at

this stage. However, if the load operations had been hoisted out of the k2 loop instead,

it would have been necessary to eliminate that outer loop from the generated load loop.

At this stage, the generated program is optimised to exploit local and remote ac-

cess efficiently. Local buffers and DMA calls have been inserted to make use of higher

bandwidth to local memory and available DMA controllers, while hard memory con-

straints are still met. In chapter 9.2.1 further communication optimisations, e.g. over-
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for (k2 = 0 ; k2 < 4 ; k2++) {

for (i1 = 0 ; i1 < MYID; i1++) {

/* Load Loop */

for (i2 = 0; i2 < 4; i2++)

for (f = 0 ; f < 16; f++)

temp[i2][f] = A[i1][i2][f];

/* Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*i1+i2] += temp[i2][f] * B0[k2][f];

}

}

/* i1 loop dropped */

/* Local Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*MYID+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*MYID+i2] += A0[i2][f] * B0[k2][f];

}

for (i1 = MYID+1 ; i1 < 4; i1++) {

/* Load Loop */

for (i2 = 0; i2 < 4; i2++)

for (f = 0 ; f < 16; f++)

temp[i2][f] = A[i1][i2][f];

/* Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*i1+i2] += temp[i2][f] * B0[k2][f];

}

}

}

Figure 8.13: matrix1 program after introduction of load loops
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for (k2 = 0 ; k2 < 4 ; k2++) {

for (i1 = 0 ; i1 < MYID; i1++) {

/* Load Loop */

DMAget(&(temp[0]),&(A[i1][0][0]),4*16);

/* Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*i1+i2] += temp[4*i2+f] * B0[k2][f];

}

}

/* Local Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*MYID+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*MYID+i2] += A0[i2][f] * B0[k2][f];

}

for (i1 = MYID+1 ; i1 < 4; i1++) {

/* Load Loop */

DMAget(&(temp[0]),&(A[i1][0][0]),4*16);

/* Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*i1+i2] += temp[4*i2+f] * B0[k2][f];

}

}

}

Figure 8.14: matrix1 program after temporary buffer access linearisation and DMA

transfer insertion
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lapping communication and computation, are outlined.

8.6 Empirical Results

The effectiveness of the parallelisation scheme is evaluated against two different bench-

mark sets: DSPstone1 (Zivojnovic et al., 1994) and UTDSP (Lee, 1998). The programs

were executed on a Transtech TS-P36N board with a cluster of four cross-connected

250MHz TigerSHARC TS-101 DSPs, and all additionally sharing the same external

bus and 128MB of external SDRAM. The programs were compiled with the Analog

Devices VisualDSP++ 2.0 Compiler (version 6.1.18) with full optimisation; all timings

are cycle accurate.

8.6.1 Parallelism Detection

Figure 8.17 shows the set of loop-based DSPstone programs. Initially, the compiler

fails to parallelise these programs because they make an extensive use of pointer arith-

metic for array traversals, as shown in the second column. However, after applying

array recovery (column 3) most of the programs become parallelisable (column 4). In

fact, the only program that cannot be parallelised after array conversion (biquad) con-

tains a cross-iteration data dependence that does not permit parallelisation. adpcm is

the only program in this benchmark set that cannot be recovered due to its complex-

ity. The fifth column of figure 8.17 shows whether or not a program can be profitably

parallelised. Programs comprising of only very small loops such as dot product and

matrix1x3 perform better when executed sequentially due to the overhead associated

with parallel execution and are filtered out, at stage 2, by the parallelisation algorithm.

As far as UTDSP is concerned, many of the programs are available in their original

pointer-based form as well as in an array-based form. Wherever possible, the array-

based programs are taken as a starting point for parallelisation2. The impact of modulo

removal can be seen in figure 8.18. Four of the UTDSP programs (iir, adpcm, fir and

1Artificially small data set sizes have been selected by its designers to focus on code generation; a
scaled version is used wherever appropriate.

