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Abstract

Computers built on data Ilow principles promise efficient parallel computation

limited in speed only by data dependencies in the calculation being performed. We

demonstrate how the massive parallelism of array operations in numerical scientific

computation programs can be effectively exploited by the fine-grain parallelism of static

data flow architecture. The power of such fine-grain parallelism derives from

machine-level programs that form large pipelines in which thousands of actors in hundreds

of stages are executed concurrently. Each actor in the pipe is activated in a totally

data-driven manner, and no explicit sequential control is needed.

This thesis studies the principles of program mapping techniques that can be made to

achieve high performance for numerical programs when executed on a computer based on

data flow principles. A simple value-oriented language is specified as the source language

to express user programs. The key of the program mapping techniques is to organize the

data flow machine program graph such that array operations can be effectively pipelined.

Program transformation can be performed on the basis of both the global and local data

flow analysis to generate efficient pipelined data flow machine code. A pipelined code
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mapping scheme for transforming array operations in high-level language programs into

pipelined data flow graphs is developed. T'he optimal balancing of data flow graphs is

investigated and an efficient solution is formulated. Based on the pipelined code mapping

scheme, the pragmatic issues of compiler construction and efficient architecture support for

pipelining of machine level data flow programs are addressed.

Thesis Supervisor: Jack B. Dennis

Title: Professor of Computer Science and Engineering

Keywords: applicative programming, parallel computation, pipelining
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1. Introduction

'lhe past decade has seen sustained elflorts in the design and inlplementation of*

high-perlormnance supercom puitters. ''hey are the highest perlirwmance machines available

lbr automatic compultation. 'l'he most SLICCCSSfLul supercompuLters of' the present day are

conventional von Neumann stored program colIput ters based on seqluential instruction

execution. However, there exists a mismatch between the amount of parallelism available

in many large scientific computations and the amount of concurrency which can be

effliciently supported by computers based on von Neumann architecture. The scquclltial

nature.of tile von Ncumann architecture, in which a sequential control mechanism is used

to schedule instruction execution, creates the so-called von Neumantn boilleneck [13].

'T'o overcome this bottleneck, a variety of innovative architecture concepts has been

developed to improve the performance of von Neumann computers. The instruction

overlap architecture allows concurrent execution of several instructions; the cache speeds

up the memory accesses; pipelined processors e"xploit the parallelism expressed in vector

operations, and array processors make it possible to organize multiprocessors working in

parallel in a lock-step fashion.

In spite of these advances, the demands foi" ever increasing computing power have

not yet been satisfied. If future generation supercomputers are to achieve significant gain

in performance over current designs, they will have to process large number (hundreds or

thousands) of basic operations concurrently. The arrival of VLSI technology causes a

dramatic change in cost performance trade-offs for solving large problems on a computer.

High levels of concurrency will be achieved by machines consisting of many instruction

processing units, function units and memory units, which become practical only by the

advent of VLSI technology. To effectively organize and realize these high levels of

concurrency presents a major challenge to computers built on von Neumann architecture

[11]. Attempts to eliminate the von Neumann bottleneck have lead to the introduction of

novel forms of computer architecture such as data flow computers.
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Despite the widely recognized fIatLure or proposed data flow model or colI)utaltioll

- its ability to exploit parallelism at the level of atomic operations, skepticism exists

concerning their fl'ficiency in high perfl)rmalnce scientilic comnputaltion [51]. A

long-standing issue has been the efficient mapping of massive parallelism in array

operations. A major goal of' this thesis is to show that tile power oJfine-grain paralleclism

supported by duata flow architecture can be effectively utilized in handling arrays. In

structuring data flow machine code, we have Ibund pipelining of array operations a very

attractive way to exploit such massive parallelism.

Most compilers for conventional vector proccssors do some fbrm orf analysis to

identify parallelism in serial code written in conventional programrnming languages such as

FI-ortran. After the parallelism is detected, the compiler will generate machine code for the

vector operations using inherently sequential scheduling meclhanism available in the von

Neumann processor architecture. 'Thereftore, in order to perform a sLccessfIul program

mapping, a vectorizing compiler must overcome two forms of the von Neumann

bottleneck: in the source language and in the machine architecture. While considerable

progresses has been made in parallelism detection of user programs [69], the bottleneck

originating from the instruction scheduling or machine architecture makes the vector code

generation phase extremely machine dependent. It may require sophisticated analysis to

overcome the barrier caused by problems like conditional statements and vector register

allocation. As a result, such efforts are often performed under a strategy emphasizing local

optimization rather than global optimization. Therefore, even when massive parallelism in

user programs has been successfully detected, we still need an effective code mapping

strategy to organize the computation such that the parallelism can be best handled and

exploited by a highly parallel computer architecture. The von Neumann bottleneck has

been the major obstacle for conventional vector compilers, and so far there are no easy

solutions to the problem.

The program mapping scheme developed in this thesis transforms the user program
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such that the massive parallelism in array computation can be elffectivcly matched with the

power of fine-grain parallelism supported by data flow architecture. The goal orf such

optimization is to achieve effective pipclining of the data flow machine code. Such a

pipelincd program restruecture and transformation strategy requires both local and global

analysis and optimization. This adds a new and interesting dimension of optimization

problems flhced by a compiler.

In developing the code mapping scheme, we assume functional languages are chosen

as high level programming languages Ibr writing user programs because they encourage an

applicative style of programming in expressing parallel computation. In particular we

choose to use a functional language with fIeatures which are usef'ul in expressing array

operations with certain regularities frequiently fiund in highly parallel numerical

computation.

This chapter gives an introduction to the various aspects of hethe thesis research and

outlines its scope.

1.1 Massive Parallelism of Array Operaions in Numerical Computation

A major driving force in the development of high-performance computers has been

scientific computation. In applications such as weather forecasting, aerodynamic

simulation, nuclear physics, seismology and signal processing, enormous computing power

is required to handle massive parallelism in an efficient manner. Problems in scientific

computation are usually expressed in linear algebra with all data structured as elements of

arrays. The kernels of such array computation typically demonstrate certain regularities.

In the computation, the bulk of the elements of an array are processed in a regular and

repetitive pattern through the different phases of program execution. For example,

references to array elements are usually organized in an iteration loop in which the array

elements are accessed by a simple indexing scheme, as illustrated in the following Fortran

program.
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DO 10 J 1, N

X(I,J) = A(,J)

10 X(N,J)= A(N,J)

)O 20 I1 = 2, N-i

X(l,1)- A(U,1)

20 X(I,N)= A(I,N)

DO 30 1 = 2, N-I

DO 30 . = 2, M-1

30 X(I,J) = (A(lj-1)+ A(I,.I + 1)+ A(I-1,.J)-- A(I + 1,J))/4

'he index compultation for all array references of X is done in the form of i+ b or j + b

where b is a compile-time constant. Furthermore, all elements of the array X are defined

exactly once in this loop.

The program in the above example consists of considerable number of array

operations, a tact typical for a scientific numerical compLutation program. For example,

many applications take the form of computing successive states of a physical system

represented by physical quantities on an Euclidean grid in two or three dimensions, and the

new values of each grid point may be computed independently. Thus, the degree of

concurrency is often at least equal the number of the grid points (for a 1OOxOOxO100 case,

the parallelism will be well over 106 !). Therefore, the efficient mapping of the massive

parallelism of array computation into machine-level code structure has been a major

consideration in the design of high-performance computer architecture as well as program

transforming compilers.
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1.2 Vector Processing and Vectorizing Compilers

Achieving massive speed-Lup of array operations has been a challenging task for

designers of von Neumann parallel coniputers. The array processors, with II.I,IAC IV as a

pioneer [14,18], depend upon simultanCous lock-step operations on many elements of' an

array. Tl'hese processors perform well only when data structulres can be mapped onto a

lixed machine structure imposed by the physical arrangement of the processors, e.g., linear

arrays, two-dimensional arrays, etc.

Vector and pipelined processors [22,86] perform repetitive operations on elements '

an array sequentially with substantial overlap through the hardware pipelincd flunctional

units. T'he architecture of such machines usually consists of' pipelined tiinction units,

interleaved memory mocdulcs and fast vector registers. For such processors to be efficiently

utilized, the machine programs must be organized such that the sequence of elements of

the operand arrays needed to complete a vector operation are continuously accessed and

processed by special pipelined function units or by many tightly coupled Function units.

'['he architecture of the various vector processors usually supports a set of vector

operations (instructions). For example, vector add is a typical vector operation described

as:

VADD: C(1) = A(1) + B(1)

where A and B are vector operand, and C is the result vector, and I = 1 through n - the

length of the vector. A vector operation performs the same scalar operation on successive

elements of the vector. In most commercial vector processors, identical hardware pipelines

must execute the same vector operation at the same time.

User programs for vector processors are written in conventional programming

languages (e.g., Fortran, Pascal) which are sequential in nature. An intelligent compiler

must be developed to detect and regenerate parallelism lost in the use of sequential
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languages. 'The process to replace a block olf sequential code by vector instructions is the

so-called vectorizalion. For example, the fb lowing Fortran loop can be vectorized into tihe

vector VADD) instruction discussed above.

DO 10 I = 1, N

10 C(I) = A(I) + B(I)

For vector processors the rundamental problem, given that the parallelism in the

program is being successliilly detected, is to schedule the machine code to overconle the

von Neumann bottleneck. '1To achieve this goal, the compiler must vectorize complicated

data accesses and restructure program sequences, subject to instruction precedence and

machine hardware resource constraints. On one hand, an array is a block of storage cells

physically allocated in memory. Transmission of an array from one part of the program to

another occurs directly through physical allocation and moving blocks of' data in the

memory. On the other hand, the object programs are coded in von Neumann machine

instruction set which depends on the sequential control mechanism and lacks clarity in

terms of resource constraints when sharing is concerned. The inflexibility severely limits its

ability to schedule different computations on different elements of an array. For example,

a barrier to vectorization exists in the handling of conditional and branch statements,

sequential dependencies, etc. It remains to be seen whether an overall program mapping

scheme can match the detected parallelism in source programs with a sequentially

controlled processor architecture.

Moreover, when there is substantial parallelism of operations on multiple arrays in

different parts of the program, the problem of scheduling and synchronizing these

operations on multiple pipelined vector processors becomes more difficult. In fact, it has

been indicated that multi-pipeline scheduling is computationally hard, even for a restricted

class of problems [55]. A feasible solution must include a suitable scheme for programming

the communication of tremendous amounts of data traffic between processors and
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Lmemories when niily pipclined instruction/data streamns aire processed. Until recently, the

iost succecsslill vector nlachines were uni-p)rocessors sich as the Cray- 1 or Cyber-205. ''lhe

current direction or vector processing is to alllow sm11111ll number ol vector processors (2,4 or

8) to lbrm a parallel compultCr architecture, as in the Cray-X-MP-2 and Fujitsu VP-200 [801.

1.3 [)Data Flow Computers

The data flow model of computation which has been proposed as an approach for

high-performance parallel com puters rep resents a radical departure from von Ncumann

architecture [10,12,25,26,60]. In a data flow model, the computation is modeled by a data

flow graph - a directed graph with nodes that represent actors and arcs that transmit

tokens which carry values to be processed by these actors. Actors are activated for

execution by the presence of tokens carrying operand values at their input arcs. In this

computation model, the execution of a program is intrinsically data-driven, i.e., the order of

execution between operators is determined only by data dependencies.

In recent years research has been conducted on data flow architecture that can

directly execute programs encoded as data flow graphs [12,34,35]. A machine-level data

flow program, regarded as a collection of instruction cells, is essentially a directed graph,

with each node corresponding to an instruction and each arc specifying the destination of

the result value of an instruction execution. Unlike von Neumann computers, data flow

computers have no program counter or other form of centralized sequential control

mechanism. The parallelism which can be exploited by an ideal data flow computer is

limited only by the data dependencies in the data flow programs.

Two major approaches to the architecture of data flow computers are currently being

pursued. They are the static data flow model [26] and the tagged token model [11,92]. In

this thesis, we deal only with the static data flow model. In the static data flow model, an

arc can hold no more than one token. The machine programs for a static data flow

computer are loaded into the processor memory before execution and only one instance of
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an instruction is active at a time. Once an actor has been executed, it cann1ot be executed

again until the tokens carrying previous result 'values have been consumed by all successor

ICtorS.

The structure of a static data flow supercomputer proposed by the Computation

Structures Group of' MI'I [35] is shown in Figure 1.1. 'he data Ilow programs are held in

the memory local to each processing element (P'F). When an instruction is enabled For

execution by the arrival of its operand values, an operation packet is formed and sent to the

function unit FU or array memory AM, depending on the type of operation it requires.

'[The result value of the operation is sent to its successor instructions in the program graph.

The organization of the processing units that handle enabled instructions and initialize

result

PE: processing element
AM : array memory

FU: functional unit
RN: routing network

Figure 1.1. A static data flow architecture

1.
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their execution has been described in [27,28,92]. The role, analysis and structure of routing

networks are described in [28,29,16,17]. Performance evaluation or the static datla flow

architecture o)r a fIew benchmark programs has been studied in [31,35,84].

1.4 Granularity and Functionality Issues

Despite its attractive features, data flow model or computation has raised

considerable controversy among researchers. Not surprisingly, the criticisms of data flow

architectture for high-performance numerical scientific computation have also been

centered on array computation. The main skepticisms about the ability of data flow

computers in handling array operations are due to their emphasis on line-grain,

operational-level concurrency [51,52].

Parallelism can be exploited at different levels of computation: task level,

procedure/function level, or instruction level. Granularity issues have been an important

consideration in parallel computer architecture design. The operational model of data flow

graphs can exploit the parallelism explicitly at each atomic machine operation level, and

the corresponding architecture is said to be based on the fine-grain data flow principle.

For example, both static and tagged token data flow machines use the fine-grain data flow

principle.'

The success of data flow architecture in scientific computation depends on the

program mapping or transformation schemes which can organize the computation such

that the massive parallelism and regularity in array operations can match the fine-grain

parallelism efficiently supported by the architecture.

According to the functionality of data flow graphs, any actors (operations) must be

side-effect free. Conceptually, this precludes the sharing of data structure such as arrays.

1. In contrast, some researchers advocated a coarse-grain data flow principle, where an atomic actor in the
graph is a procedure [51].
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An array append operation A[i:vi expressed in data Ilow languages such as Val [4] would

mean the construcLion o1f a new array A' which is a ifresh copy .of A except that the i-th

element is replaced by v [4]. One direct implementation is to copy the array A each time an

append operation is executed. Clearly such a scheme is expensive. 'l'he I-structure concept

represents one attenmpt to remedy the problem [11]. An I-structure is implemented as an

array-like structure where a present bit is associated with every element of' the structure in

the physical memory. An attempt to access an empty location in the structure will be

deflerred until an update operation to the same location is perfolrmed. Although it allows

the possibility of concurrency between simultaneous read and write operations of an

I-structure, criticism has been made of the overhead of handling the dclcirred read

operations. Some researchers have argued that the benefit of such fine granularity does not

pay for its overhead [51].

One way to represent an array in a data flow graph is to allow a token to carry the

array as a single value, and use append and select actors in the program graph to access and

process array elements and to construct the result array. It appears that the fine-grain

advantage for a graph actor operating on arrays is lost. If a program involves many random

array access operations, the overhead of transmitting the array values may be high.

Furthermore, if random update functions are involved, the storage management may

become expensive [3]. Criticism of proposed tree-like array storage structures in data flow

computers is also well-known [51].

1.5 A Pipelined Code Mapping Scheme

The massive fine-grain parallelism which can be exploited by data flow architecture

presents challenges as well as opportunities for compiler construction for such parallel

machines. The functionality of data flow graphs relieves the burden of solving low-level

scheduling problems due to the von Neumann bottleneck which severely restrict the power

of a conventional vectorizing compiler. As a result, it may provide the foundation on which
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programs can be restructured and translformed to meet both global and local dlata flow

requirenments. This certainly adds a new dimension to compilation techniques for parallel

machines to which this thesis is devoted.

1.5.1 Fine-Grain Parallelism and Pipelining olf Data Flow Programs

Fine-grain parallelism exists in two forms in a data flow machine level program, as

shown in Figure 1.2, which shows seven actors grouped into four stages. In Figure 1.2 (a),

(a)

stage 1 stage 2 stage 3 stage 4

(b)

Figure 1.2. Pipelining of Data Flow Programs

-100

-10,
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actors I and 2 are enabled by the presence of tokens on their input arcs, and thus can be

executed in parallel.' '['his is called spatial parallelism. Spatial parallelism also exists

between actors 3 and 4, and between actors 5 and 6. T['he second form of parallelism is

pipelining. In static data flow architecture, this means arranging the machine code suclh

that successive computations can follow each other through one copy of the code. If we

present a sequence ofr values at each input of the data flow graph, these values can flow

thrLo,ý,h the program in a pipelined fashion. In the configuration of Figure 1.2 (b), two sets

of tokens are pipelined through the graph, and the actors in stages 1 and 3 are enabled and

can be executed concurrently. 'lhuIs, the two forms of' parallelism are fully exploited in the

graph.

The power of' fine-grain parallelism in a data flow computer derives from

machine-level programs that fobrm large pipelines in which thousands of actors in hundreds

of stages are executed concurrently. Each actor in the pipe is activated in a totally

data-driven manner, and no explicit sequential control is needed. With data values

continuously flowing through the pipe, sustained parallelism can be efficiently supported

by the data flow architecture.

1.5.2 Data Flow Languages and Array Computations

The use of data flow languages [5] encourages an applicative style of programming

which does not depend on the von Neumann style of machine program execution. An

important feature of this style is that the flow of data values is directly specified by the

program structure. The basic operations of the language, including operations on arrays,

are simple functions that map operands to results. Data dependencies, even those

involving arrays, should be apparent. This construction helps exploit concurrency in

1. A solid disk on an arc represents the presence ofa token.



- 20 -

algorithms and simplilies the nmapping of such algorithms into data flow machine

programs. For the purpose of this paper, we choose to use Val [4J as the high level

language Ior user programs.

Since large numerical computation programs involve many array operations, their

efficient mapping is crucial in the design and implementation or high-level languages. In

functional languages, the concept of an array value does not depend on storage locations in

the memory. Array operations, such as the Val array append and selection operations are

applicative - an array value can be created or accessed, but never modified. However, a

liunctional semantics of array operations does not guarantee efficient implementation. For

example, if a program invokes many append operations, the excessive copying may result

in substantial overhead.

Array operations in large numerical computations usually take place in a regular and

repetitive pattern, as shown by the example in Section 1.1. An array is usually constructed

by a code block such that each element in the array is defined only once. As a result, array

construction can be implemented in a way such that copying of the array is normally

avoided. Another regularity is the way an array value is used in computation by other parts

of a program. The selection operations of an array, clustered in a code block, often exhibit

a simple indexing pattern such as in the form A[i + b], where i is the index value name and

b is a compile-time constant. This regularity permits optimization in the transmission of

array values between different parts of a data flow program. The goal of this thesis is to

examine how array operations with such regularities can be efficiently mapped onto static

data flow computers.

Since our major concern is how to utilize the regularity of array operations in the

source program, we concentrate on two array creation constructs - the forall and

for-construct expressions.

The forall construct allows the user to specify the construction of an array where

similar independent computations are performed to determine each element of the array.
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T''hc Ibllowing is an expression which delines a one-dimensional array X from an input

array A.

X : array[real] : =
forall i in [0, m+ 1]

construct

if i = 0 then A[i]

elseif i = m + 1 then A[i]

else

% range spec

(A[i- l] + A[i] + A[i + 1])/3

endif

endall

The for-construct expression, proposed as a special case of the Val for-iter construct,

is used to specify construction of an array where certain forms of data dependencies exist

between its elements. The fbllowing is a for-construct expression which constructs an array

X based on a first-order linear recurrence, using array A and B as parameter arrays.

X:= array[real]:=

for i from to m+l1
T: array[real] from array-empty

construct

if i = I then xO
else A[i]*T[i-1] + B[i]

endif

endfor

% range spec

Typically the body of a forall or for-construct expression is a conditional expression

which partitions the index range of the result array into mutually exclusive and collectively

exhaustive index subranges, each corresponding to an arm of a conditional expression.

Such a conditional expression is called an range-partitioning conditional expression. In the
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above fora:ll example, there are three index subranges, i.e. [0,0], [rn + L,m + 1] and [1,mJ.

The two constructs just illustrated provide means to express array consitruction

operations of the desired regularity without using explicit array append operations.

Expressions based on these construc.s are the major code blocks studied in this paper.

1.5.3 Pipelining of Array Operations

One objective of the machine code mapping scheme for static data flow computers is

to generate code which can be executed in a pipelined fashion with high throughput. The

pipeline must be kept busy - computation should be balanced and no branch in the pipe

permitted to block the data flow. Furthermore, compLitation resources should be

efficiently utilized. In particular, the usage of storage for arrays is important, because the

user program usually contains vast amounts of array data to be processed..

In a data flow computation model, an array value can be regarded as a sequence of

element values carried by tokens transmitted on a single data flow arc - as the array A

represented in Figure 1.3 (a). In Figure 1.3 (b), the four input arcs are presented with four

input arrays A, B, C, D, all are spread in time as in Figure 1.3 (a). Obviously, the sequences

of input array values can be pipelined through the data flow graph.

We can observe that each actor in Figure 1.3 (b) is effectively performing a vector

operation, e.g., actor 1 - vector addition, actor 2 - vector subtraction, etc, a total of seven

vector operations. However, unlike the vector operations usually supported in

conventional vector processors, there is no requirement that the activities of one such

vector operation be continuously processed by one or a group of dedicated function units

in the processor. The applicative nature of the data flow graph model allows flexible

scheduling of the execution of enabled actors in the pipeline. In fact, an ideal data flow

scheduler (with a sufficiently large data flow computer) will execute each actor as soon as

its input data become available. As a result, the activities of the seven vector operations

overlap each other, performing operations on different elements of different arrays
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Figure 1.3. Pipelining of array operations

concurrently. Therefore, massive parallelism of vector operations can be effectively

exploited by a data flow computer in a fine-grain manner: the scheduling of the physical

function units and other resources for sustaining such vector operations is totally

transparent to the user.

This pipelined principle of array operations can be further extended. The data flow

graph in the above example corresponds to the code block in the user program which

defines array X from array A, B, C, D. The core of each of the several benchmark

programs for scientific computation we have studied usually consists of multiple code

blocks, for example in the order of 10 - 100 code blocks. Each code block is defined by

No
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Figure 1.4. A group of code blocks

such a forall or for-construct expression [35,37,47,84].I A data flow graph corresponding to

a program or five code blocks is illustrated in Figure 1.4. There are three input arrays A, B,

C, and an output array Y. TI'here are also internal arrays Xl, X2, X3 and X4 defined by the

code blocks. We are particularly interested in the case where each code block is defined by

a forall or for-construct expression.

1.5.4 The Pragmatic Aspects of Compiler Construction

The issue in compiler construction for a static data flow supercomputer is to produce

machine code structures that keep the processing resources usefully busy and correctly

implement the computation specified in the source program. Using a functional language

such as Val, the detection of parallelism is straightforward; the absence of side effects

1. 'I'his includes the collection of several benchmark programs provided by the six groups of scientists in the
Workshop sponsored by NASA Research Institute of Advanced Computer Science [84].

(
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allows avoidance or the complexity of such analysis for many conventional programming

languages.

In contrast to conventional compilers, we are primarily concerned with both the

overall and the local structure of the code. The performance of major code blocks and the

effective communication between them are two key problems that a successful compiler for

a data flow computer must solve.

The attention of this thesis is focused on a pipelined code mapping strategy to

achieve the goal for high performance scientific computation. As will be outlined in the

next section, the thesis work is mostly devoted to the algorithmic aspects of mapping blocks

of code in the source program into pipelined data flow machine code structure, and the

optimization techniques which can effectively implement the communication between the

code blocks. The pipelined code mapping scheme developed in the thesis can serve as a

basis on which a practical compiler can be built.

Of course, there are many other important issues in the compiler construction which

are not covered in the thesis. However, the thesis will give a brief discussion on some of

these issues in Chapter 11. The preliminary structure of a compiler is outlined and the

pragmatic issues of implementation arc addressed.

1.6 The Scope and Synopsis of the Thesis

1.6.1 The Scope of the Thesis

As a basis, the first part of the thesis describes a static data flow graph model as an

operational model for concurrent computation, and presents the timing considerations for

the graph execution on an ideal static data flow computer. Based on such an execution

model, the notion of pipelining and its performance can be characterized. The thesis

discusses the principles and balancing techniques used to transform certain data flow

graphs into fully pipelined data flow graphs. In particular, the optimal balancing of an
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acyclic data low graph is foiwrmulated as a linear programming problem fior which an

optiUmal solution exists. As one Imajor result, the thesis shows that the optimal balancing

problem of acyclic data low graphs can be reduced to a particular class of' linear

programming problem i.e. the network flow problems for which well known efficient

algorithms exist. This result reverts a conjecture that such problem is computationally

hard.

The second part, the kernel of' the thesis, concentrates on the development of a

pipelined code mapping scheme for static data flow computers. The key is the pipelined

mapping of array operations in user programs. After the source language and object

language are introduced and defined, the basic pipelined code mapping scheme is

developed and formulated in an algorithmic fhshion. The optimization of array operations

is also presented in an algorithmic fashion. The major result in this part is to show that a

class of program blocks (expressible in forall or for-conlstruct expressions) can be

effectively mapped into pipelined data flow graphs. The mapping scheme can handle the

code blocks with conditional and nested structures firequently found in numerical

computation programs. Our technique emphasizes both global and local optimization, and

these two aspects are unified under the pipeline principle. The treatment of array

operations is unique in the sense that information about overall program structure can be

used to guide the code generation such that the massive parallelism of array operations can

be exploited in a fine-grain manner by the data flow architecture.

Although our presentation is centered on the formulation of the pipelined code

mapping scheme, it is also important that other related optimization techniques may be

combined to improve the performance of the result data flow graphs. In the second part of

this thesis, we include a short survey of several other optimization techniques which can be

used for this purpose.

The third part of the thesis addresses issues which are important for extensions of this

work. One important direction of further extension is the construction of a compiler based
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on the pipelined code mapping scheme. 'The reader may find a discussion of' the structure

of the user programs (the progrlam block graphs as shown in FigLure 1.4), and their relations

with pipelined mapping schemes for each code blocks in the first half of Chapter 11. In

particular, we outline the structure of a potential compiler which can incorporate the basic

principles developed in the thesis research. Much interesting work remains to be done in

this area, and our limited discussion suggests possible topics for further research. Another

aspect is the pragmatic impact of the pipelined code mapping scheme on the machine

architecture design. This is the topic of the second part of Chapter 11.

1.6.2 The Synopsis of the Thesis

Chapter 2 describes the static data flow computation model which is the basis of static

data flow architecture. It also discusses important aspects of pipelining data flow graphs,

including basic concepts and performance considerations. The highest computation rate is

achieved through the maximum pipelining of data flow graphs. Chapter 3 formulates the

balancing of a data flow graph as a !inear programming problem and discuss an algorithmic

approach to balancing techniques.

Chapters 4 through 9 are devoted to the development of basic pipelined code

mapping schemes. Chapter 4 specifies the representation of the source language. In

particular, it introduces PIPVAL - a subset of Val used as the source language to describe

the user programs to be mapped. The chapter introduces the major code blocks, i.e. array

creation expressions built using forall and for-construct language constructs. The mapping

of array operations organized in these code blocks are the focus of the thesis. Chapter 5

gives an overview of the basic code mapping scheme. It addresses the topic of array

representations used in pipelined code mapping schemes. It also introduces a static data

flow graph language - SDFGL as an object language for the code mapping scheme.

Chapter 6 presents the code mapping scheme for all expressions in PIPVAL except

expressions built from the two array creation constructs. Chapters 7 and 8 are devoted to
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the pipelined code mapping scheme of forall expressions. This includes the generation of

the data flow graphs as well as the optimization of array operations in them. Chapter 9

discusses the mapping scheme of for-construct expressions.

Chapter 10 is a survey of related optimization techniques which can be combined

with the basic code mapping schemes. Chapter 11 discusses considerations of program

structure and machine design to support the pipelined code mapping scheme. Important

pragmatic issues for compiler construction are addressed. It also suggests topics for future

research. The conclusions of the thesis are in Chapter 12.
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2. 'FiThe Statlic I)nlt Ilow Model

In Ithis chapter, we describe e the static dalla flow graph model as an operational model

k)r concurrent computation. This model has evolved fi1om a number of' graph operational

models lbr stldying concurrent conurrnt tation. Earlier models concentrated more on basic

theoretical aspects such as decidability ofr properties of concu rrent computations: deadlock,

nondetermninacy, equivalence of program graphs, and expressive power lbr parallelism

[7,59,85]. Later works were oriented toward operational models or practical programming

languages designed fior dat flow computers [19,24,25,91]. The static data flow graph model

that originated firom this research has provided the power to express most language Ifatures

found in high-level programming languages such as Val.

l'he goal of this thesis is to develop a pipelined program mapping scheme to

efficiently exploit the degree of concuri'rency achievable in the static data flow model. In

Section 2.1 we briefly present the static data flow graph model, outline the main fieatures of

an idealized static data flow computer as an implementation model, and introduce

terminologies and notations used in discussing the model and in the rest of the thesis. A

survey of other major data flow models can be fbund in [36]. In Section 2.2, we describe

the basic conccpt of pipelining of static data flow graphs, the timing considerations in their

execution, the concept of maximum pipelining and related performance issues, and finally

the balancing of data flow graphs.

2.1 Static Data Flow Graph Model

2.1.1 The Basic Model

The basic execution model of a static data flow computer is the static data flow graph
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model. As in most data flow models, a program module is represented by a directed graph.'

Nodes in the graph are also called (cwors. Associated with each actor are an ordlred set of

input arcs and an ordeCred set of outpll ares. The arcs specilfy paths over which data values

can bc transnlmittd.

Thle state of a computation is described by configurations and the firing rules

governing the transition between configurations. Data values are denoted by placing

tokens on the arcs. A conliguration is an assignment of tokens in the graph. One

configuration is advanced to another by firing of the actors. With the exception of a few

special aclors (i.e. the i'-gate, F-gate, switch and mnerge actors to be studied later) Ibr

implelcmnting conditional and iteration conlputations, the Iiring rules for static data Ilow

model are quite simple:

Regular F'iring Rule:

(1) an actor becomes enabled iff all its input arcs have

one token and all output arcs are empty;

(2) an enabled actor may fire and, once fired, removes

all tokens on its input arcs and places a token on each

of its output arcs.

In Figure 2.1, we show a static data flow graph and a succession of several possible

configurations for the following expression:

(a+ b)x(c-d)

1. A short summary of terminologies regarding the digraph and the model can be found at the end of this
chapter.
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Figure 2.1. A Static Data Flow Graph

Here we adopt an earlier notation convention that a token on an arc is represented by

the presence ofa solid disk. Labels are used to denote values carried by the tokens, and can

be omitted if irrelevant to our discussion. For simplicity, constant operands can be

subsumed into the nodes.

The firing of an actor involves the computation characterized by the particular

operation associated with the actor, and the result token has a new value defined by the set

of values of the input tokens. We assume the set of operations is rich enough to express the
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cotimputations we are inter'ested in, including arithmetic opertations, boolean OperationS,

relational operations, etc. An hicn/ily actor is a IIunury actor whichI, when lired, simlply

Ibrwarlds its input token to each of its output arcs. As a notationtal convention, the fuinmction

symbol ol tile operation to )be perfoirmed by an actor is directly written inside the actor,

except as otherwise noted.

In order to implement conditional and iteration expressions, we need T'-gate, F-gate

and merge actors which have special liring rules. We also include switch actors, although

their linction can be performed by using T'-gate and F-gate actors. A T-gate (F-gate) actor

has two input arcs: a data input arc and a control input arc which expects a token with a

boolean value. 'The firing rules Ibr a T-gate (F-gate) actor are:

Firing Rule for T-gate (F-gate) Actors

(1) A T-gate (F-gate) actor becomes enabled iff both

data and control input arcs have a token, and all

output arcs are empty;

(2) An enabled T-gate (F-gate) actor may fire; once

fired, it removes the tokens from both input arcs. It

forwards the data input token to each of its output

arcs if the control input token has a true (false) value;

otherwise the input data token is simply absorbed and

no output token is generated.

The graph notation for T-gate and F-gate actors and their firing rules is presented in

Figure 2.2. Note that we adopt the convention of representing control input arcs by open

arrowheads.

A merge actor has three input arcs: two data input arcs and one control input arc.

The two data inputs are labeled T and F respectively. A data input arc is selected by the
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Figure 2.2. Firing Rules for 'T-gate anrd F-gate actors

presence of a token on the control input arc with a boolean value matching the

corresponding label. Its firing rules are as follows:

Firing Rule for Merge Actors

(1) A merge actor becomes enabled if a token with a

boolean value is presented to its control input arc,

and a data token is presented to the selected input

arc, and all output arcs are empty;

-(2) An enabled merge actor may fire; once fired, it

removes the tokens on its control input arc and the

selected data input arc. A token carrying the selected

input data value is placed on each of its output arcs.

The graph notation for merge actors and their firing rule is presented in Figure 2.3.

A switch actor has two input arcs: a data input arc and a control input arc which
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Figure 2.3. Firing Rule for Merge Actors

expects a token with a boolean value. It has two output arcs labeled 'I' and F respectively.

The firing rules for switch actors are as fblilows:

Firing Rule for Switch Actors

(1) A switch actor becomes enabled iff both data and

control input arcs hold tokens, and all output arcs are

empty;

(2) An enabled switch actor may fire; once fired, it

removes the tokens from both input arcs. It forwards

the data input token to the output arc labeled T if the

control input token has a true value; otherwise the

input data token is forwarded to the output arc labeled

F.
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The grap)h foltionl Ior switch aCtors and their firing rules are presented in Figure 2.4.

Using a pair ol lT-gatle and F-gate actors, we can implement the role of classical switch

actors (see Figture 2.5).

Using the special actors, a data flow graph lr a conditional expression

if P(x) theln Ix,y) else g(x,y) endif

is shown in iigure 2.6. As long as the computation of p, r and g does not diverge, exactly

one token will cventtually be generated at the output arc of' the graph. Such a data flow

graph is called a condiional sa'ubgraph. The switch actor in Figure 2.6 can be replaced by a

X Y

Figure 2.6. A conditional subgraph
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paiir ofTl'-gate and F-gate actors according to Figure 2.5. Figulre 2.7 shows the static data

flow graph Ifor the iflolwing iterative expression which compiutes thie Ihctorial or n.

for i := , 0f:= I
do

if i > n then I'
else iter i := i+ 1, I:= I'*i cdIiter
enidi

endfor

Here the two merge actors initialize the loop value names at the First iteration and provide

Icsult

Figure 2.7. An iteration subgraph
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the redefined values in successive iterations. 'Ihe 'terminiltio() of the ileraltion is controlled

by the test i > n in each iteration. When the test yields the valCue 'T, thile iteration is

continued with the redefined values as the inputs to the next iteration. Otherwise, the

iteration will be terminated and a re :It token generated at tile output arc of' the bottom

merge actor. Such a graph is called an iteration subgraph. For each set of input values, an

iteration subgraph will generate exactly one set of' result values, unless the computation

diverges.

In this thesis, we only consider data now graphs that are vel//-behaved, i.e., have

exactly one set ofr result tokens generated at the outLput arc r)r each set or tokens presented

ati the input arcs [26]. In fract, the data flow graphs derived From expressions fround in most

user programs, including the conditional subgraphs and iteration subgraphs, are

well-behaved [26].

2.1.2 Determinancy and Functionality of Static Data Flow Graphs

Recall that the state of computation of a data flow program is defined in terms of its

configurations and that firing rules determine execution sequences corresponding to the

change of states in the computation process. In general, a well-behaved data flow graph

(with a certain initial configuration) may have many legal execution sequences. The

determinate property of the static data flow graph model guarantees that it is necessary to

examine only one execution sequence to derive the result of graph execution [82]. In terms

of the results produced by the computation, all execution sequences represent the "same"

computation. As we will see later, this determinate nature simplifies our study of

pipelining for data flow graphs.

The determinate property of the static data flow model ensures that input/output

behaviors are functional. There is no notion of locus of control, such as the notion of the

program counter in a conventional computer. The execution of an actor does not have

side-effects. All parallelism is faithfully represented in the static data flow graph
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mnodel-the only dependencies among actors are dat cldependencies. Thereifore, the static

dala flow graph is an ideall 1 Iodel l)r mapping applicative or lilnctional programmniing

langluages such as Val. It has been shown thla a static data flow graph generated f'rom l a

syntax-correct, Val program is )both determinate und live, i.e., a complete set of1 inputs will

eventually produce a Lllunique set o)l')outputs [79).

2.1.3 Static Data Flow Computers

In the static data Ilow graph model, only one token can occupy an arc. Thererore, an

actor can not become enabled unless all its outputL arcs are empty. Such a requirement can

be implemented by a dlata/acknowledgment mechanism in the instruction set design of

static data flow computers [35]. Actors in a static data flow graph correspond to

instructionls in the machine-level data flow program. Fach instruction (actor) has two types

ofoutput arcs: data arcs (also called result arcs) and acknowledgiment arcs (also called signal

arcs). Each arc in the classic data flow graph now becomes a pair ofarcs - a data arc and

an acknowledgment. arc. Figure 2.8 shows the data/acknowledgment arcs for the example
a 4

b

c

(I

)x(c + d)

4.

Figure 2.8. Acknowledgement Arcs

U
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in Figure 2.1 with the acknowledgment arcs drawn as dashed lines.' 'l'he condition lir

firing an instruction in the static data flow machine now demands that a signal token be

placed on each of the acknowledgment arcs, indicating that tile corresponding data arcs are

empty, i.e., the tokens placed on the corresponding datai arcs from the previous firing are

already consimnied. Furthermlore an actor, when fired, mtust signal its predecessor actors

that the input data tokens have been consumed by placing a signal token on the

appropriate acknowledgment arcs.

I)ata flow computer systems based on the static data flow model have been studied at

MIT and elsewhere. 'The organization of the processing units which handle enabled

instructions and initialize their execution has been described in [27,28,35]. T'he role,

analysis and structure of routing networks are described in [17,28,29]. 'l'he structure of data

flow processors and the interconnection networks for such machines are described in

several publications [17,32]. The architecture of a practical static data flow stlpercomputer

and its applications has been proposed in [28,31,35].

For the purpose of this thesis we adopt a simple, abstract model of a static data flow

computer. T'his idealized static data flow compuier can execute all enabled actors

independently. Stuch a computer, being an idealization of true static data flow computers,

can fully exploit potential parallelism in applicative programs. It has been used as machine

model to study the implementation issues of applicative languages in [6]. Later in this

chapter, we introduce assumptions regarding the timing behavior of" the idealized static

data flow computer.

1. Here we adopt the notation described in [35].
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2.1.4 Tlcriinologies and Notations

Since a static data Ilow graph is represented by a directed graph, or digraph, we will

use certain terminologies and notations firom graph theory. This section serves as a brief

SL1111 nlairy.

Let G = (YVl) be a digraph where V is a set of1 nodes and E is a set of edges. Unless

otherwise stated, both Vand E are assumed to be finite. In this case we say that G is finite.

Members of V and E are also called verlices and arcs respectively. Itr G represents a data

flow graph. members o' V and ,'can also be called actors and links. These terms will be

used interchangeably throLighout the thesis.

Each edge e C; E is associated with an ordered pair or vertices (u,v). We sometimes

write this as c = (u. v), or u -+ v, or simply as eCv.When u --+ v, we say e is directedfrom u

to v, and u,v are called the start tnode (tail) and end node (head) respectively. Furthermore,

we call e an input edge of node v and an output edge of node u, and we also say v is adjacent

to u.

The indegree of a node is the number of its input edges, and the outdegree is that of

its output edges. A node is multi-input (or multi-oulpul), if its indegree (or outdegree) is

greater than one. The set of input edges of a node is called its input edge list and the set of

output edges of a node is its output edge list. A graph is called a one-in-one-out graph if

both its indegree and outdegree are equal to one.

A path p is a sequence of edges (el, e2 ... ek) such that the end node of ei is the start

node of ei+ 1 (1-< i < k); the start node of el is called the initial node of p and the end node

of ek the terminal node of p. The length of the path is k. Also, a node v is reachable from u

if there is a path p from u to v, denoted by u ýp v. A path is simple if all edges and all

nodes on the path, except possibly the initial and terminal nodes, are distinct. A path is a

chain if the indegree and outdegree of each node equals one except the initial node and the

terminal node.

A graph in which a number, say w i, is associated with every edge (ij) in the graph is
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called a weighled graph and the number wiij is called the weight of the edge. 'J1'e cost or a

path is the suni of" the weights of the edges in the plath.

A cycle is a simple path with a length of1 at least one which begins and ends at the

same node. A digraph is acyclic if' it does not have cycles.

'Ilhroughout this thesis, we use I V and 1:'1, respectively, to denote the number of'

nodes and the number of'edges in the graph G = (V.,E).

2.2 Pipelining of Data Flow Programs

T'he concept of pipelined computation as a major technique to achieve concurrency

has been uised in diverse ways in computer architecture and organization. It certainly can

be used in various levels of the design for a data flow computer as well. In this thesis, we

do not attempt to address the broad spectrum of problems regarding pipelining. Instead,

we concentrate on the pipelining of static data flow graphs. Such pipelining is a very

effective way to organize parallel computation on a static data flow machine. In this

section, we introduce the basic concepts for such pipelining and establish important criteria

for its performance.

In Section 2.2.1 we first illustrate the basic concepts of pipelining in the static data

flow model through some examples. In Section 2.2.2, we discuss timing considerations

during program execution of the static data flow graph model. The important notion of

maximum pipelining is introduced in Section 2.2.3. in Section 2.2.4, we introduce the

notion of a balanced data flow graph.

2.2.1 Basic Concepts of Pipelining

Pipelining is a well-known approach in the design of conventional computers to

exploit parallelism. The general approach of pipelining is to split a function into basic

operations and allocate separate hardware to each basic operation. These range from

components of arithmetic operations to the producer-consumer computation by CPU and
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I/O processors. In a real computer system a basic operation at one level of" pipelining may

itsel" be pipelined at another level.