2Array recovery on the pointer programs gives an equivalent array form
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Figure 8.15: Total Speedup for DSPstone benchmarks

lmsfir) can be converted into a modulo-free form through program recovery. Modulo

removal has a direct impact on the paralleliser’s ability to successfully parallelise those

programs – three out of four programs could be parallelised after the application of

this transformation. ADPCM cannot be parallelised after modulo removal due to data

dependences.

Although program recovery is used largely to facilitate parallelisation and multi-

processor performance, it can impact sequential performance as well. The first two

columns of each set of bars in figures 8.15 and 8.16 show the original sequential time

and the speedup after program recovery. Three out of the eight DSPstone benchmarks

benefit from this transformation, whereas only a single kernel (fir) experiences a per-

formance degradation after program recovery. In fir2dim,lms and matrix2, array
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Figure 8.16: Total Speedup for UTDSP benchmarks

recovery has enabled better data dependence analysis and allowed a tighter scheduling

in each case. fir has a very small number of operations such that the slight over-

head of enumerating array subscripts has a disproportional effect on its performance.

Figure 8.16 shows the impact of modulo removal on the performance of the UTDSP

benchmark. Since a computation of a modulo is a comparatively expensive operation,

its removal positively influences the performance of the three programs wherever it is

applicable.

8.6.2 Partitioning and Address Resolution

The third column of each set of bars in figures 8.15 and 8.16 shows the effect of blindly

using a single-address space approach to parallelisation without data distribution on a

multiple-address space machine. Not surprisingly, performance is universally poor.
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Figure 8.17: Exploitable Parallelism in DSPstone

The fourth column in each figure shows the performance after applying data partition-

ing, mapping and address resolution. Although some programs experience a speedup

over their sequential version (convolution and fir2dim), the overall performance is

still disappointing. After a closer inspection of the generated assembly codes, it ap-

pears that the Analog Devices compiler cannot distinguish between local and remote

data. It conservatively assumes all data is remote and generates “slow” accesses, dou-

ble word instead of quad word, to local data. An increased memory access latency

is accounted for in the produced VLIW schedule. In addition, all remote memory

transactions occur element-wise and do not effectively utilise the DMA engine.

8.6.3 Localisation

The final columns of figures 8.15 and 8.16 show the performance after the locality

optimisations are applied to the partitioned code. Accesses to local data are made ex-

plicit, so the compiler can identify local data and is able to generate tighter and more

efficient schedules. In addition, remote memory accesses are grouped to utilise the

DMA engine. In the case of DSPstone, linear or superlinear speedups are achieved for

all programs bar one (fir), where the number of operations is very small. Superlinear

speedup occurs in precisely those cases where program recovery has given a sequen-
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Figure 8.18: Exploitable Parallelism in UTDSP

tial improvement over the pointer based code. The overall speedups vary between 1.9

(fir) and 6.5 (matrix2), their average is 4.28 on four processors. The overall speedup

for the UTDSP benchmarks is less dramatic, as the programs are more complex, in-

cluding full applications, and have a greater communication overhead. These programs

show speedups between 1.33 and 5.69, and an average speedup of 3.65. LMSFIR and

Histogram fail to give significant speedup due to the lack of sufficient data paral-

lelism inherent in the programs. Conversely, FIR, MULT(large), Compress and JPEG

Filter give superlinear speedup due to improved sequential performance of the pro-

grams after parallelisation. As the loops are shorter after parallelisation, it appears that

the native loop unrolling algorithm performs better on the reduced trip count.

8.7 Related Work

There is an extremely large body of work on compiling Fortran dialects for multi-

processors. A good overview can be found in Gupta et al. (1999). Compiling for
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message-passing machines had largely focused on the HPF programming language

(Mellor-Crummey et al., 2002). The main challenge is inserting correctly, efficient

message-passing calls into the parallelised program (Mellor-Crummey et al., 2002;

Gupta et al., 1996) without requiring complex run-time bookkeeping.