In this thesis, we are interested in the pipelining of data flow graphs as a model ofr

machine-level programs lbr a static data flow computer.' For our purposes, a basic

operation of the pipeline is a data flow actor in the graph. Successive operands are

pipelined through actors or the graph. The goal is to structure the data flow graph in such a

way that many actors in various parts of the graph may be executed concurrently. This

provides an elTective way to exploit parallelism in user programs.

The example illustrated in Figure 2.9 (a) is a three-stage pipeline made o" fIbur actors.

When tokens arrive at a and b, actor I at stage 1 fires and sends results to actors 2 and 3.

Once actors 2 and 3 at stage 2 fire and acknowledge receipt of their operands, actor 4 at

stage 3 may fire, and actor 1 may fire again on new data, as indicated by the two sets of"

tokens in Figure 2.9 (b). Thuts data tokens may flow continuously through the three-stage

pipe. Each stage is kept busy processing units of data, one after another, as they flow

through successive stages of the pipeline. Thus the computation rate of a pipeline is not

dependent on the number of stages, but is determined by the processing rate of one stage.

In a typical scientific program, the machine code may be organized as a huge

pipeline, perhaps hundreds of actors long and wide. If successive values of long vectors can

be pipelined through the pipeline, there may be many thousands of actors in hundreds of

stages in concurrent operation. The potential parallelism of such "two-dimensional"

concurrent execution in a properly structured data flow program is enormous.

1. From now on, tdie terms data flow program and data flow graph are used intcrchangeably in our
discussion when no confusion may occur.



-44-

2

(a)

2

(b)

Figure 2.9. An Example of Pipelining

2.2.2 Timing Considerations

The nature of program execution on a data flow computer is asynchronous - there is

no centralized control mechanism to schedule the firing of the instructions. To study

performance, however, it is convenient to associate timing parameters with the static data

flow graph model. In this section, we introduce two major assumptions about the idealized

static data flow machine introduced earlier.

Let us consider the time needed to fire an actor in the graph. The firing of an actor

includes the time needed to perform the operation specified by the actor on the operand

tokens presented on its input arcs; to generate the result tokens and place them on its
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output tiarcs; and to signal the emptiness,, or the input arcs such that it is ready to accept a

new set or input tokens. Rectall that an idealized static data flow computer can fire all

enabled actors independently. The following is our first assumption.

Assumption I (A-2.1). The firing of any enabled actor can be

completed within a constant time r, where T is a parameter of the

idealized data flow machine.

Assumption (A-2.1) limits execution time (bfor any actor in a graph. 7The time interval

7 is an important performance measure of the machine. In a real machine, the firing time

may not be a constant for actors of dilfierent types. It may even vary for the actors o 'same

type as the processing load on the machine changes. For our purposes however, we ignore

such factors and assume 7r is a constant, called the basic cycle lime (or for short, cycle time).

We use a clock with cycle time r as the timing reference for computations by data nflow

programs. We also assume, without loss of generality, that the tiring of any enabled actor

may only happen at the beginning of a clock cycle. This assumption gives the execution of

data flow programs a somewhat "synchronous" behavior, which facilitatcs the study of

their pipelined execution.

In a data flow program, many actors may become enabled at the same time. An

important performance criteria of the machine is how long the firing of an enabled actor

may be delayed. Let t0,t2...ti... be the starting points of a sequence of machine cycle with ti -

ti- 1 = - for all i) 0. According to assumption (A-2.1), any enabled actor that starts firing at

ti-. will complete the execution before ti. As a result of the firing, some other actors may

become enabled during the time from ti. 1 to ti. We assume that the machine will not fire

those newly enabled actors until all the actors currently being fired finish their execution;

as soon as that happens, the newly enabled actors should be fired without further delay.

Therefore, we-have the following assumption.
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Assumplion 2 (A-2.2). All actors enabled during the interval ti.- to ti
will start to fire at ti for all i>O.

An immediate consequence of (A-2.2) is that an enabled actor X cannot start to lire

belbre the firing of any actor enabled earlier than X. However, this does not exclude the

possibility that they may start to fire at the same time. 'lliis guarantees that the machine is

fIair in the sense that no actor can be fired twice in a row unless all actors enabled in

between start to fire.'

Bot-h assumptions (A-2.1) and (A-2.2) require that the machine architecture have

enough parallelism to process multiple enabled actors in a graph simultaneously. The two

assumptions are related to each other in an interesting way. In a real machine with finite

parallelism, it is reasonable to expect some delay between the time an actor is enabled and

the time it is actually fired. On the other hand, we certainly would not waint the machine to

repeatedly fire somen fraction of the actors without firing the enabled actors in the rest of

the program. Assumption (A-2.2) suggests that every actor may experience some delay but

that the maximum delay is bounded by a basic cycle time of the machine. By delaying

certain enabled actors, machine resources may be devoted to the actors presently being

fired, thus reasonably limiting the cycle time ,r as specified in (A-2.1).

2.2.3 Throughput of Pipelining Data Flow Programs

Based on the timing of the machine, we can characterize the performance for

pipelined execution of data flow programs. Let us consider the data flow graph shown in

Figure 2.10. We assume that the input node s of the graph G is driven by an input source

which can generate a stream of input tokens as fast as the pipeline can use them.

Furthermore, the output node t of the graph G is connected to a sink which can absorb

1. A practical implementation of fair-firing mechanisms is discussed by the author in [45].
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the rest or

(a) beIo're the run with rcspect to c

the rest of

G

(b) after the run

Figure 2.10. One run of a data flow graph

tokens as fast as the pipeline can generate them. Such a source (or sink) is called a perfect

source (sink). If all inputs and outputs are connected to perfect sources and sinks, the

pipeline is said to be under a maximum loading condition. Note that the perfect sources

(sinks) may themselves be implemented by data flow graphs.

Figure 2.10 (a) shows an initial configuration where an input token c is presented at

the input arc of G. Assume the computation starts at t0. After a finite number of cycle

times we should expect a result token b coming out from G as in the configuration shown
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in Figure 2.10 (b). ''he sequence of' firing of the actors in G causedl by the input token c is

called one rn ol' G with respect to c.

In Chapters 2 and 3 (except Section 3.6), we restrict our attention to a1 very simple

class of data flow graphs. This can simplit• the discussion of the liundamental issues and

techniques for achieving maximum pipelining. Two main features of this class of graphs

are (1) the graphs are acyclic; and (2) the graphs contain no special actors, such as

'T-gate,F-gate, switch or merge actors. The first assumption excludes data dependencies

between different runs. The second assumption provides a simple environment to faicilitate

the development or our framework. It follows directly that any single run o' such a graph

will cause the firing of each actor in the graph exactly once. This imptles that all runs of the

same static pipeline have the same pattern of actor usage regardless of the value carried by

the token which activates a particular run. We should note, however, that the second

assumption is not essential to our results and we will extend the result to more general cases

with special operators arranged in conditional subgraphs (see the end of Chapter 3). In the

rest of this chapter and Chapter 3, unless otherwise stated, the term data flow graphs refers

to graphs from this simplified class.

Now let us consider the case when a sequence of input tokens c1,c2,c3... arrives at the

input of G. At time to, the first run with respect to c, is activated. The second run with

respect to c2 can start as soon as the result tokens on each output arc of I (I is the set of

input nodes) generated during the first run are consumed by their corresponding successor

actors. [The same is true for the successive runs with respectively to c3,c4 ,..., etc., alid a

sequence of result tokens is produced at the output arc of t. The concurrent execution of

several runs of a data flow graph such as G is called the pipelining of G, and G itself is

sometimes called a pipeline.

The performance of a pipeline is measured by the aclivation rate of successive runs,

i.e., the rate at which input tokens can be consumed. Another key parameter in

determining performance is latency, or the numbei of cycle times separating two
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consecutive activations of the pipeline. Obviously, two cycle times are the minimum

latency.' I ra pipeline can run with an activation rate or l/27, the execution or the graph is

maximna/ly (Jidly) pipe/ined, or simply, the graph is maxinlally (fully) pipelined. The

simplest example which can run in a maximally pipelined lfishion is a chain or actors each

obeying the regular firing rule. 'l'he performance or pipelining a data flow graph is often

characterized by its lthroughput, i.e., the rate at which output tokens are generated when

driven by a sequence of input tokens. Obviously, the maxinma/l pipelined throughput for

any graph is also 1/2r.

Real pipelines are usually more complex. Some actors in the graph may not obey

regular firing rules. T'he presence or special actors may result in very different patterns of

actor usage, for given runs with difll'rent input tokens. '[here may be cycles in the graph

which imply dependencies between different ruins, and thus may place constraints on the

activation rate of the pipeline. 'Ihese complications will be addressed in the later chapters.

2.3 Balancing of Data Flow Graphs

In general, a data flow graph may not be maximally pipelined, as illustrated by the

example in Figure 2.11. Figure 2.11 (a) - (d) presents configurations during the first four

cycle times of the computation, and it becomes apparent that the activation rate of this

pipeline can not be higher than 1/47. Since the types of operations associated with actors

do not affect the throughput of the data flow graph under our assumptions, we can omit

them friom the graph. Instead, we use an X inside the actor to indicate that it is enabled in

the configuration shown.

A key notion closely related to the study of maximum pipelining is introduced in the

following definition.

1. One cycle time for an actor to fire. and one cycle time for the predecessor and successor actors to fire and
provide necessary inputs or signals [35].
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(a) time tO (b) time tl

(c) Time t2 (d) Time t3

(e) Time t4

IFigure 2.11. A data flow graph with Maximum Throughput of 1/4'-

Definition Let G be a one-in-one-out static pipeline. Let s be the input actor

and v be an arbitrary actor of G other that s. If the lengths of any two distinct paths

from s to v are equal, thso G is called a balanced graph.

Every path from an input node to an output node through a balanced graph must

contain the exact same number of actors. An apparent consequence is that a balanced

graph can run in a maximally pipelined fashion [79,43]. Figure 2.12 shows a balanced
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F'II:O of sizc 2

Figure 2.12. A balanced data flow graph

graph for Figure 2.11 where a FIFO made of two identity actors is introduced on the short

path. It is easy to see that the graph can be maximally pipelined. Let us state this result as

a theorem.

Theorem 2.1 A balanced data flow graph is maximally pipelined.

Before we prove Theorem 2.1, let us note some important facts about a balanced

graph. Let G = { V,E) be a balanced one-in-one-out graph with input actor s and output

actor t. Since G is balanced, any path p between s and a node v C V has the same length

(say j, where j is an integer and j 2 0.). We can uniquely label the actors by an integer

function L: V--. Z such that L(v) = j, where j is the path length from s to v. Now Vcan be

partitioned into mutually exclusive and collectively exhaustive sets of nodes, or stages of

nodes V0, VI... Vm such that V = {v I where L(v) = j}. Note L(s)=O, L(i)= m, where we

assume m is the length of each path from s to I. Obviously we have:
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(1) Vo = s):

(2) ir node u c V and there is an edge ce = (u,v) in E, then v c je +;

(3) Vm = {I .

We can also partition E into mutually exclusive and collectively exhaustive sets of

edges (also called stages or edges) EI...Em such that E. = ((u, v) I u c V1., v c V ). For

convenience, we include the input edge to s (es) and the output edge from i (et) in the sets

ofedges by introducing .0 and 'i+1, where E0 = IesJ, E,,,+ = {ett.

r f

{eOl

(el, e2}

{e3, e4, e5, e6, e7l

fe8,e9,elO, ell, e12J

(e13,e14,elS}

{e16l

VO = [sl
VI = [a,b/

V2 = [c,d, el

V3 = fg,hI

V4 = [td

Figure 2.13. Stage Partitioning of a Balanced Pipeline

EO=

EI =

E2 =

E3 =

E4 =

E5 =
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An example of the stage partitioning is illustrated in Figure 2.13 which is a pipeline

with 9 nodes partitioned into 5 stages.

Based on such partitioning, the proof or'heorem 2.1 is straightrorward.

Proof of Theoremt 2. I

Assume that, at time to (i.e. the beginning of the first cycle time), a token co is presented at

the input arc of s, e,. Assume also that all arcs of G are initially empty and the computation

starts at to. From the machine timing assumptions (A-2.1) and (A-2.2), we immediately

have the following observations: at time ti (0 < i < m) one token is presented at each arc in

E and all other arcs are empty. Hence during cycle time ri ll actors in stage i are enabled

and fired, and no actors in other stages are enabled. The above observation can also be

phrased as that a run can be advanced at its maximum speed (one stage or nodes per cycle

time) under the condition that it is no blocked. The initial emptiness of the pipe is certainly

a sufficient condition.

Recall that the the input of G is connected to a perfect source. Since the input arc es

is empty at time t I, a second token c, can be presented to the input at t2. Obviously, since

the first run (initiated by c0) is advanced in its maximum rate, it will not block the second

run at all. Thus, the second run can also be advanced in its maximum rate. Similarly, a

new token c2 can be presented to the input arc at t4, etc. Therefore, the graph G can run in

a maximally pipelined Fashion. 3.

As a remark, we note that the proof is entirely based on the partition presented

earlier. This is the point where the fact that the graph must be balanced plays a key role.
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2.4 P;agmatic Issues in Machine Model and Balancing

Let us briefly comment on the relation between the machine model and the data 1ow

graph balancing considerations.

As we outlined in this section, we use an ideal static data flow machine as our

machine model. The timing behavior of program execution on such a machine model is

characterized by the timing assumptions (A-2.1) and (A-2.2). Under such conditions, the

machine supports optimal performance of a balanced data flow graph running in a

maximally pipelined fashion. The rest of the thesis will assume such a machine model is

being used.

What will be the effect if, in a real machine, we consider the variation of the

execution time for differcnt types of instructions, or even the same type of instructions due

to different communication delay? Our timing assumptions may still bi valid if we allow

the cycle time 'r of(A-2.1) be considered as a bound on the firing time of all instructions.

The bound should be chosen such that it can absorb not only the time difference in firing

different types of instructions but also the time variations due to the machine computation

and-communication load.

What effect may occur if the machine has only limited parallelism? An immediate

consequence is that some enabled actors may experience some delay for their firing,

because the machine does not have enough computational resources. However, the

assumption (A-2.2) can certainly tolerate such variations because, as long as the machine

supports a "fair" firing mechanism, it is reasonable to add an average delay to the cycle

time r.

With the execution time variation of each instruction, it is sometime helpful to

consider the effect of balancing from a slightly different perspective. When a static data

flow graph is balanced and executed in a maximally pipelined fashion, the density of

enabled instructions also achieves its maximum. In other words, balancing is a way to

maximize the quantity of parallel activities in program execution. If the machine has
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sufficient power of parallel processing, this also means that the pipclined execution of a

balanced graph may maximally exploit the parallelism in the program.

In reality, a machine may only have limited parallelism. The introduction of FIFO

actors in the graph will certainly increase the total number of executable actors. Therefore,

efficient implementation of FIFOs becomes an important factor in achieving desired

performance oF a data flow program. A discussion of machine implementation of FIFOs is

included in Chapter 11.
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3. Algorithmic Aspects of Pipeline li:nincing

Pipelining of data Ilow programns is a very attractive way to organize computlations on

static data flow conpuLters to efllctively exploit parallelism in programs. In order to

achieve maximally pipelined throughput, a data flow graph must be balanced. ''lhe basic

technique is to transfornm an unbalanced data flow graph into a balanced graph by

introducing FIFO buffwIrs on certain arcs. For the piurpose of this discussion, a FIFO of

size k is equivalent to a chain of k identity actors.1 The procedure to perform such

transformations is called balancing the data flow graph.

An example of balancing is illustrated in Figure 3.1. Figure 3.1 (a) shows an

Iunlbalanced graph withll eight nodes. Figure 3.1 (b) is the result graph alter balancing the

graph ill Figure 3.1 (a). Two FIFO bufll'ers, with size two and three respectively, are

introduced on arcs (ft) and (e,t) as shown in Figure 3.1 (b). Each bul'lfr is denoted by a

box with a number denoting the size of the buffer. In this case, the total size ol buff.hering

introduced for balancing is five.

In general, there may be more than one balanced version ofa data flow graph. For

example, Figure 3.1 (c) presents another balanced graph for Figure 3.1 (a). However, the

total amount of buffering in Figure 3.1 (c) is three, a considerable savings compared with

what is needed in Figure 3.1 (b). Since the minimum amount of buffering needed to

balance the original pipeline is three, Figure 3.1 (c) is an optimal solution. In general, we

have the Following definition.

Definition Let G'be a balanced graph for G. If G'uses the least amount of buffering

among all balanced graphs of G, then G is called an optimal balanced graph of G. A

balancing procedure to transform a data flow graph into an optimall .alanced data

1. There are other ways to implement FIFO buffers [35]. We will defer a discussion of these different
implementations until Chapter I1.
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Figure 3.1. An Example of Balancing

flow graph is called optimal balancing procedure.

In organizing data flow programs for maximum pipelining, an efficient algorithmic

procedure for optimal balancing is important. Earlier work to find such an algorithm can

be found in [43,79]. In applications where a data flow program may consist of hundreds of



-58 -

inlstctruio()ns, any feasible solution to optimi/ation inist rely upon computer progralls. A

conjecture was made in [431 that such optimization is not coml)utatioll nally tractable, and

hence makes impractical the constrtuction or a compiler which can peroirm automatic

optimal balancing oil data low programns. iFortunately, this conjecture is not true. In this

chapter, we show how techniques from linear programming can be applied to solve optimal

balancing problems.

In Section 3. 1, we introduce the concept or weighted data flow graph which racilitates

our later discussion. In Section 3.2, we briefly review the previous related work in

balancing techniques using graph-thcoretic terms, identilfy probllems in the approach, and

suggest a new solution. By doing so, we not only simplify the IforlLInlationl of our major

results, Ibut also get a better insight or the balancing problems which is important lbr the

discussion in the succeeding sections. In Section 3.3 and 3.4 we present a dlifl'rent

formulation of balancing and optimizing problems n from our previous work. As an

important result, we show that these problems are equivalent to a class of linear

programming problems. This class can be reduced to a class of known network flow

programming problems which have practical algorithmic solutions. Hence, the

construction of an automatic program to perform such optimization is computationally

tractable. In Section 3.5, we discuss the extension of the balancing techniques to a broader

class of data flow graphs.

3.1 Weighied data flow graphs

in the discussion of balancing problems using graph-theoretic terms, it is often

convenient to use what is known as a weighied dataflow graph. A weighted data flow graph

G = (V,E) is a weighted directed graph where each node in V represents an actor, and each

arc e = (u.v) in E, weighted by wu,V, denotes that a chain of length wu, exists between

node u and v (see the definition of a chain in Chapter 2). Obviously, all weights must be

positive integers.
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Figure 3.2. A weighted data flow graph

For example, Figure 3.2 shows two weighted graphs, where a weight k is written next

to each arc to denote a chain of length k. We note that all arcs in Figure 3.2 have weight 1.

We also allow weighted arcs with a weight greater than 1. For example, a chain of m nodes

can be replaced by an arc which has a weight equal to the sum of the weights of those arcs.

Figure 3.2 (b) shows a weighted graph which is equivalent to (a), with each chain of nodes

replaced by an arc with proper weight. 'The notion of balancing and optimizing can be

extended naturally to a weighted graph.
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3.2 Related Work on Balancing Techniques

3.2.1 Ballancing 'l'ech n1iques

Balancing a data Ilow graph requires determining the set o l'arcs where H FO btlff'lrs

should be introduced and computing the size of each buflfr. I.et G = (V,I:) be a

one-in-one-out weighted data flow graph with an input node s and an output node i. I.et v

be an arbitrary node. The balancing techniques presented in [43] and other related work

[79] are essentially based on the following observation:

Observation 3.1. Since the cost of the longest path from s to

any node v cannot be reduced further, one should introduce

buffers on all other paths from s to v to make their costs equal

to that of the longest path.

An important step in these balancing algorithms is to identity, the longest path from s

to v for each v in V. Mathematically, this is equivalent to computing a nmax-cos ifinction L

: V -- Z(Z is the set of non-negative integers), where L(v) is the cost of longest path from s

to v for any v C V. Once this step is done, we may take a sholtcut to determine the location

and size of each FIFO buffer to be introduced. The key to the shortcut is to not alter the

cost of longest path firom s to any node v in V. Or, to state it mathematically, we observe

the following invariant:

Max-cost Invariant : Let G' be a balanced graph of G as a result

of applying some balancing procedure. Let L and L' be the

max-cost functions in G and G' respectively. Then for any

node v, L(v) = L(v) should hold.

The decision to keep such an invariant results in a very simple balancing algorithm.
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In iact, both Ithe locations and sizes of the FIFO bufllfers can be determined immediately

from the max-cost flunction of' the pipeline. An algorithm for balancing a one-in-one-out

data Ilow graph is presented below:

Algorithim 3.1. A Balancing algorithm for One-in-one-out Data Flow

Graphs.

hiput: An one-in-one-out weighted data flow graph G = (V,L) with

input node sand output node t

Output: A balanced graph G'.

Steps:

Step 1: Compu)te the mIlX-Cost function L , r G

Step 2: For each arc e=(u,v) in E construct a buffer of size L(v) -

L(u) and insert the buffer on e.

Step 3: Return the result graph.