Although when compiling for distributed shared memory (DSM), compilers must

incorporate data distribution and data locality optimisations (Chandra et al., 1997; An-

derson et al., 1995), they are not faced with the problem of multiple, but globally-

addressable address spaces. Compiling for DSM has moved from primarily loop-based

parallelisation (Hall et al., 1996) to approaches that combine data placement and loop

optimisation (Kandemir et al., 1999) to exploit parallelism effectively. Both message-

passing and DSM platforms have benefitted from the extensive work in automatic data

partitioning (Bixby et al., 1994) and alignment (Bau et al., 1994; Knobe et al., 1990),

potentially removing the need for HPF pragmas for message-passing machines and

reducing memory and coherence traffic in the case of DSMs.

The work closest to our approach (Paek et al., 1998), examines auto-parallelising

techniques for the Cray T3D. To improve communication performance, it introduces

private copies of shared data that must be kept consistent using a complex linear mem-

ory array access descriptor. In contrast, no copies of shared data are kept in our ap-

proach, instead an access descriptor is used as a means of having a global name for

data. In Paek et al. (1998), an analysis is developed for nearest neighbour communica-

tion, but not for general communication. Unlike previous approaches, the partitioning

scheme proposed in this thesis exposes the processor ID, eliminates the need for any

array section analysis and handles general global communication.

In the area of auto-parallelising C compilers, SUIF (Hall et al., 1996) is the most

significant work, though it targets single-address space machines. There is a large body

of work on developing loop and data transformations to improve memory access (Kan-

demir et al., 1999; Carr et al., 1994). In Anderson et al. (1995), a data transformation,

data tiling, is used to improve spatial locality, but the representation does not allow

easy integration with other loop and data transformations.

As far as DSP parallelisation is concerned in Kalavade et al. (1999) an interesting

overall parallelisation framework is described, but no mechanism or details of how par-
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allelisation might take place is provided. In Lorts (2000), the impact of different par-

allelisation techniques is considered, however, this was user-directed and no automatic

approach provided. In Karkowski and Corporaal (1998), a semi-automatic parallelisa-

tion method to enable design-space exploration of different multi-processor configura-

tions is presented. However, no integrated data partitioning strategy was available and

central data storage was assumed in the example codes.

8.8 Conclusion

Multiple-address space embedded systems have proved a challenge to compiler ven-

dors and researchers due to the complexity of the memory model and idiomatic pro-

gramming style of DSP applications. This chapter, together with chapter 7, has devel-

oped an integrated approach that gives an average of 3.78 speedup on four processors

when applied to 17 benchmarks from the DSPstone and UTDSP benchmarks. This is a

significant finding and suggests that multi-DSPs can be a cost effective solution to high

performance embedded applications and that compilers can exploit such architectures

automatically.
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Future Work

In this chapter, possible extensions to the optimisation and parallelisation scheme de-

veloped in this thesis are outlined. While some these extensions represent minor im-

provements over the existing concepts, others – especially the compiler-based design

space exploration proposed in section 9.4 – constitute new directions of future research

in the area of embedded systems compilers.

9.1 High-Level Transformations

High-level program transformations have been proven to be very effective in optimis-

ing DSP programs. Still, finding good transformations is difficult and potentially very

time-consuming. Future research must address this issue and focus on speeding up this

search.

9.1.1 Transformation Selection based on Machine Learning

In the presented approach to selecting high-level transformations, a simple algorithm

based on random search is employed. While this works well for small examples, it

does not build up any knowledge from the exploration of the transformation spaces

of the compiled programs. Incorporating techniques from Machine Learning into the

iterative compilation framework, a compiler could be trained on a training set of pro-

grams (Stephenson et al., 2002), e.g. a benchmark suite. After this training period, the

207
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compiler would be able to use the acquired knowledge to derive good transformations

for future compilation runs faster. While the strength of the compiler is not improved,

it potentially reduces the time to find effective transformation sequences.

9.2 Communication Optimisation

With increasing numbers of processors and stricter timing requirements, communica-

tion performance is of highest importance (Bacon et al., 1994). In the following two

sections, two advanced communication optimisations are proposed.

9.2.1 Computation/Communication Pipelining

In the current approach to communication optimisation, stages of communication and

computation alternate. Repeatedly waiting for a communication transaction to finish

before entering the subsequent computation stage, however, unnecessarily wastes ma-

chine cycles. Pipelining communication and computation avoids this problem and can

improve performance in certain situations.