Step 1 is equivalent to the problem of finding the longest paths from a source node to

all other nodes in an acyclic directed graph. This can be accomplished efficiently using

some known graph-theoretic algorithms. For example, the Dijakstra algorithm bor finding

the shortest paths from a source node to all other nodes [8,40] can easily be modilied to

compute the above single source longest path problem. In the following we briefly outline

such a solution.

Since the graph is acyclic, we can proceed by first performing a topological sort [65] of

the node in G. We determine a labeling of the nodes in V with integers 1,2,..n (where n =

I VI) such that if there is an arc (ij), then i < j. The graph in Figure 3.3 is topologically

sorted. Note that s and I are labeled by 1 and n respectively. Recall from graph theory that

a digraph can be topologically sorted if it is an acyclic graph. Therefore, this step of

topological sorting can detect if the graph to be balanced is indeed acyclic. Since the

balancing algorithm to be presented only applies to acyclic graphs, the benefit of including
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Figure 3.3. A TI'oplogically Sorted (;raph

such a step is obvious.

Once the nodes in G are topologically sorted, the construction of* an algorithm to

conmpuLte the max-cost flunction L becomes straightforward. Clearly, L(s) = 0. Node 2 can

only be reached from node 1, and therefore

L(2) = L(1) + wl, 2.

Node 3 can only possibly reached from node 1 and 2, hence

L(3) = max( L(1)+ wl,3, L(2)+w 2.3}

Similarly, the general expression to compute L(k) can be written as

L(k) = max{ L(i)+ wi,k} for all i< k

Based on-the above observation, construction of an algorithm for computing the

max-cost function is straightforward. If we use the adjacency list data structure, the time

complexity of such an algorithm is O(1VIIEJY. For the graphs we are interested in, the

indegree of any node are bounded by a small constant. thus we can use O(11M) to represent

O(JIE). Thus, the time complexity of computing the max-cost function is O(1 V12).

Now let us study the time complexity of Algorithm 3.1. The time for Step 1 is O(1 112)

as in the above analysis. Step 2 is executed for each arc in E. Therefore, the time
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Complexity or the entire balancing algorithml is O(1 V12).

3.2.2 Relation between Balalncing anid Oplimizaltion

One philosophy regalrding optimization is to sepa rate the optimal balancing

procedure into two phases: (I) peIrorm balancing using an algorithm similar to that ot

Algorithm 3.1; (2) rearrange the buffering to achieve an optimal bultfer configuration.

However, the solution to the second part of the problem has not been successlll, as was

indicated by the conjecture mentioned at tile beginning of this chapter.

l.et us use two examples to illustralte the problems encoLintered in applying such all

optimlal balancing strategy. 'The first example is a weighted one-in-one-out graph as shown

in Figure 3.4 (0). Thle first step is to apply Algorithm 3.1 to derive a balanced graph as

shown in Figure 3.4 (b). 'Iwo bulfers of size 10 and 15 are introduced on arc (3,5) and

(4,5), so the total buLifring is 25. The label written inside each node is the number derived

from the topological sorting. We can easily observe that the graph in Figure 3.4 (b) is not

optimally balanced. Figure 3.4 (c) shows an optimally balanced graph for G which uses

only a buffering of 15. Through optimizing, the amount of buffering is reduced by 40%.

Another optimizing procedure is to perform a transformation which propagates some

bufflring back through nodes which have a larger outdegree than indegree [43]. Such a

transformation will usually produce a graph that uses less buffering. For example, in

Figure 3.4, we can propagate back a buffering of size 10 through node 2, reaching the

solution in FiguLre 3.4 (c).

However, it is very difficult to predict the effect of propagating some buffers back

through a node which has a smaller indegree than outdegree. Let us look at the example in

Figure 3.5 (a) which is similar to Figure 3.4 (a) except that it has one more arc from node 3

to 4. Applying Algorithm 3.1, we derive the balanced graph in Figure 3.5 (b) with 3 buffers

introduced on arcs (2,4), (3,5) and (4,5) respectively. At this point it becomes tricky to use

the scheme outlined above to perform optimizing. For example, node 4 has an indegree of
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(a) (b) (c)

Figure 3.4. An Example of Applying Algorithm 4.1

1 and an outdegree of 2. It is difficult to envision any benefit in propagating buffers from

its output arcs back to its input arcs. Assume that we have propagated a buffer of size 10

back through node 4 and reached the graph in Figure 3.5 (c). It appears that the graph in

Figure 3.5 (c) is less desirable then that in Figure 3.5 (b), since the total buffering has

increased by 10. However, from Figure 3.5 (c) we can propagate a buffer of size 10 on arcs

20 2( 20

I
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(a) (b) (c) (d)

Figure 3.5. Problems in Classical Balancing Approach

(3,5) and (3,4) back through node 3, which can be further propagated back through node 2

together with a buffer of the same size from arc (2,4). This leads us to the configuration in

Figure 3.5 (d). We observe that Figure 3.5 (d) is an optimally balanced graph with a total

buffering of 15.

The above example indicates that optimal balancing is a global optimization process;

2( lo
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hence it is difficult to determine the eflfect of moving bulf•ers around based only oni local

information iabout a pfarticular node. In order to lind a better solution, let Lus examine the

decisions made in the Max-cost Invariant blased ()n Observation 3.1. Step 2 in Algorithm

3.1 is a direct consequence of such a decision. Since the cost of the longest path rrom s to

any node can not be changed, buffellrs are always introduced on the input arcs of'

multi-inpuLt nodes, i.e., on the last arcs of any paths which need them. Although this

decision makes the balancing algorithm simple, it is somewhat arbitrary in terms of

optimization. For the example in Figure 3.5, we must violate this decision in order to

achieve optimization. lhis raises the question: is the max-cost invariant essential to the

balancing process? In the rest of this chapter, we will answer this question.

3.3 A Linear Programming Formulation of the Optimization Problem

T'he examples presented in the last section clearly show the weakness of the optimal

balancing approach proposed in [43]. In this section, we take a very different approach to

attack the problem. Instead of separating the optimal balancing strictly into two phases, we

view the entire analysis as one combinatorial optimization problem. We do not rely up%1n

ad hoc decisions such as the Max-cost Invariant requirement. Instead our decision process

is based on the set of constraints imposed by the structure of the graph itself. Both the

locations and sizes of buffers are computed under the same theoretical frame work. In fact,

tinder the new scheme we can transform an optimization problem into a particular class of

combinatorial optimization problem known to have efficient solutions.

Let us first introduce a mathematical formulation of an optimnal balancing problem.

Let G = I V,Ej be a weighted data flow graph for which we have computed the max-cost

function L, using the algorithm outlined in the last section. The nodes in V are numbered

(according to the topological sort) by integers 1,2...n, where n = VIY with s numbered by 1.

We assume that G is balanced by some process; hence the cost of any path from s to a node

v in V has a unique value. In mathematical terms, we can define a labeling function f for a
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balanced grilaph which associates each node in V with an integer value, i.e., f: V -Z, , where

Z is the set ofr integers. As a convention, we ue ui to denote (i), i.e., Lli = J(i) Ir all nodes

i where I < i < n. We can interpret u - as the delay ol the firing of( node i with respect to

node I (i.e., node s) fibr na particullar run.

u4:19u4:9

(al) (b) (c)

Figure 3.6. Delay Changes due to Buffer Moving

19



- 68.

Figure 3.7. 'The Earliest anl ILatest Firing Tlimes

D)ifierent balanced graphs may correspond to dilTerent labeling liunctions. For

example, the Max-cost Invariant implies a labeling fLinction such that ui-u1 = L(i) For all

nodes i. In other words, it requires that each node i in the graph be fired at the earliest

possible time (called the earliesi firing time) determined by L(i). However, since the graph

is one-in-one-out only the total delay from s to I is important. To ensure that such delay

does not increase, none of the nodes on the longest path from s to t can have a time delay

longer than the minimum delay. However, for nodes not on this path, the time delay may

be allowed to slip to a certain extent. T Tis gives us some freedom to adjust the buffer

configuration in a graph for optimization purposes. Increasing or decreasing buffers on an

arc can cause corresponding changes in time delay in the firing of some nodes on the graph.

Figure 3.6 shows such delay changes due to buffer adjustment of Figure 3.4. Figure 3.6 (a)

shows the values of ui or the balanced pipeline in the result graph of Algorithm 3.1.

Propagating a buffer of size 10 back through node 4 is equivalent to changing (by 10) the

delay of firing time for node 4. Thus we have a new labeling function as illustrated in

Figure 3.6 (b), where u4 has changed from 9 to 19. After further moving the buffers back

through nodes 3 and 2, u3 and u2 have be'en changed from 5 and 1 to 15 and 11
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respectively. 'Tlhe result graph is shown in Figure 3.6 (c).

We shOLuld note that the adCljstInent of the labeling fIlinclion Calnn)ot proceed without

constraints. For example, in Figure 3.6 the time delay ol node 4 can not exceed 19;

otherwise the total delay fromn the input node I to the output node 5 will exceed 20. In ract,

the m1aximuml time delay of any node i is related to the cost of longest path Irom i to t. To

compute stlch cost, let us reverse the direction of every edge in G, and name the result

graph G . G is a one-in-one-out graph with node /n as its input node and node 1 as its

output node. The nodes in G are still topologically sorted, but the order is reversed, n,

n-1...2,1. Let I, denote the niax-cost function in G , i.e., L (i) denotes the cost of the

longest path irnom node i to node n in G . h'le lai'es firing lime for node i can be expressed

by L(n)-L. (i). Figure 3.7 shows (lie values or both L(i) anT L (i) for each node i, together

with its latest firing time.

We have just seen that ui is constrained by both L(i) and L . We can directly relate

the constraints for ui to the weights of each arc in the original graph. Recall that, in any

balanced graph, the size of buffer bi, to be introduced on arc (ij) is (ij uj) -u ij- wij ere ij

is the weight of arc (ij) in the original graph. Since all buffers should have nonnegative

size, we have bij  0 for all arcs (i,j). Therefore, the following set of linear inequalities

should hold:

LIj - i > wij.  for all arcs (i,)

We also add another constraint so that no extra delay firom input to output is

introduced:

Un -ut = Ws.t where ws.t = L(1)

Let us denote the total amount of buffering in G by B which can be computed by the

summation of the sizes of the buffers introduced on each individual arc. Thus we have:

B = X(uj- ui - wij)
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= li(indegrec(i)-oultdegree(i))+ +wi. j  (3.1)

Since Xwij is a conslant, minimizing If is equivalent to minimizing

X. i(indegree(i)-ou tdegrec(i) ), or to maximizing Xui(oulcdegree(i)-indegree(i)). We also

note that (outdegree(i)-indegree(i)) is a constant Ibr each node i, determined solely by the

structure of G. Hence (3.1) is a linear combination of Ui. 'hLIus, optimal balancing or the

graph G can have the Following linear programming ornmulation:

LPI Linear Program for Optimal Balancing ofa Data Flow Graph

Maximize Zui(outdegree(i)-indegree(i)).

Subject to

Lui - UL. < -Wij  for all (i.j) E (1)
LIU - UI = w. t  (2)
Li unrestricted (3)

In matrix notation, the above linear program can be expressed as

LP2 Linear Program LPI in Matrix Notation

MaximuLm ub

Subject to

uA < c
u unrestricted

Here ub is the objective function, b is the objective vector of size n where the i-th

component bi - outdegree(i)-indegree(i); the constraint matrix A is the incident matrix of

the original graph, and c is the constraint vector with its elements corresponding to the right
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hand side in (1) and (2) of' PI.P'

'Ilhe lincar programnling formulation explicitly speciices all assulmptions and

constraints of the model0l, thus give a clCear mathematical insight of the blulancing problem.

'The optimal Ialaincing of a granph is expressed and studied under one theoretical

ifranework. ''here are many well-known solution techniques Ibr linear programming

problems. In the next section, we discuss efficient solutions to LPI and LP2.

3.4 Solution of the Optimal Balancing Problems

3.4.1 An Example

L.et us first study an example. We formulate the optimal balancing problem of the

graph G in Figure 3.6 as follows:

Example 3.1

Maximize 2uI + U2 + u3 - U4 -3U 5

Subject to

LI -U1

LI2
L12 -L -
U3

U4

U3
U5
"5

LI2 -1
LI5 < -20
L14 < -3

u3 < -4
U4 _ -4
S5 <-1
Lu5 < -5
ul < 20

1. Without loss ofgenerality, constraint (2) can be replaced by un - ul ws,t for the sake of simplicity. We

can think of this as adding an extra arc from node n back to node I with weight ws, t, treating the auxiliary arc
the same as other arcs in the graph.
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LIt 2,Uo3,nt4ets5 unrestricted.

In matrix nIlottion ( .P2), the above linear programming model can be expressed as in

Maximize ub

uA < c

where

uI = (u1,2,Li3,u4,uL5)

b = (2,1,1,-1,-3)

LI

LI 2

2

-1 1 1

-1

-1

I I

-1 1

-1 -1 1

c = (-1,-20,-3,-4,-4,-1,-5,20)

ul, u2, u3, u4, u5 unrestricted total buffer: 15

optimal solution:

ul = 0, u2 = 11, u3 = 15, u4 = 19, u5 = 20

Figure 3.8. A Matrix Notation for the Example 3.1

A
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Figure 3.8 (a).

An optimal solution to the problem is:

uI = 0
12 = 11

uJ = 15
Lu4 = 19
u15 = 20

The optimal value of the object Function is 53. Recall that our goal is to optimize the

total amount of buffering B, where B = Z(j - ui - wi). Note that wij = 38, hence B

= 15. The amount of buffering needed for each arc can be computed easily from the

above solution and the result graph is shown in Figure 3.8 (b).

As we expected, all the variables in the above solution have integer values. We note

that the constraint matrix A is totally unimodular, meaning that every subdeterminant of A

is either + 1,-1 or 0.' A linear programming problem with a totally unimodular coefficient

matrix yields an optimal solution in integers Ibr any objective vector and any integer

constraint vector on the right-hand side of the constraints [71]. This guarantees the

integrality of the optimal solutions for balancing problems.2

3.4.2 Solution Techniques

Thus, we can apply any solution technique for linear programming problems to

optimal balancing problems to get optimal integer solutions. The most well-known

technique for solving general linear programming problems is the simplex meihod [23].

1. Observe that the coefficient matrix A in ILP2 corresponds to the incident matrix of the graph under
consideration. Hence its unimoduiarity is straightforward.
2. Here we have applied without proof some important results from linear programming theory, such as the
theory of solution integrality and its relation to unimodularity of constraint matrices. TIhese results are
well-known and discussed elsewhere, for example in [71].
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'here are a llllnumber of combinatorial optimization techniques Iased o(n simplex methods

[711. Other solution techniques are available, notably the polynomlial Ellipsoid algorithm

[58).
T'lhe structure of the balancing problems, however, is closely associated with a special

class or" linear programming problems, i.e., neltwork /low programuniing problems [42]. In

fibct, the dual of the optimal balancing problem LP2 can be formulated as follows:

I,P3 ILinear Program [)ual of LP2

Maxinlum cx

Subject to

Ax = b
x>O

We immediately rccognize that LP3 can be reduced to a class of well-known network

flow programming problem - mini-cost flow problemns which have an efficient solution

[71,57].
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3.5 Extensions to the Results

3.5.1 Graphs with Multiple Input and Output Nodes

It is intuitively clear that any balancing technique for one-in-one-out graphs should

also work for graphs with multiple inputs and outputs. Using the linear progranmming

formulation, such an extension is straightfbrward.

Let us consider a graph G = I V,E} with multiple input and output nodes. Assume G

is under maximum loading conditions, i.e., all inputs and outputs are connected to perfect

sources and sinks respectively. Let the set of input and output nodes be / and O

respectively, and without loss of generality, we assume that each node in I has indegree one

and each node in 0 has outdegree one. Let us introduce a dummy input node s such that

all input arcs directed to each node in I emanate from s, and let us name this set of arcs Es.
Similarly, we introduce a dummy output node i such that all output arcs emanating from

nodes in O are directed to t, and the corresponding set of arcs is called Et. Let us study an

augmented graph G' = {IV'E'} for G, where V' = V/u{st}, E' = EUE'uE t. Assume that

arcs in Es and Et have unit weights. It is easy to see that G' is an one-in-one-out graph

Therefore, the optimal balancing technique developed in the last section can be applied

directly to G, with the following extensions.

First extension is in the delay constraints between the input nodes and the output

nodes, which are termed the interface delay constraints. For a one-in-one-out graph, the

only interface delay constraint is that the total delay from the input node to the output

node be unchanged by the optimal balancing procedure. Accordingly, this is called the

critical constraint. (Recall that the last inequality in LPI and LP2 reflects this constraint.)

For a graph with multiple input and output nodes, there may be a set of interface delay

constraints, one constraint for each pair of nodes in the set I x O. Hence the total number

of interface constraints is bounded by 1/i101. In practice, it may be that only certain

interface delays are critical, i.e., the cost of the longest paths between corresponding pairs
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or input and output nodes cannot be increansed (by some "boundary conditions"). As long

as the interfiace delay constraints are given, it is straightforward to add the set of

corresponding linear inequalities to the constraint matrix and give a complete. Ibrmulation

of the linear program.

Tio establish the set ofr critical interface constraints, we need to compute the cost of

the longest paths between each pair of" nodes in / x O. This can be solved based on the

algorithm for finding the longest paths between all pairs of nodes in a graph. Since the

graphs we are interested in are all acyclic, the polynomial time Floyd-Warshall algorithm

for finding the shortest paths between each pair of nodes can easily be modified to compute

Figure 3.9. Balancing of conditional subgraph
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the longest paths [8]. We simply replace the weight on each tarc with its negative value and

the computation of the shortest-path algorithm can be conducted on the translbormed

graph. Remember, however, that this is equivalent to linding longest paths, rather than

shortest paths, in the original graph.

Assume that G' is balanced by an optimal balancing algorithm. Hence, all nodes can

be executed with the maximum rate, including all nodes in I and 0. The f'unction of

dummy nodes s and i can be removed and their function can be performed by a set of

perfect sources and sinks (under the maximum loading condition). Therefore, the original

graph G is also maximally pipelined.

3.5.2 Conditi-nial Subgraphs

Another straightforward extension is to conditional subgraphs. Let use examine a

conditional subgraph as shown in Figure 3.10 which computes the expression if p(x) then

I(x) else g(x) endif. Assume the subgraphs p,f, and g are acyclic. As before, in order to

balance the graph, each path from the input to the output should contain exact same

number of actors. However, a token may take one of the two different paths, i.e. f or g,

depending on the value it carries. Since the value is not known a priori, a strategy one may

take is to always consider the worst case. As indicated in the graph, a FIFO is introduced in

the arc between the output of P to the control input of merge actor to balance the graph,

where the FIFO is chosen that it will balance the arc with the longer one of the two

alternative data paths [32,43]. With such a strategy to extend our earlier work, we count

each special actor in a conditional subgraph as an ordinary actor in formulating the linear

program. Then the solution of the linear program will be a balanced graph. Obviously, no

matter which path a token may travel in the balanced conditional subgraph, they all

guarantee to have the same path length. Therefore, the graph can be maximally pipelined.
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Figure 3.10. Balancing of conditional subgraph
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4. The Structure and Notation for Source Programs

In this chapter, we describe briefly tile strnucture of the source programs to be handled

by the pipelined code mapping scheme developed in this thesis. An imnlportanllt leature of

sunch programs is the regularity of array operations us outhlined in Chapter 1. Such

regularity is frequently lbund in scientific and nunmerical applications, and provides a good

opportunity lfor a suitable comlputer architecture to efliciently exploit the parallelism in the

programs.

The major portion of• such a program usually consists of a collection of program

blocks. Each block defines a new array from one or more inlput arrays. Figure 1.4 in

Chapter I illustrates an example of a program which consists of live code blocks. All array

operations are organized in these program blocks and take place in regular and repetitive

patterns.

'The communication between two program blocks in terms of an array can be viewed

as a producer-consumer pair. One block, the producer, generates the elements of the array,

while the other block, the consumer, uses them to produce results which may become the

elements of another array. The mapping strategy for such programs on a data flow

machine is particularly attractive when the machine code of the producer and the consumer

can be executed concurrently, in a pipelined fashion. In an ideal case, the data flow

machine program for both blocks can run in a maximally pipelined fashion and the

communication between them can be implemented directly as a simple arc in the data flow

graphs for carrying the element values of the array, avoiding the use of memory for the

entire array. Thus, the corresponding array operations can be removed from the machine

code and the overhead of memory operations effectively avoided. Often a certain delay is

needed to balance the computation between various code blocks, and it may be necessary

to implement the communication link through a FIFO. Even so there will still be less

overhead because implementation of FIFO is expected to be more efficient in the target

data flow machine than ordinary memory operations.
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Sometimes, the data flow machine progranis for both blocks cannot)L r111 concurrently.

For exanlple, the order of lthe array values generated by the producer block may be

diflferentl from that needed by the consumer block. In suchl a situation, althlough the

producer and consumer blocks may each run in a pipelined lishion, their execution may

not be able to overlap, and the coimmunication link should be implemented through some

brmn ol'storage.