In this section, a simple example showing how non-blocking communication and

overlapping communication and computation stages would affect the matrix1 pro-

gram is given. Double buffering is used to fetch data from a remote processor whilst

still processing data fetched earlier. Obviously, a second buffer increases the mem-

ory requirements of the program, possibly at an unacceptable extend. The decision

whether double buffering is acceptable depends on the available on-chip memory and

on the memory footprint of the entire program and its data set.

In the example in figure 9.1 non-blocking DMA transfers (DMAget NB) are used to

fetch remote data. After the transfer has been initialised, the function DMAget NB re-

turns and program execution resumes in parallel to the data transfer. A call to DMAwait

temporarily pauses program execution until the current data transfer terminates. The

pipelined matrix1 program uses two data buffers temp[0] and temp[1]. While the

current data is processed from one buffer, the other buffer is filled in the background.

Buffer switching is performed at the end of the compute loop.
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for (k2 = 0 ; k2 < 4 ; k2++)

{

/* Prologue */

...

DMAget NB(0,&(temp[0][0]),&(A[0][0][0]),4*16);

DMAget NB(1,&(temp[1][0]),&(A[1][0][0]),4*16);

buffer = 0;

for (i1 = 0 ; i1 < MYID-2; i1++) {

/* Wait for data to come in */

DMAwait(buffer);

/* Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*i1+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*i1+i2] += temp[buffer][4*i2+f] * B0[k2][f];

}

DMAget NB(&(temp[buffer][0]),&(A[i1+2][0][0]),4*16);

buffer ˆ= 1;

}

/* Epilogue */

...

/* Local Compute Loop */

for (i2 = 0; i2 < 4; i2++) {

C0[k2][4*MYID+i2] = 0 ;

for (f = 0 ; f < 16; f++) /* do multiply */

C0[k2][4*MYID+i2] += A0[i2][f] * B0[k2][f];

}

...

}

Figure 9.1: matrix1 with pipelined communication/computation stages
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Pipelining communication and computation improves data throughput whilst af-

fecting latency only very little. Ideally, communication and computation stages are

balanced, i.e. require roughly the same amount of time. As this is presumably rarely

the case, full processor utilisation cannot always be achieved. In general, however,

utilisation will increase with pipelining.

9.2.2 Advanced DMA Modes

More sophisticated DSPs comprise DMA controllers that support advanced transmis-

sion modes, one of which is two-dimensional transfer. In this mode, a two-dimensional

partition of a larger two-dimensional data array is automatically transferred once the

DMA transfer parameters have been set.

Currently, there exists no compiler technique to take advantage of two-dimensional

transfers. Instead, the programmer has to identify potential 2-d transfers and configure

the DMA controller manually on a very low level.

The separation of communication and computation loops described in the previous

chapter can potentially simplify the exploitation of advanced DMA modes. A compiler

can easily analyse the loop nest loading data from a remote processor and extract the

two innermost loop levels. As the necessary information on the layout of the remote

data array is available in the parallelisation stage, the innermost loops can be eliminated

and an appropriate call to a DMA routine inserted.

9.3 Extended Parallelisation

In this thesis, a basic approach to loop-level parallelisation of DSP codes has been

developed. Possible extensions to this work are described in this section.

9.3.1 Exploitation of Task-Level Parallelism

The approach to parallelisation taken in this thesis exploits loop-level parallelism.

While this is adequate for compute-intensive DSP kernels, larger embedded applica-

tions conceivably show additional worthwhile to exploit forms of program parallelism.
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In particular, task-level parallelism appears as an ideal candidate as many DSP and

multimedia applications are constructed from small independent algorithm “building

blocks”. Advances in global data dependence analyses make it possible to identify

these independent routines and to incorporate them into a larger parallelisation frame-

work.

Furthermore, hybrid parallelisation combining task-level and loop-level parallelisa-

tion is an appealing approach to automatic parallelisation for multi-DSP targets. Form-

ing parallel tasks on a higher level which in turn contain parallel loops could be used,

for example, to equalise the duration of different pipeline stages. Exploiting loop-level

parallelism in the slowest stage of the pipeline and allocating more processors to it

increases the overall efficiency. While this hybrid parallelisation is not very common

in the scientific computing community, it could be very valuable to the throughput and

efficiency oriented high-performance DSP field.

9.3.2 Iterative Parallelisation

In this and most other researchers’ publications parallelisation is a static process, i.e. it

does not involve feedback-driven decisions derived from test runs of the program under

inspection. While this is a sensible approach in an environment with several users

sharing a single parallel computer and limited allocations to that machine, a single-

purpose custom-built parallel embedded system allows for much more experimentation

to achieve better parallel performance.

Parallelisation usually has far fewer degrees of freedom than single-processor opti-

misation, i.e. the search space to explore is much smaller and contains more exploitable

structure. Thus, it is easier for a parallelising compiler to produce efficient parallel

code than for an optimising compiler to produce efficient sequential code. However,

the automatically parallelised code is frequently not optimal, but still good enough

for many users’ requirements. While this non-optimality is not a big problem in gen-

eral parallel computing, multi-DSP developers aiming at the highest efficiency of their

systems cannot tolerate obvious inefficiencies. Furthermore, more generous time allo-

cations for code optimisation in this area not only make iterating over different possible

parallelisation schemes and parameters feasible, but the norm.



212 Chapter 9. Future Work

Parameters in an iterative parallelisation framework for multi-DSPs are the paral-

lelisation level, different code and data partitionings and mappings, scheduling deci-

sions, and also the number of processors to allocate for a given task. Investigating the

contributions of iterative parallelisation in a multi-DSP setting seems very interesting

for future research projects.

9.3.3 Combined Parallelisation and Single-Processor Optimisation

Parallelisation for multi-DSP and high-level transformation for single processor per-

formance optimisation are not isolated techniques, but have much in common and are

frequently used in combination. Many multi-DSP systems comprise only a modest

number of processors. This fact necessitates a high single-processor resource utilisa-

tion to achieve good overall system performance.

A combined approach to parallelisation and single-processor performance optimi-

sation could first apply a sequence of high-level transformations to the sequential code

to expose more parallelism. In the next step, the transformed program is parallelised

before further high-level transformations are finally applied to the individual codes

constituting the parallel program.

The parallelisation strategy developed in chapter 7 of this thesis is particularly well

suited for this combination with high-level code and data transformations as it pro-

duces easy to maintain and to analyse single address space code. Furthermore, many

analyses would become redundant because information available in the parallelisation

stage could be easily transferred to subsequent transformation stages. The explicit

processor ID introduced during parallelisation is one example of such an information

transfer. Using the same unified loop and data transformation framework for paralleli-

sation and single-processor high-level transformations also conceptually unifies paral-

lelisation and single-processor transformations.

Future research might focus on how parallelisation and transformations for single

processor performance optimisation interact with each other, and how good transfor-

mation sequences can be found in such an extended search space.
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9.4 Design Space Exploration

Usually, a compiler or paralleliser assumes a fixed target architecture. While this as-

sumption is more than reasonable in general computing, the design process especially

of fixed application multi-processor embedded systems repeatedly iterates over stages

of hardware and software co-design. That is, the hardware is not necessarily com-

pletely fixed, but allows for changes whilst the software is already being developed.

System-level design tools aim at supporting the designers of such systems with high

variability during the design process.

So far, compilers are at best retargetable, i.e. they can be adapted to a new ar-

chitecture with more or less effort depending on the compiler writers’ anticipation of

later changes of the target. They do not provide, however, any guidance to the user

on how to construct a target architecture best suitable to meet certain criteria for the

currently compiled program. Future work in compiler-centric design space exploration

will likely investigate compilers not only translating and optimising code for a fixed

architecture. In addition, a compiler can adapt the target architecture to the program to

meet certain additional constraints such as performance, cost, power consumption etc.
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Conclusion

In this thesis, a strategy for the combined recovery, high-level transformation and effi-

cient parallelisation of DSP codes written in C targeted at a class of real-world multi-

DSP architectures has been presented. A novel approach has been developed, which

takes into account both the dominating programming language in the DSP domain and

architectural properties of existing commercially available embedded processors.