Our objective is to design a suitable code mapping scheme f'or such programs. For

the purpose of clarity and simplicity, we introduce PIPVAL - a small subset or Val with

slight extensions -- as the source langlage. It is particularly suitable to represent the

program blocks to be handled by the mapping scheme. In the Sections 4.1 and 4.2 we

outline PIPVAI. and its main language fbatures in terms ol'array operations. In Section 4.3,

we describe several types of code blocks that are of' most interest to LIS.

4.1 The PIPVAL Language

4.1.1 An overview

in this section we brielly introduce the language PIPVAI., which is basically a subset

of the programming language Val [4] with slight extensions. As a subset, the language

inherits most of the Val syntax notation and semantic conventions. Most important,

PIPVAL is an applicative (or value-oriented) language. As in Val, each basic syntactic unit,

called an expression, corresponds to a function whose evaluation produces a set of values.

The language is free of side-effects, i.e. the evaluation of an expression does not interfere

with the evaluation of other expressions.

A major feature of PIPVAL is the way in which array operation constructs are

provided. In choosing the set of array operation constructs for the language subset, we

hope both to simplify the task of expressing the class of Val programs where array

manipulation has strong regularity and to facilitate the formulation of the basic code
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mapping scheme for such prograams. Soime extensioni is made in this direction - nimainly

th(lie introduiction of the for-cons(ruct exlpression.

Now we discuss the basic syntax ofr PIPVAIL. Again, our niajor concern is not to

provide powerflil langLuage batur'es to allow flexible prograiiimmning (for that purpose,

readers should refer to the liill Val It language). The language is intended to provide a

reasonably simple source language to express a class of Val programs to be handled by the

pipelined code mapping schemes.

The syntax orf the language is given in Figure 4.1. Here, we eliminate certain

syntactic sugaring of Val to keep the syntax simple. Type inlbrmnation is not explicitly

included in the syntax. However, we a ssume the values expressed in a PIPVAI. program

have the correct types, which are a subset of types defined in the Rull language Val. That

is, PIPVAL provides values or ordinary scalar data types (such as integers, reals, booleans

and characters) and a structured data type, i.e., array. We also assume that the PIPVAI,

programs handled by our mapping schemes are type correct in the sense described in [4].

'The basic syntactic unit of PIPVAI. is an expression. Therere are fouri major major

types of expressions: primitive expressions, conditional expressions, let-in expressions,

for-iter expressions, forall expressions and for-construct expressions. An expression can

have arity greater than one, as in the form of exp,exp.

In the rest of this section we briefly outline the first five types of expressions and

related terminologies. They need little explanation since they are equivalent to those in

Val, or any similar constructs found in other applicative languages. Readers who are

familiar with Val may wish to proceed to the next section where array selection operations

and array construction expressions (mainly forall and for-construct expressions) are

described.

A PIPVAL primitive expression is either a constant, a value name (a term inherited

from Val), or an expression constructed by the primitive operators in the form

opl exp
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exp := primiLivC-exp
Sexp,cxp
I lct-in-exp .
I condit ioinal-exp
I brall-exp
I Ior-construct-exp
I fbr-iter-exp

primitive-exp ::= const I id I op exp I exp op exp I id[exp]

let-in-exp ::= let idlist = exp in exp endlet

conditional-exp ::=
if exp then exp
celscif cxp then exp}

else cxp
enndif

lbr-iter-exp = for idlist = exp do itcerbody endfor

iterbody ::= exp liter idlist = exp enditer

forall-exp ::=
forall id in [exp]
construct exp
endall

for-construct-exp =
for

id from exp to exp
idlist from exp

construct exp
endfor

idlist ::= id {,id}

Figure 4.1. The Syntax of PIPVAL
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or

exp I op 2 exp 2

where exp, expl, exp 2 are expressions of scalar data types, and op1, op2 belong to the set

of unary and binary operations respectively. These operators are delined on the

appropriate data types and include the useilul scalar operations fbund in Val. The set of

primitive expressions also includes an expression A[iJ that denotes array selection

operation. It is discussed in the next section.

A let-in expression is of the form

let x1, x2,...xk = E, F2 ..Fk in F endlet

A let-in expression is used to introduce new value namecs such as x1 to xk and deline

their values by expression E1 through Ek respectively. Th'le body E is evaluated in the scope

making use of the values defined for xl...xk* Note that each value name may be defined

only once. We can also use an alternative notation for let-in expression, as shown below:

let
xt = El,
X2 = E.2

Xk Ek
in

E
endlet

Such syntactic sugaring is useful when . e definition expressions E ... Ek are

complicated. It can also be applied to other expressions introduced below where a

definition idlist = exp is allowed.
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'rThe PIPVA I nesting rule or scopes is essentially the same as Val. The scope of cach

value namle introduced in a let block is the scope of F less any inner construtcts that

reintroduce the same names. As in Val, a value name in E, other than x1...xn, is called a fee

value name of the let-in expression, unless it is in the definition part of any inner let-in

expression. 'l'he only diffirence is that in PIPVAL, value names xl...xk cannot be used in

E l ...E k. I

A conditional expression is of the ftrm

if B( then F0
elseif B1 lihen El

elseif Bk-I then Ek-1
else Ek
Cndif

The expressions B1, BI..., Bk- l following the keywords if and elseifs are test

expressions which must have arity one and be of type boolean. The expressions following

then and else are called arms and should conform to each other, i.e., they must have the

same arity and type. When an expression has more than two anns, it is called a multi-armed

conditional expression. The above example is an expression with k arms.

The value of a conditional expression will be the value of one of its arms, depending

on the values of the test expressions. Let Bi be the first test expression in the sequence

BO...Bk-1 that evaluates to true. The corresponding arm Ei is said to be selected. Otherwise,

if the values of all Bis (i = 1...k-l) are FALSE, the last arm Ek is selected. The value of the

1. In Val, the let-in allows a sequence of definitions. Our simplification, however, does not limit the
expressive power of the language by noting that a sequence of definition in Val can also be replaced by a
nested let-in expression. It helps to simplify the presentation of the mapping rule for let-in expression.
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selected arm is thie result of the expression.

Iinally, let Ius describe tie PIPVAI fior-iter expression brieflly by the example shown

below.

for
r= 1, /% initialization
i=n

(10
if i = 0 then f % iterbody
else

iter
f= I'i,
i = i-

enditer
endif

endfor

"This expression computes the flictorial of n. Two value names f,i - called loop niames -

are introduced and de"c-ed in the initialization part. The iterbody part is evaluated using

the current definition of the loop names, and the result is either to terminate the iteration,

with the value IC returned, or to iterate again with the new definition of the loop names. In

this thesis, we are particularly interested in two iteration constructs for constructing arrays.

These are introduced in the next section.

The set of expressions just described and any expressions constructed fi-om these

constructs are called simnple expressions. The set of simple expressions which do not contain

any iterative expression as subexprcssion is called the set of simple primitive expressions.

Simple (primitive) expressions are important building blocks for the more complex

expressions to be discussed later.
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4.2 Array Operation Constructs

An important aspect or PIPIVAL is the way in which array operlations are expressed.

SRemember tha tthe purpose of IPIIVAI, is to represent the main lIature of a class of VAL,

programs in which array operations are organized in a regular pattern. The set of al'rray

operation constructs provided in PIPVAI, should efrectively meet this goal.

A PIPVAL array is similar to a Val array. Arrays and their operations are applicative.

An array is nothing but a value. An array value consists or : (1) a range (1.O, HI) where

1.O, HI are integers and 1.0 < Hi + 1; (2) a sequence of HI - 1.O + I elements of the

same type. We should note the distinction between the concept orfan applicative array and

the concept or an array in conventional languages. In conventional languages an array is a

place in store in which values may be stored in sequence.

Array indices should be considered as a mechanism to provide value names for the

array elements. An element of an array can be accessed by an array selection operation

construct which has the form A[E]. Here A is an array to be accessed and E is an

expression which specifies an index value (say i) within the index range of A. Then the

evaluation of the expression A[E] returns the value of the i-th element of A.

As in Val, the syntax provides abbreviated forms of the selection operations for

muLllti-dimensional arrays. Multi-dimensional arrays are regarded as arrays of arrays.

Hence, if A is a two-dimensional array, a straightforward way to write an expression to

select an element is A[i]ij]. PIPVAL allows the use of A[ij], as a form with syntactic

sugaring added to A[illj]. We will discuss multi-dimensional arrays in more detail in later

chapters.

The means of expressing array creation operations distinguishes PIPVAL from Val.

Like most functional languages, Val allows arrays to be generated by append operations

[4]. Since arrays are treated as if they were values, an array append operation such as A[i:v]

in Val conceptually means the creation of a new array which is identical to A except that

the i-th element is replaced by v. The excessive overhead due to the copying of the entire
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array makes the append operation very inefficient in terms of its inmplementation [2,3]. In

designing PI IPVAI, we have concentrated on a class of programs where the unrestricted use

ol append operations is disallowed. In f•lct, the append operation is not even included in

the language subset. Instead, suitable array creation constructs are provided which allow

arrays to be generated in a regular fashion.

As outlined at the beginning of this chapter, the programs to be handled by our

mapping schemes are organized as a collection of code blocks where each block is

essentially one of the PIPVAL array construction expressions. Such an expression consists

orf either a forall or a for-construct expression. Although both constructs can be considered

as special cases of the for-iter construct, the unique reatures of forall and for-construct

.make them particularly userull in expressing programs in which arrays are constructed and

accessed in ar regular Fashion.

4.2.1 Forall Expressions

A fortall expression can be used to express the construction or an array where all

elements of the array can be computed independently. The following is an example of a

forall expression which delines a one-dimensional array X in terms of array A.

X=

forall i in [LO,HI]
construct

if i = LO then A[LO]
elseif i = HI then A[HI]
else
(A[i-1] + A[i] + A[i + 1])/3

endif
endall

The forall construct may introduce one index value, such as i in the above example,
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and deline its irange. ''he body expression of the foriall construct is evaluated lir each

index value in the r•ange, and an array is constl'ructed with the index range so defined. Since

the result array value can be considered as constructed roml an empty array, and the

element value fir each index is only computed once, we do not need to use any explicit

append operations in the expression.

'lhe imain feature of a forall expression is that the array elements can be evaluated in

parallel because there are no data dependencies between them. 'ITypically the body of a

forall expression is a conditional expression which partitions the index range of the reSLilt

array into mnutLIally exclusive and collectively exhaustive index subranges, each

corresponding to an arm or the conditional expression. Such a conditional expression is

called an ratige-partitionitg conditional expression. In the above example, there are three

index subranges, i.e. [I.O,I.OJ,[HI,H1-I] and [i.0+ 1, HI-1].

X=

forall i in [O,in + 11
construct

if i = 0 then A[i]

elseif i = m+ 1 tihen A[i]
else

forall j in [O,n + 1]
construct

ifj = 0 then A[ij

ifj = n + I then A[ij]
else

(A[ij-ll + A[i,j+ 1]
+ A[i-lj] + A[i+ 1,j])/4

endif
endall

endif
endall

Figure 4.2. An example of a two-level forall expression
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The forall expression in the above exaimple constructs a one-dimensional array X,

where each element is computed by a simple expression which computes a scalar value.

We call such an expression an one-level forall expression. The forall constructs can also be

nested to compute a multi-dimensional array, thus forming a nmudii-level fioral expression.

A k-level forall expression (k>l) constructs a k-dimensional array, where its elements are

constructed by either (k-1)-level forall expressions, or simple expressions.

For example, Figure 4.2 shows a two-level forall expression which constructs a

two-dimensional array X.' The result array A can be viewed as a one-dimensional array

constructed by the outer forall expression. This expression, called a level-I forall

expression, has an index range o' [0, mni +1]. 'The elements of this one-dimensional array

are also one-dimensional arrays with an index range of [0, n + 1]. The majority of these

arrays are constructed by the inner one-level forall expression which is called a level-2

forall expression in this case. The two expressions that compute the two boundary arrays

(i.e. i= 0, i=m+ 1 respectively) are not forall expressions. But they are simple expressions,

i.e., expressions made of array selection operations.

In this way, the nesting levels of a forall expression are paired naturally with the

dimensions of the result array being constructed. This construction defines

multi-dimcnsional arrays as arrays of arrays.2 The notion of nesting levels will also be used

in the nested for-construct expressions and other nested expressions introduced later.

1. This forall expression is the core of the Possion solver program known as the (two-dimensional) model
problem [411.
2. Other different views of multi-dimensional arrays and their impacts on the representation and

implementation are discussed in later chapters.
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4.2.2 For-construct Expressions

When duata dependencies exist between array elements, sonie forml of iterative

construct is usually needed to express the corresponding array creation operation. In Val

the for-iter construct and hce array append operations are used to perform this Function. Iin

PIPVAL, we introduce the for-construct expression to express array creation operations

with certain regularity which allows one to avoid the use of the append operation.

A typical Val for-iter expression with such regularity is shown in Figure 4.3.I The

initialization part delines an internal array name and an index value name, corresponding

to T and i in our example. 'l'he internal array 'I is initialized to an empty array denoted by

a constant array-empty.2  ''Ile evaluation of the expression is conducted iteratively,

X=

for
i= 0,
x = I3[l.
'I' = rrayemipty

do
if i > n then T
else

iter
' = 'T[lI:xl,
i= i+l,

x = A[ij*'r(i-11 + 1[i]
enditer

endif
endfor

Figure 4.3. An Example of a Val for-iter construct for creating an array

1. This for-iter expression specifies a first-order linear recurrence.
2. PIPVAI, inherits this constant array from Val and reader is referred to [4] for a discussion of its meaning.



- 90 -

controlled by the simple test expression i > n. II' i < n, the iteration is continued and 'I' and

i are redefined as specified in the iler arm of the body. When the test expression returns

fiilse, (i.e. i > n), the evaluation of the for-i(er expression is completed by returning the

array 'I as the result array X.

One important feature o' the aLbove for-iter expression is that the array is built liom

arrayemply by a series oflappend operations, one for each index i in a specific range (i.e.

[1...n] in our examplc). Such an expression is characterized by having a loop namne ( e.g., i

in the above example) be a counter, and having the iteration termination predicate be a

simple range limit test of' that counter (e.g., i > n in the example). The importance of such

for-iter array construction expressions is also observed in [4]. lThe iteration is -Avanced by

incrementing (or decrementing) the counter by one. In this thesis, we are interested mostly

in the case where the number of iterations is known in advance through the evaluation of

the index limit expression (e.g., n) or at least is known before the iterations are started.

This means that we are mostly interested in the mapping of larrays which have compile-time

computable bounds.

In PIPVAL, the for-construct expression is introduced to express the feature of such

regular array construction operations. The Ibllowing shows the for-construct expression

which is equivalent to the for-iter expression in Figure 4.3.

X=
for i from 1 to n

T from arrayempty
construct

if i = 1 then B[i]
else

A[i]*T[i-1] + B[i]
endif

endfor

Between for and construct, the index value name and the internal name (T) for the
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result array are introduced and specified. The mechanism froni-to specifies not only the

index range but also the order of the indices to be generated. The introduction of the

internal array name 'r is important because it may be used extensively inside the body

expression - the expression after construct. F or the purpose of this thesis, the COnstant

arrayempty is always assumed to be the initial value of' the internal array. As with the

forall construct, for-construct provides a mean to express array creation operations without

using the append construct.

The body of' a typical for-construct expression also' has a range-partitioning

conditional expression as its top-level structure. In the above example, it partitions the

index range into two subruanges: [1:1], [2,n]. The for-construct expressions can be nested to

construct a multi-dimensional array. Following the same rule for constructing a multi-level

forall expression, we can construct a mulhi-level for-construct expression. Similarly, the

nesting levels of a nested for-construct expression correspond to the dimensions of the

array it generates.

4.3 Code Blocks with Simple Nested Structure

Code blocks in a program often have nested structures. In this thesis, we are

particularly interested in the following three classes of code blocks which are frequently

found in the computation intensive part of source programs.

4.3.1 Class-I: Primitive forall expressions

A one-level forall expression is primitive if its element is computed by simple

primitive expressions. A k-level (k>1) forall expression is primitive if its elements are

constructed either by (k-1) level- primitive forall expressions, or simple primitive

expressions.

For example, the code of the model problem in Figure 4.2 is a two-level primitive

forall expression. Its body is a range-partitioning conditional expression which partitions
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the array elements into two boundary rows fbr i = 0, i = m++1 and the internal rows

correspond to index range [I,m]. The boundary rows are specified by simple expressions,

while the internal rows are specified by a one-level primitive forall expression.

4.3.2 Class-2: Primitive for-construct blkxocks

A one-level for-construct expression is primilive if* its element is computed by simple

primitive expressions A k-level (k>1) for-construct expression is primitive if its elements are

constructed either by (k-1) level primitive for-construct expressions, or simple primitive

expressions.

In Figure 4.4, we show a two-level primitive for-construct expression which takes an

input array U and constructs a two-dimeisional array UT. T'he index range of i is divided

UT =
for i fro'n 0 to m+ I

T'1 from array.enlpty
construct

if i = 0 th(lien U[iJ
elseif i = n + I then U[ij
else

for j from 0 to n+1
T2 from arrayemnlpty

construct
if j = 0 then U[ij
elsej = n+1 then U[ij]
else

(U[i+ 1,j] + U[ij + 1]
+ Tl[i-l,jj + T2[ij+ 1])*1/4

endit
endfor

endif
endfor

Figure 4.4. A two-level primitive for-construct expression
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into three subranges: the two boundaries and the subrange [l,m]. A level-2 for-construct

expression computes the elements of UT (one-climensional arrays) as the internal rows.

Note how the arrays TI and '1'2 are used in the body.

4.3.3 Class 3: Multilevel expression with innermost level primitive forall or for-construct

expressions

The forall and for-construct constructs can be nested in an arbitrary fashion to form a

multi-level mixed expression to compute a multi-dimensional array. For example, a

two-level expression may consist of a forall construct to form its level-i expression, but may

contain for-construct expressions as its level-2 expressions as shown in Figure 4.5. Another

situation is shown in Figure 4.6, where the the level-I expression of the two-level

expression consists of a for-construct expression and its body contains a forall expression.

X=

forall i in [O,m+ 1]
construct

if i = 0 then B[iJ
elseif i = m +1 then B[il
else

for j from 0 to n+ 1
T from arrayempty

construct
if j = 0 then BI[ij]
else j = n+1 then 1[i,j]
else
A[i,jj*iT[j-l + B[ij]

endif
endfor

endif
endall

Figure 4.5. A two-level mixed code block -- example I
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for i rro0 to oi+ I
T frrn atrray-empty

construct
if i = 0 then Illij
else

rorall j in [0, n + 11
construct

A[i.jl*T[i-I.j] + I3[ij]
forall

endif
endfor

Figure 4.6. A two-level mixed code block -- example 2

It may be more complicated for situations with many nesting levels. Recall that for a

nested loop in a conventional language such as Fortran, the dominant factor for the overall

performance of the implementation is the mapping of the innermost loop. We anticipate

that the same will be true in mapping a nested expression on data flow computers. Hence,

the nested mixed expressions to be studied in this thesis are partitioned according to the

structure of their innermost expression. In particular, we are interested in the situation

where the innermost level expressions consists of (1) a primitive forall expression; or (2) a

primitive for-construct expression.

A slight extension of the above cases occurs when the innermost level expression

allows its body to contain a for-iter expression which computes scalar values.



- 95 -

5. An Overview of the Basic PIipelined ('ode Mappilng Schemes

The rest of' this thesis will investigate pipelined code mapping schemes thalt can

.match the regularity of array operations in the PIPVAL. representation of the source

programl with the power or the target data flow machines to exploit parallelism or dlta flow

graphs.

The basic pipelined code mapping scheme (Chapters 6-9) concentrates on the

analysis and handling of the class-1 and class-2 PIPVAAL code blocks (hence also the core or

class-3 code blocks) outlined in the last chapter. It is also the basis upon which a number of

other related transforration techniques can be used (chapters 10). In this chapter we give a

brief general outline.

The basic code mniapping scheme is essentially a two-step process. T'he first step

consists of the application of" a set of basic mapping rules which can translate the code

blocks into pipelined data flow graphs. These graphs are described in a static data flow

graph language (SLDFG L) to be introduced in the last section of this chapter. In this step,

conceptual arrays in the source program - i.e. the input and output arrays as seen by each

code block - remain unchanged, but the array operations are translated into

corresponding data flow actors in the result graph. The links between code blocks are now

represented by data flow arcs carrying tokens with array values.

The second step consists of the application of a set of optimization procedures which

can remove the array actors from the result graphs of step 1 and replace them with

ordinary graph actors. Thus, the links between code blocks become ordinary arcs of a data

flow graph. The result graph for a pair of producer and consumer code blocks may be

executed concurrently, both in a pipelined fashion, without involving array operations.

In presenting the basic mapping schemes, our efforts are devoted both to the

development of the mapping algorithms for ,he code blocks, and the formulation of the set

of conditions under which they can be applied. These conditions are derived by analyzing

the structure of each type of the code block, especially the pattern of the array operations
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involved in its comn putation. I'lherelbre, these conditions are certainly important in terms o'"

mapping each individual code block. Moreover, the inlormiation provided by lhe

collection of these conditions becomes very valuable Ibr some global analysis necessary in

making critical mapping strategy decisions (see Chapter 11).

5.1 D)ata flow representation olfarrays

'To develop the mapping scheme for both step

appropriite reprcsentations lbr the arrays in a

one-dimensional array A of integers as an example,

I and step 2,

data flow

where A has

it is important to choose

graph. ,Let us use a

1,m as its low and high

(a)

A[1]

A[2]

e

A[m]

A[m] A[2] A[1]

Figure 5.1. Data flow representations of a one-dimensional array

(b)

(c)

a Ill.
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index limits respectively. Figilre 5.1 shows the possible data flow rcpresentations of A. In

Figure 5.1 (a), array A has an wizilencl1ted representation, i.e. array A is represented as an

array value carried by one token on a data flow arc. An array can also take Jlallenicl

representations as described below. In Figure 5.1 (b), array A is represented by a set of

element values conveyed at someni moment by tokens on a certain group or data flow arcs,

ont: fIr each index value. In Figure 5.1 (c), array A is represented as a sequence of lelement

values carried by tokens on a single arc at successive moments.

The unllattened representation in Figure 5.1 (a) is used in developing the basic

mapping rules for array operations because it is conceptually close to the model of'arrays in

the source language. Consequently, the mapping rules can be presented in a general and

simple fashion. As will be shown later, this representation is particularly helpfiul in

form ulating mapping rules for multi-dimensional arrays recursivCly firom those of

one-dimensional arrays. In this thesis, we do not study the detail of the bormat of an array

token (e.g., array descriptor values, array memory addressing convention, etc.) but merely

assume that it carries all the information needed for the corresponding graph actors to

perform the necessary operations. A brief' discussion on the efficient implementation of'

such array operations in the target machine is included in Chapter 11.

In contrast to Figure 5.1 (a), the two flattened representations in Figure 5.1 (b) and

(c) directly represent values of the array elements. Thus, they both provide a basis for

eliminating the overhead caused by manipulation of array values. Accordingly, graph

actors for array operations can be replaced with ordinary actors. The difference between

Figure 5.1 (b) and (c) reveals the basic space/time tradeoff in structuring machine code for

efficient operations on a data flow computer. The pipelined code mapping scheme in this

thesis uses all these representations in different aspects of the translation process.

In a flattened representation as in Figure 5.1 (c), the order of the element values in

the sequence is an important part of the representation. For a one-dimensional array,

there are two sensible orders of the representation as described in Figure 5.2 (a) and (b)
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A[m] ... A[21 A[1]

(a)

A[1] ... A[m-l] A[m]

0 A.

(b)

Figure 5.2. Two major orders for a fattened representation of a one-dinmensional array

which are called the major niornmal order and major reverse order respectively.

So Far our discussion has centered on one-dimensional arrays. T'he same principle

can -also be used For representing multi-dinlcnsional arrays, although complexities arise

when we elaborate the concepts of an array value and the order of its flattened

representation. We leave the detail of such extension until Chapter 8, where the mapping

scheme for multi-dimensional arrays is discussed in detail.

5.2 Basic Mapping Schemes

The basic mapping rules are presented as a set of recursive algorithms. These

mapping rules together define a mapping M which translates PIPVAL expressions in each

syntactic category into data flow graphs. In the next section, a static data flow graph

language SDFGL is introduced which will be used to specify object data flow graphs

generated by such mapping rules and the conditions under which they can be applied. In

the result graph, there may exist explicit array actors, which are supported by array
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operations in ltargetl mlclihincs (A brief discussion oIf their impleme11 tation is in Chapter I).

As inl most elarlier work on the I ranslaltion l techlliquLICS for)' Val prograims [6,79], our

nIlappling rules are baseC(l on the franiework of Brock's trainslalioln algorithiis [19,20].

T'herelbre the data flow graphs generated by our imapping scheme are a correct semantic

reresentation of the source program according to the semantic model developed in [19,20).

It is beyond the scope of this thesis to describe Brock's algorithmnis and his lifrmal semantic

model, and interested readers are referred to the above references. Instead, ill the

presentation of our basic niapping rules, we fr'equCntly indicate how it is related to Brock's

algorithms.

T'he data Ilow graphs geLnerated by the basic mapping rules may contain iarray actors.

'The direct architectural support of the actors may be expensive in data flow computers,

especially when array descriptor values need to be manipulated [2,78]. For example,

assume an array A is generated by code block Cl and is used by code block C2. In the

corresponding data flow graphs, C1 may have array actors to "pack" the element values

into array A, and C2 may have array actors to "unpack" the array so that its elements can

be used. Storing an array in some f lorm of RAM memory provides both the buffering

between Cl and C2, and the mechanism to support random access so that the orders of

"packing" and "unpacking" do not matter. However, if the two orders match each other,

we do not need to pack or unpack the elements through memory. The array actors can be

directly implemented through ordinary data flow actors, and the links between the two

code blocks become regular data flow arcs, perhaps attached with certain FIFO buflfers.

The goal of the optimization procedures is to perform such transformation.

Although the optimization procedures are applied directly to data flow graphs,

certain parameters used in the process are related to the attributes of the original code

block. Therefore, optimization procedures are presented for different situations of the

code block structure, and the conditions for each situation are outlined. These will

contribute to the construction of the set of useful attributes associated with code blocks
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usclill ifor apping strategy decisions. They together also characterizc the set of PIP'VAI.

code blocks which can be clffectivcly optimized.

5.3 SI)FGI. - A Static Data Flow Graph I.,anguage

5.3.1 'T'he Basic ,Language

We now introduce a static data flow graph languagce (SDFGI ) as a texttual

description language for static data Ilow graphs. S)FGI L is not a comnplcte data flow

programmning language. It contains only those features which provide a convenient tool

fbr the specilication of the result graph generated by the basic malpping rules. Using

SDF'GI., a graph for a PIPVAI, expression can be constructcd lrom the gr-aph of its

suLbexpressions by recursive Capplication of' the mapping rules. This lainguage is based on

the graph asscmbly languacge in [19].

A SDFGI. graph has two sets of labeled ports: input ports and output ports used for

input/output connections. Intcrnally, it contains a set of actors and links. A node in a

SDFG ,L graph denotes an actor in the corresponding data flow graph. It also has two sets

of ports, i.e., input ports and outpLlt ports. As a convention, the input and output ports of

an actor are usually labeled by consecutive non-negative integers, unless otherwise

specified. SDFGL , provides the two functions IN, OUT to get the two sets of ports. For

example, for an addition actor with 2 input ports 1,2, and an output port 1, we have IN

(-; ) = {1,2,, OUT (+) = {1J. The cardinality of a set L of ports is denoted by #(L). For

example, #(IN(+)) = 2, #(OUT(+)) = 1. Similarly, IN and OUT can also be applied to

graphs for the same purpose. Providing graphs and actors with the same mechanism for

their input/output specification faicilitates the recursive graph definition.

The set of links is used to interconnect ports of actors or graphs. A link can be

considered as a copy actor (or an identity actor), which has one input port and multiple

output ports. Since there is no need to distinguish the ports, each link can be conveniently
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denoted by a unique label.

As a syntactic convention, a graph is described by the I)llowing Four basic parts:

input ports:

output ports:

links:

components:

<input-ports>

<output-ports>

<links>

<com ponen ts>

In the above representation, <input-ports> and <output-ports> are the the sets of

graph input and output ports; <links> is the set of' all links ol' the graph; <components> is

the set ()of all actors or named subgraplhs (explained shortly) in the graph, as well as

assignments specilfying the direct connections between the input and output ports of the

graph.

Each actor is specified by its operator name OP (e.g. +,-,*,/, etc.) bollowed by two

sets:

OP Inputs : <input-assignments>

ouItputs : <output-assignments>

Each member of the set <input-assignments> specifies the assignment of an input

port a of the actor, written as:

of -- a

Similarly, each member of the set <output-assignments> specifies the assignment of an

output port a written as:

a - t

Here, the arrow -- always points in the direction of data flow, and a denotes a graph
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inll)t/ou()tpLIt port or a link. Interconnections between actor ports are indicated by being

assigned to the same link.

A subgraph can be namcd by an operation label and Iwo lists ior its input and output

ports. Thi'lus, it can be specilied in the same way as an actor.

5.3.2 An Example ol'a SDFG I. graph representation

In Figure 5.3 (b), a SDFGI. graph of the data flow graph in Figure 5.3 (a) is given.

The corresponding SD[FGIL description, shown in Figure 5.4, is selr-contained. 'he input

port of the graph, labeled triggcr, is assigned to each constant actor in the graph. For

(a?)

b

(b)

b

c

C

a 5

Figure 5.3. An example of SDFGL -- part 1

F ,
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input ports: trigger, a, b

output ports: c

links: iE {l- ...5 a i

coml ponents:

3 inputs: trigger -- trigger

outputs: 1 ---I a

* inputs: a -- i1, b -- 2

outputs: I - a2

5 inputs: trigger --, trigger

outputs: 1 -- a3

+ inputs: a --+ 1, a 2 -- 2

outputs: 1 -+ a4

- inputs: a 2 - 1, a 3 -+ 2

outputs: L -t as

/ inputs: a4 - 1, a 5 --+ 2

outputs: 1 -- c

Figure 5.4. An example of SDFGL -- part 2

simplicity, the constant is usually written directly in the actor as the OP part of a constant

actor.
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5.3.3 Extension of the basic SI)FGI,

1. Definitions, Conditions and Remarks

In this thesis, we use an extended version of' SDFGI.. We add three more

components to a SDFG L. graph to get

def: <definitions>

conditions <conditions>
remarks <remarks>

input ports: <input-ports>
output ports: <otltput-ports>

links: <links>

components: <components>

The <definitions> part is used to introduce a set of temporary names for a list of

ports, a subgraph, etc. This component is used to simplify the graph presentation. The

<conditions> part is used to specify the list of conditions or restrictions under which the

graph construction is appropriate. The <conditions> part in the graph can also be used to

formulate the set of attributes firom which mapping strategy can be determined. The

<remarks> part is reserved for comments.

Finally, any or all of <definition>, <condition> and <remark> parts need not be

present in a SDFG L graph.

2. Named SDFG L Subgraphs

For convenience, a SDFG L graph may be given a name, known as a named subgraph,

to be used as a component to construct other SDFGL graphs. For example, the SDFGL

graph in Figure 5.5 (a) computes the difference of the squares of its two inputs. We can

turn it into a named subgraph SQDF and use it elsewhere as shown in Figure 5.5 (b), where

two copies of SQDF are used.
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SQDF

2 )/(x2 - x2),2 3 4
(b)

Figure 5.5. An example of using named subgraphs in SDFGL

3. Range Constructor

It is often necessary to construct a graph over a range of items or sets of input/output

port labels. For this purpose we use

(a E A~)ilem

to specify a set which, for every b E A (A is a set), contains an occurrence of an item with a
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replaced by b. Here an itemn may be a port label, an assignment, etc. For example

(a E {x,y,z}) a --- a

will generate a set

a --- X, a -- Y, a -- Z

where the item is an assignment.
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6. MapI)ing Rules for Expressions withliout Array ('reation Constructs

The translation of a 'I IPVAL expression without aIrIIy creaItionl constructs inlito

S)FG GI. graphs is quite straight lrward. 'I'he baNsic mapping rules for such expressions a re

developed directly Irom Brock's translation algorithms [191. These algorithms consist of

two functions which respectively map ordinary Val expressions and itcration bodies into

their graph reprcsentations. The translation algorithm for for-iter expressions is basced on a

combination ol'thCse Ftunctions.

In this chapter, we first study the rules for PIPVAI. expressions without iterations,

which IIare then LIsed in the mapping rules of primitive forall and for-construct expressions.

Sections 6.1-6.5 present translation rules for simple primitive expressions on a case by case

basis. Section 6.6 addresses the issue of pipelining for the result graphs generated Ior such

expressions. A brief outline of the mapping of'the for-iter expression is given in Section 6.7

['[he two major array construction expressions - the P IPVA L forall and for-construct

expressions - are considered as special for-iter expressions (also called loops in [6]). The

structure of the two types of expressions makes it possible to present theirni mapping rules in

a simpler lfishion than that for general iterative expressions. In Section 6.7, we briefly

outline the basic mapping algorithm for for-iter expressions. Our goal is to provide a basis

for introducing the specialized mapping rules fbr the two array construction expressions in

the rest of this thesis.

6.1 Mapping Rules - MlJid], MIconst], Miop expli, Mlexp op expD

The mapping rule for MIid] is very simple, as shown in Figure 6.1 (la). The result

SDFGL graph is shown in Figure 6.1 (ib). The graph has a single input port labeled id,

and a single output port labeled 1. In the (components> part, there is only one assignment

by which the input port is directly connected (assigned) to the output port.

The mapping rule for Miconst] is also simple, as shown in Figure 6.1 (2a). The result
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Mlfid I
inputs p)Ort: id
outputs port: I
comII)ponIIenIs:

id --4 1

(la) (1b)

It consto]
input ports: trigger

outp)ut ports: I

coilponllnts:

colst: inputs: trigger-- trigger

outputs: 1 -- 1I

(2a)

M iop cxp ]J

remarks (#OU'I'(exp) = #IN(op) = 1)

iniput )orts: IN ( M IexpI )

output ports: OU'i(op)

links : a
components:

. . Mr
M fcxpl : inputs: E INUVIIVlI

trigger

colist

, 1

(2b)

cxpD )a -- a

outputs:
op : inputs

outputs:

(3a)

1-41

(3b)

Figure 6.1. Mapping Rules Mfidj, MfIconstl, MlIop exp]

Iý I
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SI)FG I, graph is shown in Figure 6.1 (21)). It has a single input porl labeled trigger and an

Oulltut port lal)elcd 1. It contlains only one comllpor•ent -- a cCnstant actor with Const as its

operator name.

'The mapping rule of Mfop expD is shown in Figure 6.1 (3a). The result S!)FGI.

graph is shown in Figure 6.1 (3b). Thle graph Ml[op expl is constructed by connecting the

oLItpuLt port of MIeCxpil to the input port of1 the unary actor op. A requirement stated in the

<remark> part is that the graph MIexpl may only have one output port which provides an

operand fbr the unary actor op.

'I'he mapping rule of' MRcxpi op exp 2, is shown in Figure 6.2 (a), where op is a binary

operator. The result S[)FGL graph is shown in Figure 6.2 (b). T'he graph can be

constructed by connecting the two oLutput ports from MajexplJ and M[CexP 2D to the two

input ports of actor op respectively. The set of' input ports of the result graph is the union

of the input ports of expl and exp2, and these are assigned to the subgraph for the two

subexpressions. The output port of the op actor is assigned to the output port of' the result

graph. A requirement stated in the <remark> part is that Mfgexpl] and MVexp 2]] must both

have exactly one single output port, and op must be a binary actor.

6.2 The Mapping Rule for exp,exp

The mapping ruile of exp,exp is shown in Figure 6.3 (a). The result S[)FG L graph is

shown in Figure 6.3 (b). The graph of an expression with higher arity such as Mfexp1,

exp 2] is constructed from the two subgraphs of MffexplJ and M IIexp2 in a straightforward

way. The input ports of either subgraphs are connected to the graph input ports with the

same label respectively. The output ports of M(expt], ranging from 1 to #OUT(Mlexpl ]),

are assigned to the output ports of the graph with the same label, respectively. The output

ports of MCexp 21, ranging from 1 to #OUT(Mlexp2]), are also assigned to the

corresponding graph output ports. However, in order to distinguish the two sets of output

labels, the labels of the output ports for MIexp 2z] are shifted by #OUT(MIexpl]]), i.e., they
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Mlcxp 1 op exp2 ]

def G1 = Mlexpl]

G2 = M[Iexp 2]I

remarks: #(IN(op)) = 2, #OUT(G1) = #OUT(G2) = 1

input ports: IN(G1) U IN(G2)

output ports: 1

links: al,a2

components:

MIfcxpl]J inputs: (a G IN(Gl))a -- a

outputs: (i E OUT(Gl))i -- al

MN[exP2]j inputs: (a E IN(G2))a -, a

outputs: (i E OUT(G2))i -- a2
op inputs: al 1-, a 2 -- 2

outputs: 1 -+ 1

(a)
(b)

Figure 6.2. The Mapping Rule for MNIexpl op exp21

now range from #OUT(MIexpl]) + 1 to #OUT(MIexpl]) + #OUT(Miexp 2V).

6.3 The Mapping Rule for Let-in Expressions

The mapping nrule for let idl1 id2...idk = expl...expk in exp endlet is shown in Figure

6.4. The definition part in a let-in expression is used to introduce and define value names

id1, id2,...idk. Hence the free value names of the entire let-in expression are the free value
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MIcxpl, cxp 2fl

def GI = M=IIcxpol
." 1% A r

G2 = Mtcxp2U
n = #(OUT(GI)) + #(OUT'I(G2))

input ports: IN(GI) U IN(G2)

output ports: (i E (I...n})i

coniponents:

MNecxp l, inputs: (a G IN(G 1))a --+ a

outputs: (i E OU'T(G 1))i --+ i

Mffcxp 2] inputs: (a E IN(G2))a -- a

outputs: (i E OU'I'(G2))i --+ i + #(OU'I'(G I))

(a)

(b)

Figure 6.3. The mapping rule for exp,exp

names of exp 1 through expk plus the free value names in exp less idl...idk. The result

SDFG L graph is shown in Figure 6.5.

I
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llet i id exi... = cx... xpll in Cex einltlll

def: (;i Mecxpll"...G(i = NM1cxp ,f

G = Miexp•

II = IN(G,)U...UIN(G11)

12 = IN(G)

remarks: #(OU'I(GI)) = ... = #(OUT(G )) = 1

input ports: (a EI lIUi2)a

output ports: (i E OU'I'(G))i

links: (i G { I...ni)1i

coImIponelnts:

(i C { lI...n1)G(i inputs: (a C IN(Gi))a -- a

outputs: I --+ ai

G inputs: (i E I 1...n )ai --+ idi, (a E (12-(idl...idn}))a -. a

outputs: (i E OU'I(G))i --+ i

Figure 6.4. ''The NMapping Rule for a Let-in Expression

6.4 The Mapping Rule fbr Conditional Expressions

6.4.1 A Simple Conditional Expression

The mapping rule for a simple conditional expression if exp, then exp 2 else exp 3

endif is shown in Figure 6.6. The result graph is shown in Figure 6.7. It is constructed by

the appropriate interconnection of the three subgraphs MlexplI, Mjexp291, Mexp 31 listed

in the component part.

The evaluation of the boolean-valued expression expl will control which arm (exp 2 or
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{id .. id
1 n

Figure 6.5. The SDFGL graph for mapping a Let-in Expression

exp 3) of the conditional expression will be evaluated. This is implemented by introducing

a pair of T-gate actors and F-gate actors for each input to exp 2 and exP 3; these actors are

controlled by the output of MIexpl]. Furthermore, the output ports of the two arms

should be combined for assignment to the output ports of the graph. This is implemented

by a set of M-gate actors, one for each arm.
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Mif ecxpl Ilheli cxp2 else cxp3edtirf

dlef(i, = M1cxpij i = 1..3

reimarks: #OUT'I(GI) = . #OI'(G2) = #OUI'(G,) n

inpult ports: IN(Gi ) U IN(G) U IN(G )

output ports: I...n

links: ay, (a E IN(G 2))fln, (a E IN(G3))Y , (a E OU('IG2()),.(a E OUI'(J))X a

coimponeniits:

M[icxp1)1 inputs: (a E IN(G ))a -- a

outputs: I -, a

(a E IN(G))I'-gate inputs: a -4 1, a -- 2

outputs: I --+ fl
(a C IN(G3))F-gate inpuls: a --+ 1. a - 2

outputs: 1 --+ Ya
Mcexp?] inputs: (a E IN(G 2))fl1 - a

outputs: (i E OUI'(GW2))i ' 8i

MRcxP31" inputs: (a E IN(G 3))y a - a
outputs: (i E OUT'(G 3))i -- A

(i E { ...n })M-gate inputs: a --+ 1, Si -+ 2, Ai -" 3
outputs: 1 -+ i

Figure 6.6. The mapping rule for simple conditional expressions

6.4.2 The Mapping of Conditional Expressions with Multiple Arms

A conditional expression with multiple arms is equivalent to a properly nested simple

conditional -xpression as illustrated by the examples in Figure 6.8 (a) and (b). Therefore,

the mapping rule illustrated in Figure 6.6 can be recursively applied to the nested version.

For example, Figure 6.9 is the result SDFGL graph of the 4-arm conditional expression in
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N

ar

Figure 6.7. The SDFGL graph of mapping a simple conditional expression

Figure 6.8, derived by the application of the mapping rule of Figure 6.6 (without loss of

generality, we assume there is only one input value name to expression x). From the graph,

we note that the test expressions of the arms are evaluated in order until one becomes true,

and the corresponding arm is selected. The expressions in the other arms will not be
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if III tlhen cxpl if IlI  lien cxpl
elseil II? then cxp, else if l Il ien cxp 2
elceif I~i tlhen exp1  else if J t(lihe cxp 3

else cxp4  else cxrp4
endif endlil

endif

(il) (b)

Figure 6.8. A multi-arnmed conlditional expression

evaluated at all. FIrthermore, the test expressions ol the arms Ibllowing the selected arm

are also not evaluated. This may result in a considerable saving of computationa! resources.