10.1 Contributions

In the following four paragraphs the contributions of this thesis to individual fields of

compiler research are summarised.

10.1.1 Program Recovery

Two frequently used idioms inhibiting program analysis and transformation have been

identified in a large number of DSP codes: pointer-based array traversals and modulo

array indexing. While pointers are employed by programmers to “support” immature

compilers to generate efficient addressing code, modulo array indexing is the result

of lacking support for circular buffers in the C programming language. Both idioms

have in common, however, that they defeat standard program analysis, a prerequisite

for many program transformations.
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To tackle this problem Program Recovery techniques, in particular Pointer Con-

version and Modulo Removal, have been developed as early enablers of other, more

advanced high-level transformations. Both techniques have been shown to be very

successful in conditioning existing DSP codes for further compiler analysis. While

being developed with the primary goal of cleaning up “dusty deck” codes, pointer con-

version and modulo removal on their own have the potential to contribute significantly

to the overall performance optimisation in certain cases.

10.1.2 High-Level Transformations for Single-Processor

Performance Optimisation

While compiler research for embedded systems has mainly focused on low-level code

generation issues dealing with the idiosyncracies of many embedded processors, auto-

mated high-level source-to-source transformations have been largely ignored by the

DSP compiler community. Instead, DSP programmers have acquired highly spe-

cialised skills to manually tune their codes for a specific architecture. Currently, the

search for a “good” sequence of transformations (including their parameters) is still a

time-intensive manual task.

Against this background, a number of high-level transformations borrowed from

the scientific computing domain have been evaluated against two sets of DSP bench-

mark codes. As a result of this evaluation, it was found that the considered transfor-

mations are very well suited for DSP code optimisation. While standard approaches

usually apply fixed and often far from optimal transformation sequences, a feedback-

driven iterative approach to program transformations has been investigated. The results

are very promising, an average speedup of 2.21 can be achieved across four different

platforms.

As short compilation times are not as important for DSP compilers as for general-

purpose compilers, the compiler can afford to spend more time on the search for a

transformation sequence that maximises performance whilst meeting strict require-

ments to code size. Future DSP software development will see less manual interven-

tion and will rely more on advanced and possibly also iterative compiler optimisations.
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10.1.3 Parallelisation for Multi-DSP

Automatic parallelisation for multi-DSP architectures is a highly complex task. This

is due to three reasons: The restricted hardware support for multiprocessing, com-

plex memory architectures, and the requirement to achieve the highest efficiency in a

real-time environment. These three factors together let standard compiler-based paral-

lelisation fail for multi-DSPs.

The parallelisation strategy developed in this thesis tries to overcome the problems

imposed by the processor and memory architecture. Combining data partitioning and

mapping in a single transformation framework makes the processor ID explicit. This

and the introduction of a novel descriptor data structure allow for a single address space

programming model on top of multiple address space hardware. The small size of the

new data structure accounts for the restricted amount of available on-chip memory in

typical DSPs. The single address space programming model of the generated parallel

code is particularly well suited for communication and single-processor optimisations

to further improve performance.

While previous approaches to multi-DSP parallelisation mainly exploit task-level

parallelisation and, therefore, do not scale, the novel automatic parallelisation scheme

for compute-intensive DSP loops and kernels scales with the number of available pro-

cessors.

Automated program parallelisation is one of the key enablers of future (single-chip)

multi-DSP systems as software development costs often exceed that of the hardware

already.

10.1.4 Localisation and Bulk Data Transfers

While the parallelisation strategy primarily deals with the data distribution across sev-

eral processors and address spaces, it uses data descriptors to maintain single address

space like code. This measure guarantees correctness of the parallel code, but neglects

data locality and additional overhead introduced by frequent table lookups. To realise

the target architecture’s full performance potential a number of locality and data trans-

fer optimisations have been developed.
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By exploiting the explicit processor ID introduced in the parallelisation stage, no

analysis to determine data’s storage site has to be performed. This highly efficient

way of deciding data locality allows for the separation and individual optimisation of

local and remote accesses in loops. For provably local accesses no table lookups need

to be performed and, as a consequence higher bandwidth to on-chip memory can be

exploited. Remote accesses are bundled in separate vectorisable load loops. DMA

based data transfers reduce communication costs.