Unbfortunately, the maximum depth or the T'I/F-gate network, as seen by the last arm,

may grow linearly with the number of arms. The depth of the M-gate network may also

grow linearly. Furthermore, the SDFG L graph representation becomes overwhelmed

quickly by the T/F-gates and M-gates.

In this thesis, we propose a succinct version of the basic mapping rule for conditional

expressions. It becomes particularly helpful in presenting the mapping rules of the forall

and for-construct expressions, which usually have a multi-armed conditional expression as

their range-partitioning expression. Our alternative representation of the mapping rule

also gives hints-about the machine design that may efficiently support such multi-armed

conditional expressions.

Let us first consider the SDFG L graph in Figure 6.9. We can introduce some named

subgraphs and reorganize the graph into Figure 6.10. First, subgraphs MB and MM are

introduced. The subgraph MB evaluates testing expressions such as B1, B2 and B3. It has

an input port X, as well as five output ports: four boolean output ports, labeled 1 - 4 for

each of the four arms, and a control output C which generates encoded control values. The



-117-

x

Figure 6.9. The SI)FGL graph of a multi-arnied conditional expression -- version I

subgraph MM performs the function of the M-gate network in the old graph. It has four

input ports labeled 1-4 for each of the Four arms. It also has a control input port 0 which is

usually connected to the control output port C of the corresponding MB subgraph.

The structure of MB is illustrated in Figure 6.11 (a), where B1-B3 are the graphs for

11

I
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x

1 1

MB

c 4

'4

1 2 3 4

0 MM

Figure 6.10. A SDFGL graph for a multi-armed conditional expression -- version 2

the test expressions. The function of the actor B-gate (branch gate) is illustrated by the

trLth table in Figure 6.11. If Bi (i = 1,2,3) evaluates to T, B-gate actor will generate T at

the output port i and an encoded control value "i" at the output port C. Otherwise, the last

arm is selected, and it will generate a T value at the output port 4. An appropriate

encoding value "i" is also generated on the port C.' The subgraph MM, upon receiving the

control value "i", will decode and forward the values at its input port i to the output port.

1. For convenience, we assume "i" is an integer value, encoding the infoirmation that the ith arm is selected.
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I

Figure 6.1 . The MB subgraph

Another change made to the old graph is to replace the T/F-gate network by a row of

T-gate actors, one for each arm. When an arm is selected, the input value of x is passed

only to that arm (see Figure 6.11).

It is easy to see that the graph in Figure 6.10 will compute the same fuinction as the

graph in Figure 6.9. A slight difference is that in the new graph, the test expressions are

always evaluated, while in the old graph, if a text expression has value T, later test

expressions will not be evaluated. This difference is not important with respect to the kind

V

1 2 3 1
2

I - gate
3 3

4

MBc

.
IA

I

JI
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or range-partitioning conditional expressions in which we are interested, because the test

Cexpressions are usually qulitC simple and their evaluation will not diverge.

'I'he B-gate (and the MIB subgraph) as well as the MM subgraph may be implemented

by ordinary graph actors. Hlowever, Ir the purpose of efficiency, they may also be

implemented directly by graph actors supported by special instructions in the target

machine. The latter possibility is discussed in Chapter 11.

Finally, the new version or the basic mapping rule for a multi-armed conditional

expression is presented in Figure 6.12. The result SDFGL, graph is shown in Figure 6.13.

For simplicity, the structure of the MB stubgraph is not included; it can be formed easily

based on the principle illustrated in Figure 6.11.

6.5 T'he Mapping Rule for Array Selection Operations

So far, only one type ot expressions in <primitive-cxp> has not been discussed - an

array selection operation. Let LIs consider the expression A[exp] where A is an array value

name and exp is an expression that computes an index value. In the source language, A

denotes an array value consisting of a series of element values along with low and high

bounds indicating index limits for these values. Assuming the evaluation of exp returns an

index value i. An array selection A[exp] selects the ith element value of the array A.

Figure 6.14 (a) illustrates the mapping rule for the expression A[exp]. The result

SDFCL graph is shown in Figure 6.14 (b). The array selection operation is directly

translated into the graph actor SEL, and its connection to the subgraph Mlexp].

The array operation A[cxp] can also be conceptually written in another version such

as SELECT(A,exp), where SELECT can be considered as an array operation construct in

the source language equivalent to the role of "[" and "]" in the original expression. Thus,

the mapping rules fotbr a primitive expression op(expl,exp2) as outlined in Section 6.1 can be

directly applied to generate the above mapping rule.
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MNRif Ill thel expl
elscif 2 tlihen exp 2

clscifilk-I then exPk-I
else exPk
emlirlj

def: G i = Mfexpil i = l..k

[-i= Mlli i = l..k-I

II = II, U 112U...U lk-I

remarks: #OLI'I'(G) = , #OU'I'(G 2) = .. = #U'I'(Ck)= n
input ports: IN(G 1) U IN(G 2) U .. U IN(Gk)U IN(I Il)U IN( 12)U. U IN(Ik-i)

output ports: (i E (Il...n})i

iinks: (i E { I...k))aj, (iE -l...k}) (aE IN(Gi)),a, (i e { ...k})(a E OUT(Gi)), ac

components:

MIfMIID inputs: (a E IN(II1))a --- a

outputs: (i E {l...k) --* ai , c - ac
(i E I{ ...kl)(a E IN(Gi))l'-gate inputs: a i •- 1, a + 2

outputs: 1 -- fl
(i E I...k })Mlnexpil inputs: (a E IN(Gi))/? a

outputs: (i E { ...n}))i -- 8i

(j E (-l...n })M-gate inputs: a -0, (i E { l...k)8 "-+ i

outputs: 1 --+ i

Figure 6.12. The mapping rule for multi-armed conditional expression
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Figure 6.13. SDFGL graph showing the mapping of a multi-armed conditional expression



-123-

MlidlexplI

def: G = fexp]

remarks: id is an array value namnc

input ports: IN(G)U id

output ports: 1

links: a

components:

M(ecxp)J inputs: (a E IN(G))a -- a

outputs: 1 --+ a

SII. inputs: a -+ 1, id -+ 2

outputs: I --+1

(a)

Ii

Figure 6.14. The mapping rule for an array selection operation

6.6 Pipelining of the Graphs for Simple Primitive Expressions

The data flow graphs generated by the basic mapping rules described up to this point

are acyclic [19] and all special actors are only used in forming conditional subgraphs (In

terms oi pipelining, MB and MM graphs can be considered as a multi-armed conditional

subgraphs, and the principle of balancing simple conditional subgraphs can be extended

easily to cover them). Hence, they can be balanced into maximally pipelined data flow

graphs by the balancing scheme developed in Chapter 3. This fact is important because the

bodies of the array construction expressions to be discussed later consist of such
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CXpressions.

The pipelining ofr array selection operations needs more discussion. In order to

conceptually use o1ur pipelined exectition model for static data flow graphs in Chapters 2

and 3, a SEL, actor should receive as its input a sequence of tokens on both of its input

ports. However, one of the input ports expects tokens carrying array values. ''he

manipulation of array values directly in a data flow computer may be expensive [2]. As a

result, the overhead may seriously degrade performance of the pipeline. This motivates

our study of the optimization of array operations in later chapters.

6.7 An Overview of Mapping General Iteration Expressions

The b.sic translation algorithm described in [19] for an iterative expression such as

the for-iter expression

for idl,id2...idk = exp

do iterbody

endfor

is outlined in Figure 6.15. It defines a separate mapping function MI for the iterbody part.

The graph Mljiterbody] is an acyclic graph which has two lists of output ports I and R, and

an iteration termination control output port labeled iter? (for simplicity, we use ? to label

the port). The set of ports in I is used to reiterate the values of the set of loop names

redefined in the iterbody; the set of ports in R is used to return these values when the

iteration is terminated; the output port iter? is used to signal which of the two possibilities

has occurred.

For each loop value name id1 - idk in the iteration body, there is an FM-gate which

will merge the values from the initialization expression (Mllexpl) with the corresponding

iteration output in the set of I ports of MlIfiterbodyl. An FM-gate can be considered as an

M-gate which has a built-in initial control input value F to ensure the initial data output
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Figure 6.15. The mapping of a for-iter expression

value is selected from Miexpl. The control input of the M-gate is connected to the iter?

output of Mlliterbody] . There is also an IS-gate for each free value name in the iterbody

controlled by iter? v,'ich also has a built-in initial control value F. Each of these will

absorb and pass the first value received, and will keep generating the same value each time

a T value is received from its control input port.
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As stated before, we are mainly interested in the mapping schemes of foraill alnd

for-construct expressions, both are special cases of for-iter expressions. Since only the two

kinds of expressions will be studied and extensively used, we do not specify the complete

mapping rule of iteration expressions which can be found in [19]. Here we only outline the

rule using a SDFGL graph in Fgure 6.15. In Chapter 9, we will discuss the development

of a special version of the mapping rule, and state its relation to the rule of mapping the

for-iter expressions outlined above.
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7. MNlapping Schemlee for One-level IForall EIpressions

In this chiaptcr, we develop the basic mapping scheme, i.e., the b asic n•apping rule

and Lthe optimilzation )roe()cdurc, Ifr Ione-level forall expressions. In Chapter 8, we show

how to extend the restult to nested forall expressions.

In source progralns for scientific comiiputation, fortall expressions oletn fonirm -, large

portion of' the code. Furthermore, there is uLsually massive piralllllism embedded in such

portions and the corrcsponding regularity oF the array operations makes it very attractive

Ibr outr pipelined code mapping schemes. 'l'hereflre. the rorall construlct deserves primary

attentlion, and its milapping scheme is a most important part of' the codeI mapping scheme

dcvclolped in this lthesis.

7.1 The Basic Mapping Rule

7.1.1 Pipelined Mapping Strategy

Let us first consider the one-level forall expression shown below

X=

forall i in [0O,m + 1]
construct

if i = 0 then A[0]
elseif i = m +1 Ithen A[m + 1]
else

f(A[i-1],A[i],A[i + 1],i)
endif

endall

For simplicity, the example code block has only one input array A, and the result array is

X. We use f to denote a primitive expression which is the body of the code block.

Recall that forall is a parallel construct which states explicitly that there are no data
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S VIIt 1

X t[I
,x~l]lI' -

-4-

; Yfi
P- "%III' [

W X(i1+11
1* [

- - X[m + 1]

mn+ 1 ...

X[rm + 11 "I X[Ol

Figure 7.1. Parallel and pipelined mapping schemes for a forall expression

A[OJ

A[II

A[2j

A[i-l1

A[il

A[i+ 11

A[m-1] o-- I

A[m]

A[m + 11

body
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b IkifI

-1
bý I I I



- 129-

dcependencies amlong elemeints o lthe array to be construtcted. T'lherelbre, we caln choose a

parallel mlapping strategy, i.e., the graph consists of a copy of the Ihrogralim body fir each

array element, as shown in Figure 7.1 (a). Since the value of the index i is fixed for each

copy, the top-most conditional vanishes. In order to perform such "flill-parallel" mapping,

the index bounds should be known beilre the data flow graph is generated. In the result

graph, both the input array A and the output narray X are in a parallel flattened

representation.

In this thesis, we are mostly interested in a pipclincd mapping scheme where

conlputation is arranged in a way that the elements or the output array are gcncrated in a

pipelined Ihshion. Instead of providing multiple copies of" the body, the pipelined mapping

scheme uses one copy of the body and exploits the parallelism by menlls o1 pipclining.

'l'herefore the element values or the input arrays o() the code block, such as the array A in

the above example, are consumed in a pipelined I•lshion. Since there are no data

dependencies among the computations of' the dil'•frent ,array elements, the result array does

not need to be red back as an input to the body. Thus the pipelined mapping strategy does

not introduce a cycle in the graph. This becomes a very important feature when maximum

pipelining of the result graph is desired. Such a pipelined mapping strategy is illustrated in

Figure 7.1 (b).

The potential advantages or the pipclined mapping scheme include the saving of

considerable program memory space and the effective use of actors in data flow graphs.

Furthermore, the overhead storage for the input/output arrays can be reduced or even

eliminated. We will come back to this point after we present the mapping rule in the next

section.
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7.1.2 The Basic Mapping Rule

In the pipelined mapping scheme, a forall expression is equivalent to a special case o()

the for-construct expression. For exanmple, the above forall expression is cquivalent to the

for-conslruct expression below

X=

for i fronn -t+ I to 0

'T' from arrayempty
construct

if i = () (then A[0]
elseif i = m + Ilien A[mn + 11
else

I(A[i-1],A[i],A[i+ l]J,i)
endif

enldall

in terms of the result array value computed. Such for-construct expressions have no real

data dependencies among the array elements generated in each iteration. Therefore the

mapping rule for general for-construct expressions can be simplified to construct the basic

mapping rule of forall expressions. However, the bulk of our discussion of the basic

mapping scheme for a general for-construct expression will not be presented until Chapter

9. In this chapter, we merely present a simplified version tailored for mapping forall

expressions. The version is straightforward enough to be understood easily, without going

into the detail of the more general scheme for for-construct expressions. In this discussion,

we will use some named SDFGL subgraphs to encapsulate such detail, and the reader may

find a description of their internal structure in Chapter 9.

As mentioned above, the basic pipelined mapping rule of a forall expression can be

derived directly from the basic mapping rule of an equivalent for-construct expression.

However, the latter usually imposes a certain order in which the elements of the result array
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MIorall id in jexpl,cxp,j conlsltru! exp cndallll

def

A = IN(M lcxpl)-I (idl
1. = IN(MlexpJ)

II = IN(MlIexp,2)

11= AUI.UII

conditions

the result array is to be gencrited in the major nornlal order

reniarks

#1. = # II = 1, expl and cxP2 are ol type integer.

I < Ii (where I = val(xp), h 11= v'il(cxp 2))

input porls: (a E Ii)a

output ports: I

links: (iC II...51)a i, (aiE CA)fa,

components:

(aEA)IS-gatc

inputs: a4 !- , a i 2

outputs: 1 -4- pf

MIJcxpl] inputs: (aEl.)a -- a

output: 1 --+ a

MIcxp 21 inputs: (aElI)a -, a

output: 1--, a 2

IGFN inputs: a, -- 1, a 2 -4 2

outputs: 1 -I a , 2 --+ a 4

MI[exp] inputs: (aEA)a --+a, a3 -- 1

output: 1 --+ a 5

AGFEN inputs: a4 -- 1, a 3 -- 2, as --+ 3

output: R - 1, 1 -- SINK

Figure 7.2. The mapping rule for a forall expression
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Figure 7.3. The SDFGL graph of mapping a forall expression

are generated. For example, the for-construct expression in the above example specifies

the order of the index i as 1 to n. The index value name i controls the progress of the

iteration (see Chapter 9). A forall expression does not demand any specific order to

generate its elements. Therefore, the pipelined mapping strategy of a forall expression
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mnust also state the preli.erred order in which the elements of the rCesult arralliy are to be

produced, which is called the gcneratioh orider of the airray.' We include suchl inlliwrmation

ais parl oi'our napping ruile representation. In Figure 7.2, we show the basic mapping rule

for a one-level forall expression. The' -igure 7.3 shows the result SI)-DG I. graph.

First note that in the <condition> parlt, it explicitly slates in which order the elements

or the resullt arral'y atre to be generated. In this case, the generation order goes from Xll to

X[h] (assuming X is the naile of" the result array), i.e., the array is generated in major

normal order. hle subgraph IG EN behaves as an "index generator". It has two input

ports (labeled 1,2) lir the low and high index limits respectively, and generates a sequence

of h-I • 1 index values: I...11 at its output portL (output port 1). Note that val(exp ), val(exp2)

denote the values o cxp, exp,2. Under the the condition I < I h, the order of IG FN

conli)onrs to the major normal order sutggested in llthe <conditioni> part. IGF.N also

generates, at another output port (Output port 2), a sequence of control values to control the

progress of the iteration. In this case, the control sequence is 'l''F, where mi = h-I + 1.

The result array is internally represented by a sequence of values carried by tokens on

the output port of MllexpD, i.e., a5 in Figure 7.3. To assemble these elements into a result

array A, another subgraph AG EN is used. AG EN has a control input port I which receives

the control value sequence from the corresponding output of IG EN. The other two input

ports 2,3 are for the sequence of index values and their corresponding array element values.

AG EN has two output ports labeled R and I, which correspond to the R and I output ports

in the MfIIiterbody] described in Section 6.7. In Figure 7.3, only the R output port is

actually used. Since there are no data dependencies between array elements, no iteration

path between the array value and the body is needed. IIThus, the I output port is assigned to

1. As stated in Section 5.1, the two major orders are important to this thesis. A more thorough discussion of
the generation orders of an array and other related concepts can be found in Chapter 8.
2. If i, h are compile-time computable, this condition can be automatically checked. Otherwise, it may be
specified as an attribute provided by the user, or derived from other sources.
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a SINK node.' The role o1r AGEN, under the control ol the sequence of control input

values, is to assembl) the sequence ol'elcment values into1 the restult array according to their

corresponding indices. We cian observe that the body expression is evaluated exactly m

times, once lbr each index value in the range I...h, and these values become the element

values or" the result array.

For convenience, we introduce in Figure 7.4 a simplified SDFG I lbr the mapping of

fIorall expressions. The links designated for the control values firom IGE-N are denoted by

the dotted lined box passing through IG EN, AG EN and the IS-gate actors. 'llie link

between IG EN and AGEN lir index values is omitted from the graph since it always exists.

In Chapter 9, we will examine the internal structure or' IGEN and AGEN, and how

they relate to the mapping ol for-conslruct expressions. We will also see that the above

nlapping rtLle of' forall expressions is a special case of Ihat lir a for-construct expression

which is derived irom IBrock's translation algorithm.

As an example, in Figure 7.5 we apply the basic mapping rule to the primitive fo rall

expression in Section 4.2.1. Note that the T-gates for array value A leading to each arm of

the conditional expression are omitted for simplicity.

The mapping rule in Figure 7.2 is based on the condition that the generation order of

the result array is a major normal order. We can also specify in the mapping rule (in the

<condition> part) that the result array is to be generated in major reverse order. The only

change in the mapping rule would be to reverse the connection of the two input ports of

IG EN. The IG EN will then "count down" from h to 1, generating the indices h, h-l...I

As we will show in Chapter 9, the graph MI[expj is generated recursively by applying

the basic mapping rule to the body, and there is no specifie restriction that it must be a

simple expression. Thus, although our discussion is centered on one-level primitive forall

1. The role of SINK is to model a perfect sink (see Chapter 3) which can absorb input tokens. We denote it
by the symbol shown in the figure.
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L -j

Figure 7.4. A simplified version of Figure 7.3

expressions in this chapter, the basic mapping rule presented in Figure 7.2 also applies to a

forall expression the body of which is a PIPVAL expression, including another forall

expression.

If the code block is a one-level primitive forall expression, the subgraph M[expl is
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In + I1

Figure 7.5. The SDFGL graph of mapping a one-level forall expression

G
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acyclic. Since there is no liedbackh pth between AGEN and its input, Mal•iexpol can be

executed in a maximnlly pipelined filshion, provided the IGEN and AGEN subgraphs

behave as a perlfect pipelined source and sink. An iiiplemnentation of the two subgraphs is

discussed in Chapter 11. Another factor which affects the performance of the pipelining is

how the elements of an input array are delivered to the code block and how elements of the

result array are used. 'I'his Iactor is the major focus ofr the next section.

7.2 Optimization Of Array Operations

The basic mapping rules transfbrm each PIPVAL array selection operation into a

graph actor SEFI, which perfbrms the role of a "subscripted read" operation in

conventional machines. It also generates a subgraph AGEN, which pjerlfrms the role ofl' a

series ol "subscripted write" operations. 'lTheref'ore, the data flow graph generated directly

by the basic mapping scheme may involve a considerable number of array operations,

which are expensive in a data flow conmputer [2,3].

In many situations, however, two code blocks generating and using an array as a

producer-consumer pair can be organized so that elements of the array are directly

transmitted between the two blocks without using memory as an intermediate storage at all!

This not only substantially saves storage space, but also removes all array operations, thus

eliminating the overhead of array memory operations and the data traffic in the

processor/memory interconnection network. Such optimization is the topic of this section.

7.2.1 An Example

Assume, in the data flow graph shown in Figure 7.5, that the input array A has index

range [0O,m + 1], the same as that of the code block. If the generation order of the elements

of A is the same as the order in which they are consumed by the SEL actors in the body

expression, it is perfectly possible to remove these SEL actors. The key is to arrange the

mapping such that the elements of A used in the computation are pipelined passing
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Figure 7.6. Result of Removing Array Operations in Figure 7.5

through in the right order and the unused values are discarded without causing jams.

In Figure 7.6 we show a data flow graph for the example in Figure 7.5 which satisfies

these requirements. Compared with Figure 7.5, we see that each SEL actor (labeled 1 - 5

respectively) is replaced by a T-gate actor. The subgraphs computing the index expressions

for each SEL actor are replaced by the proper boolean sequences, providing the control

input for the corresponding T-gate actors.