Combining program recovery, parallelisation and locality optimisations has been

shown to be very effective. Linear or close to linear for most and super-linear speedups

for a number of benchmarks from two relevant DSP-specific benchmark suites impres-

sively demonstrate the high potential of the proposed approach to automatic paralleli-

sation for high-performance multi-DSPs.

10.2 Conclusions

In this thesis, an integrated parallelisation and optimisation strategy has been devel-

oped, which can process existing sequential DSP codes written in C and produces

optimised parallel code for a multi-DSP target architecture. It combines several dif-

ferent techniques at various stages in the compilation chain. The consideration of C

as the dominating programming language for the implementation of high-performance

embedded systems and the development of a complete optimisation and parallelisation

framework targeting a class of wide-spread commercial architectures not only deepens

the scientific insight into compiler technology, but also provides valuable knowledge

to the embedded systems industry.

Automatic optimisation and parallelisation for embedded systems based on high-

performance DSPs are now feasible. Major obstacles to high-level transformation and

parallelisation resulting from poor programming style have been identified and sys-

tematic methods to overcome these problems have been developed. High-level trans-

formations largely ignored in the past have been shown to be highly successful in the

context of DSP codes and an iterative feedback-driven optimisation strategy has been

proposed. A novel parallelisation framework comprising data distribution and locality
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optimisations has been devised and empirically evaluated against relevant DSP bench-

marks.

Important contributions to the development of novel compilation techniques for

high-performance embedded systems, based on single processors as well as on multi-

ple processors have been made. It is likely that we will see more research in this area

as future Systems-On-Chip will comprise larger numbers of heterogeneous processors

with non-standard memory architectures, which will challenge existing compiler tech-

nology.

in magnis et voluisse sat est.

Sextus Propertius, Elegiae (II, 10, 6)
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Fully ANSI C compliant example codes

STORAGE CLASS TYPE f,i,k2 ;

for (k2 = 0 ; k2 < 4 ; k2++) {

for (i = 0 ; i < X; i++) {

(*C[MYID])[k2][i] = 0 ;

for (f = 0 ; f < Y; f++) /* do multiply */

(*C[MYID])[k2][i] += (*A[i/4])[i%4][f] * (*B[MYID])[k2][f];

}

}

Figure B.1: ANSI-C compliant code to program in figure 7.13
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#define X 16

#define Y 16

#define Z 16

#define MYID 0

static TYPE A0[4][Y] ; /* Distributed declaration of A */

extern static TYPE A1[4][Y] ;

extern static TYPE A2[4][Y] ;

extern static TYPE A3[4][Y] ;

static TYPE B0[4][Y] ; /* Distributed declaration of B */

extern static TYPE B1[4][Y] ;

extern static TYPE B2[4][Y] ;

extern static TYPE B3[4][Y] ;

static TYPE C0[4][X] ; /* Distributed declaration of C */

extern static TYPE C1[4][X] ;

extern static TYPE C2[4][X] ;

extern static TYPE C3[4][X] ;

/* Descriptor A */

static int (*A[4])[4][16] = (int (*)[4][Y])A0,

(int (*)[4][Y])A1,

(int (*)[4][Y])A2,

(int (*)[4][Y])A3;

/* Descriptor B */

static int (*B[4])[4][16] = (int (*)[4][Y])B0,

(int (*)[4][Y])B1,

(int (*)[4][Y])B2,

(int (*)[4][Y])B3;

/* Descriptor C */

static int (*C[4])[4][16] = (int (*)[4][X])C0,

(int (*)[4][X])C1,

(int (*)[4][X])C2,

(int (*)[4][X])C3;

Figure B.2: ANSI-C compliant declarations to program in figure 7.13
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