As shown in the table of Figure 7.7, these T-gate actors act as filters which let through

the element values in exactly the index subrange needed for the computation. Note that

the 4th column in the table denotes the range of indices for elements selected by each array

A

f \ I I

12 3

X
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Figure 7.7. A table of selection index ranges for array slection operations in Figure 7.5

selection operation (or SEL actor) in the code block. It is called the selection index range of

the corresponding SEL actor. We can note how the three array selection operations (i.e.,

A[i-1],A[i],A[i+l]) in the arm corresponding to the index range [1,m] are treated.

Necessary skews are introduced by inserting FIFOs of proper size in the paths of A[i-1] and

A[i] respectively.

The MM actor which merges the values from the three arms is also controlled by a

sequence of encoded control values 12m3. It passes the two boundary values (port I and 3)

come from the first and the last arms, and selects the other m values from the middle arm

(port 2). The result array X is represented as a sequence of element values X[0]...X[m + 1]

at the output port of MM. If the elements of X are also to be consumed by succeeding

code blocks in the same order in which they were generated, there is no need to assemble

them into an array value, thus eliminating the overhead of storing them in array memory

index
SI'I. xpression index range colltrol valuie scqsuence

0l+ I
1 I i 10, 01 0, O l 'l'

in 2
2 i - I [O, m-I 'I' IF

In
3 i .mJ [ , I , l 11' I:

2 In
4 i + 1 [2.m+i I I'I

5 + i 'I5 ÷ ,m -- I1 +1 4- FII " I
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and handling the array value at runtime. Accordingly, the graph shown in Figure 7.6 also

excludes the subgraph AG EN. As we can see, the graph aller the transliormation does not

conlta in any array actors.

lThe basic ideas behind the optimization of array operations are straightlorward. In

the next section, we Iormulate how to perl'orm such translformation.

7.2.2 Optimization of Array Selection Operations with Compile-'ime Computable

Selection Index Ranges

Consider the rangc-partitioning expression of a forall expression shown in Figure 7.8,

which is a onc-lcvcl primlitive forill expression with index i ranging flrom I to hi (I<h). We

assui me the bounds of the index range (i.e. l,h) of' the code block are compile-time

compttable constants. l'he range-partitioning conditional expression.is said to be ill

slandardn brin ifthe Following holds: 11 = 1, Im = h i nI+ 1 (m = 2...k-1) and hk-. < Ii.
Assume, that the above forall has an input array A with the same index range [I,h].

In the data flow graph produced by the basic mapping scheme, A is accessed by SEL actors

X=

forall i in [I,hJ

construct

if ll <= i <= hi then cxpl
elseif 12 <= = i <= then cxP2

elseif Ik-. (= i <= hk.- then exPk. I
else

cxp k
endif

endali

Figure 7.8. A range-partitioning conditional expression



- 141-

which correspond to array selection operiations A[i+b] in the source program. A key

rIi~tratmetlcr ii n oplinlizatioil is thie selectioni idex rang1 of the array selection operations.

SIere we concentrtll e von situations where Lthe selection index ranges are compile-time

conmpltable, and leave other situations to the next sectiofn.

If any arm in the body (expl-expk) does not contain filrther conditional expressions

with predicates depending on the index i, the selection index range fir A [i+b] can be

easily computed. The example of forall expression used in Figure 7.5 belongs to such a

class.

Case 1: A one-level primitive forall expression where the top range-partitioning

expression is in its standard Ibrm as shown in Figure 7.8, and the Ibllowing

conditions hold: (1) the bounds of all sul)ranlges are compile-time constant;

(2) expl - exPk do not contain any conditional expressions whose predicate

expression depends on i, while having A accessed in any of its

subexpressions.

Now let us discuss several major steps in the optimization procedure. without loss of

generality, it is assumed to have only one input array: A.

1. Selection index range and control sequence computation

Let A[i+bj be an array selection operation which resides in the subcxpression expm.

Its selection index range [x,y] can be computed directly from the subrange [Im,hm], by

noting that

x = Im + b (7.2.1)

y = hm + b (7.2.2)

The only constraint is I < x < y < h. If this was not observed, the compiler would signal an
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out-or-bound exception. A boiund-checking routine should he available to handle such

exceptions. For the purpose olfour discussion, we asstume that all array selection operallions

are bound correct.

As shown in Figure 7.6, each SEL actor and its index calculation stlbgraph can be

translirmed into a properly controlled T-gate actor, provided that the array A is

represented by a sequence o ' element values. Each I'l-gate is controlled by a boolean

pipeline C in the rorm F'I'Fqr. Such a transrormation is illustrated in Figure 7.9 (a) and

(b). From the selection index range [x,y] and the index range [1,h] of the array A the

partameters p,q,r cani be comnpultd by

p = x- I (7.2.3)

q = y-x + 1 (7.2.4)

r = hI- y (7.2.5)

i ) A

C:I. l,

(b)

note: A[i + b] has selection index range [x,y] where x, y are defined in (7.2.1) and (7.2.2)

p = x-l, q = y-x+1, r = h-y

Figure 7.9. The optimization of a SEL actor

.b )N 11 jol

I
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If' the elements or A are generated in the major normal order, a control sequence C =

FII"lFr is constructed, from (7.2.3) - (7.2.5). The T-gate will then select exactly the element

values in the selection index range in the right order. If the generation order of A is nmjor

reverse order, the control sequence should also be reversed: C = F"r'qFp.

2. Skew introduction and Skew FIFO adjustments

FIFOs should be introduced in order to achieve necessary skews and avoid jams. We

propose that this be done in the Iollowing way. Let us still use the input array A as an

example. Let A[i+ bl]...A[i + bt] be the set of array selections in one arm (say, the m-th

(d)

(b)

Figure 7.10. Skews in the optimization of array selection operations

I

I I
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arm), and let all the corresponding SHI, actors be r'placed(, as outlined above, by properly

controlled T-gate actors. Without loss or generality, we asstlme bl < h2 < ... < bt. This

situation is shown in Figure 7. 10 (a) and (b). Skews are introduced through FIF-'Os, where

sj = 2*(bh-bj) brj = I...t.

3. Other simpli ications.

At compile-time we

input of the M M subgraph

can also compute the encoded value sequence for the control

as ltl2t2...ktk, where

i= 1...k-Iti = hi -Ii + 1

tk = I -hk-l

(7.2.6)

(7.2.7)

as shown in Figure 7.11. Allter this is done, the MB subgraph for the range-partitioning

conditional expression may not be in use and becomes "dead code" which can be removed.

Such may also happen to the IGEN subgraph, if all of its outputs are no longer used.

The efficient implementation of the optimization depends on target machine design,

tl t2 tkS 2 .. k

Figure 7.11. The Control Sequence of MM actor

1 2--k

MM

1
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in particular machine support o1' boolean and encoded control sequences, as well as the

'f-gate and MM actors. A brief discussion is inclulded in Chapter 11.

Now, we summarize the above transformation in the form of" an optimization

procedure OPMAP for the case-1 forall expression. This procedure, as well as other

procedures to be presented later, takes as input a data low graph generated by the basic

mapping rules, and transforms it into a graph in which array actors such as AG EN and SEL

actors are removed or replaced by ordinary graph actors. The optimization procedure is

shown in Figure 7.13. Since the output array is to be generated in the major normal order,

the removal of AG EN in Step 0 is justified. The validity of the transformation of each SEL.

actor and its index calculation subgraph (Steps 1 - 3) is based on the conditions listed in

the condition partl ofthe procedure, and the validity of the selection index range calculation

of the corresponding array selection operation A[i+ b] are based on (7.2.1) to (7.2.5). The

skew adjustments (step 3) are based on our earlier analysis. The remaining steps are

straightforward.

a a
2 3 a

I I2

I F I
2 3

1 AGEN I
R 71

(a7) (b)

Figure 7.12. The optimization of AGEN
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'rocedure OPM AlP

hInpuls: a data flow graph G derived by the application of' lthe basic mapping rlc to a one-level primitive

rora:ll expression I in case-I standard Ibrm.

OuiIputs: a data flow graph G' with array operations in 0G optimized

('minlitions: (1) 0 is mapped under the condition that the result array is to be generated in lmajor normal

order, (2) each input array has major normal generation order.

Alllhod: Assume I is writen in thile form as Iigure 7.8. Remove AGI:N in G properly. Let S be the set

of input arrays in I,. For each A in S, computes the selection index ranges for all its array

selection operations. Replace the corresponding array actors in G with properly controlled

T-gate actors.

T7he Steps:

Step 0: Replace all AG I:N subgraph as shown in I"igure 7.12.

Step 1: II'S = 0 then go to step 5.

Step 2: .Let A E S. For each A[i + hi computes the values p,q,r according to (7.2. I) to (7.2.5). Find the

SHI. actors and their index calculation subgraph fbr each A[i + bj. Replace each Slil and its

index calculation subgraph by a T-gate actor controlled by C: FI'i•Fr as illustrated by F:igure

7.9 (a) and (b).

Step 3: For each arm of the range-partitioning conditional expression, perform the buffer size

adjustment on all T-gates introduced in Step 3, as shown in lFigure 7.10.

Step 4: S : = S -{A), goto Step 1.

Step 5: remove the arc connecting M I to the control input of MM (where MBl and MM are associated

with the range-partitioning conditional expression). An encoded sequence is computed from

(7.2.6) and (7.2.7) and provided as the control input for MM as shown in Figure 7.11.

Remove MBI if it is not used.

Step 6: Remove IGHN, if it is not used.

Step 7: Stop.

Figure 7.13. The optimization procedure for case-I forall expression

Now let LIs apply the optimization procedure OPMAP to the data flow graph in

Figure 7.5. The table of valid selection ranges and control sequences shown in Figure 7.7 is
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B

Figure 7.14. An example of optimization by OPMAP-- after Step 2

automatically computed by step 2. After step 2, the graph is transformed into the form

shown in Figure 7.14, where all array actors are removed and replaced by T-gate actors.

Step 3 adjusts the size of the FIFOs, and the result is shown in Figure 7.15. Step 5 replaces

the control link from MB to MM by a proper encoding control value sequence, as shown in

Figure 7.16. Step 5 and Step 6 eliminate MB and IGEN respectively. The final result of

the OPMAP procedure is shown in Figure 7.17. We note that it is the same as the graph in

EN

I
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In + I

E111+1
In 2

Figure 7.15. Continued from Figure 7.14-- after Step 3

Figure 7.6, as we expected.

In some cases, a primitive forall expression may not be directly expressed in the

case-1 form, but can be transformed into this form by some simple source level

transformation. For example, the top level range-partitioning conditional expression is not

in the standard form, as illustrated in the following expression:
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Figure 7.16. Continued from Figure 7.15-- after Step 5

if i>= 11 I i < 12 than expl
elseif i >= 12 i 13 than exp 2

elseif i >= Ik-1 i < k-1 then exPk-1
else expk
endif

I

I I I
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Figure 7.17. Continued from Figure 7.16-- Result

The above expression can easily be transformed into standard form by replacing 12 by

h1, 13 by h2..., where hi = 12 - 1, h2 = 13 - 1..., etc. Then all "<" signs in the predicate

expression can be replaced by _< signs. After such transformation, the expression is in the

standard case-1 form.

In another situation, the range-partitioning conditional expression may be in the

form of a nested conditional expression. For example, let us consider the following

range-partitioning expression:

A
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i I1 <= i I i<= athen

if 1 <= i f i <= b then exp,

else exP 2

entlif

elseif 13 <= i I i <= h3 then exp3

else cxP 4

endif

where 13 = a + 1, b < a. TI'his cxpression can also be transformed into the following

standard case-1 lbrm:

if1 (< = i I i <= hi then expl

elscif 12 <= i i <= 112 then exP 2

elseif 13 <= i i<= hj then exp3

else exp 4

endif

where hi = b, 12 = b +1, h2 = a.

From now on, we will assume all forali expressions in the above forms are

transformed into standard case-1 form before the application of the optimization

procedure.

In general, the graph derived after the optimization procedure may not be optimally

balanced. We may need to apply balancing techniques, if maximum pipelining is desired.

7.2.3 Selection Index Ranges Not Computable at Compile-Time

In some situations, the selection index ranges of array selection operations are not

compile-time computable. This happens, for example, when the subrange limits in the

range-partitioning expression are not compile-time constants. In this section, we discuss
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how to extend the optimization procedure to this situation, i.e.

Case 2 - as case 1 (section 7.2.2), except that 12"'lk-I' hl..hk-1 are not compile-time

constants.

We still assume that index range [I,h] is known at compile-tiaec. Let us consider the

selection index range [x,y] of A[i+b] in an arm, say expm1 . The key equations (7.2.1), (7.2.2)

are still valid for computing x,y. The only difference is that the values of Im ,hm11 are not

compile-time constant, e.g., they may be results of some other expressions. This, in turn,

will affect the computation of equations (7.2.3)-(7.2.5) Ibr control sequence parameters

p,q,r.

We propose a solution which introduces additional data flow graphs fir computing

(7.2.1)-(7.2.5) for the array selection operations as shown in Figure 7.18 and Figure 7.19.

The subgraph RGEN plays the role of computing p,q,r from Im,hm, according to (7.2.1) to

(7.2.5). The subgraph CGEN will generate the control sequence FPTqFr from p,q,r at

runtime. Step 2 in the OPMAP procedure in Figure 7.13 can easily be modified to

h

P

q

Figure 7.18. The RGEN subgraph for computing the control sequence parameters
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(a) (b)

Figure 7.19. The optimization of a SEL actor using C(GEN suhgraph

accommodate such changes. Steps 5-6 are no longer needed because the encoded sequence

is computed naturally by the IGEN and MB subgraphs. We omit the optimization

procedure which can be constructed easily.

7.3 Pipelining of One-Level Primitive forall Expressions

Let us consider the behavior of the result data flow graph of a one-level primitive

forall expression after an adequate optimization procedure is successfully applied. We are

particularly interested in case-1 expressions where each SEL actor is simply replaced by a

T-gate, and AG EN is replaced by a single arc.

Recall that the core of the graph before optimization - the graph derived from the

basic mapping rule - is acyclic. The optimization procedure obviously preserves the

acyclic nature of the graph. Furthermore, it eliminates AG EN and sometimes even IG EN.

I r\
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Best of all, all SEL actors tare remnoved and replaced by ordinary graph a:ctors. Thus, the

graph after optimization is the same as any acyclic dcata flow graph without alrray actors.

lHence it can be maximally pipelined iFappropria4te balancing is perliformed.
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8. lMapping Scnheme for Mullli-,evel lorall Ixpressions

In this chapter, we extend thlie hasic mapping ruIles and optimization procedures

developed in the last chapter to nested class-l fronIll expressions.

8.1 I Representation of Multi-dinmensional Arrays

8.1.1 Flattened Representation or Multi-dimiensional Arrays

As in VAI., a multi-dimensional array in PIFPVAI. is conceptually a one-dinmensional

strulcture whose elements are arrays. For example, a two-dimensional array of integers is

equivalent to a one-dimensional array whose elements are one-dimensional arrays of

integers. We call this model for multi-dimensional arrays a veclor of vctors model. In

contrast, sonic languages such as Fortran use a Jlat model, where the arrays of lowest

dimension are concatenated to make a one-dimensional array.

In developing the basic mapping rules for multi-dimensional arrays, the

vector-of-vectors model is a better choice, because it facilitates graph construction in a

recursive manner. However, in the data flow graph, the array values represented in this

model are expensive to manipulate in target data flow computers.

As in the one-level case, the goal of the optimization procedure is to effectively

remove the array operations and replace them with ordinary graph actors. In dealing with

multi-level forall expressions, this requires the use of the flattened array representation. In

a data flow graph, a multi-dimensional array can be flattened at any level, and each level

can have a fattened representation, like that of a one-dimensional array. In our discussion,

we are most interested in complete flattening, i.e., an array flattened in all dimensions, as

illustrated by the following example.

Let us consider A - a two-dimensional array of integer values whose first and second

dimensions have index ranges (1,m) and (1,n) respectively. Figure 8.1 (a) shows one

representation of the array, where only the first dimension is flattened. That is, A is
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A[il
4

(a) (b)

Figure 8.1. Flattened data flow representations of a two-dimensional array

represented by a sequence of m one-dimensional array values A[1]...A[m] carried by tokens

on a single arc in certain order, where A[i] denotes the array value For the ith row of the

array A. We can also represent the array in a complete flattened fashion as shown in

Figure 8.1 (b), where A is represented as a sequence of mxn tokens arriving at one single

arc in a certain order.

AI,,.II

I

1AI.nI

Al ~il
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8.1.2 Index Vcctors ,and Th'lcir Orders

T'he order of Ilattened representation introduced lbr a one-dimensional array also

needs to be extended to he nmulti-dimensionlal case.

Consider a k-dimensional array A where k > 1. An element of A can be selected by a

k-dimensional index vector i = (ili2 ...ik) via an array selection operation A[i',i2..ik]' where

iENxNx... N

with N being the set of nion-negative integers. Furthermore, there is a set of index limit

constraints, one for each index, such as

Il <_ ij < h (j = I...k)

where Ij and hj correspond to the low and high limits of the jth dimension respectively.

Later we will often need to reflr to the order of array elements in a flattened data

flow representation. I'his can be defined easily in term of an ordering ofindex vectors. Let

us define the order among index vectors.

D)einition Let i = (ili2...ik)' j = IJ'J..iJk) be two index vectors. We define i ý j

(read as i less than j), iff there exists t (l<t<k) such that it < j and is = Js for s = 1,2...t-1.

Now consider the following function f: V -, V, where V is the set of k-dimensional

index vectors, such that

f(i) = (i +bi 2 +b 2 ..i3+b3 ) i= (i,i 2...ik) (8.1)

where each element of f(i) is a simple affine function of the corresponding index in i =

(ilhi2...ik). The function f is called a simple affine function of i. Now, let us prove the

following theorem.
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'lheorem 8.1 If i = (ii2...ik) j  j'k) re two index vectors in V such that i -- j, then

the lbllowing holds: I(i) •l(j), where I(i) = (i -I+b1,i2 + b2...i F b.).

I'r'o'f 'l hicorem . /.

Since i,-- j, there exists t (l<t<k) such that it < jt, is = for s = 1,2...t-1. Hence, i+t- bt <

jt + bt, and and is-+-bs = js+ bs foI s = 1,2...t-1. As a result, I i) ý- IU) and the theorem

holds. 0

8.1.3 Major Orders in F•lattened Data Flow Representation

When an array A is completely flattened, it is represented as a sequence of' element

values carried by tokens on a single arc at successive moments. Among the many possible

orders of the flattened data flow representation of an array, two orders are of mnost interest

to us: the major normal order and the major reverse order. The two orders are called major

orders. The concept of major order has been used in the discussion of one-dimensional

arrays. Now we define it more carefully.

Definition Let aia be two elements of an array A with index vectors ij respectively.

An order of A (on an arc) is called a major normal order if ai  p aj implies i F j, and vice

versa. Similarly, an order of A is called a major reverse order iff a ,p a. implies j - i, and

vice versa.

When an array A has a major order on an arec, we also say it is represented in a major

order on that arc. For example, the representation of the array A in Figure 8.1 (b) is in a

major normal order on the arc. For convenience, we say an array is generated in a major

order by the graph of a code block (or simply, by a code block), if it is represented in a

major order on the output arc of the graph. In this case, we also say that the generalion

order of A (by the code block) is a major order.
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Figure 8.2. A pipelined representation of a sequence of index vectors

The concept of generation order can be applied naturally to index vectors. Let us

represent an index vector i = (il,i2...ik) by k tokens carrying values il...ik respectively,

conveyed on a group of k arcs as shown in Figure 8.2(a). Then a sequence of n

k-dimensional index vectors il = (ill,12...ilk), i2 = (i21"22'.i'2k)' *" in = (in*in2". in) can

be represented as shown in Figure 8.2(b). Now we can extend the concept of pipelined
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order to the sequence of index vectors such that ii -p i il'j ) i2 Irj -1r = k...k.. Thus, a

sequence of index vectors is said to be gener'ated by a graph l in a major order ir it is

represented in a Imajor order on the corresponding output arcs of the graph.

I.et F denote a data flow graph which cotmputes a simplel allne lulinction f in (8.1) as

shown in Figure 8.3. Assume a sequence of index vectors is presented at the input ports or

F. F will generate a sequence or index vectors at its output ports. It is easy to see that F

preserves the pipelined order between the two sequences. Let i1, i2 be two index vectors at

the input and ii ," i2.' 'heir corresponding output index vectors jl j 2 must satisfy j, ý-p j2
IIf the inpu)t vectors are represented in major normal order, i.e., we have ii - i2, then we

must also have jl " j2 since jl = I(il), j2 = 1(i2) and the li'nction F is a simple alline

function. As a result the sequcnce of1 output index vectors will also be in major normal

order.

I I .
Figure 8.3. Orders between input and outputs of an affine function
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8.2 Mapping ol"lwo-l.evel IKorall Ixplressions

Iet us start with the nmapping of two-level forall expressions to illtistrate how the

basic mapping rule kIr a one-level foraillexpression can be extended to a multi-level forall

cxpression.

Consider an example or a two-level foranll expression, shown in Figure 8.4, which is

known as the (two-dimensional) mnod(elproblemn in PDF applications. (This example is also

used in Chapter 4, we include a copy here for the readers convenience.) This code block

takes a two-dimensional input array A and constructs another two-dimensional array X. It

can be considered as a one-level forall expression the body of which consists of another

forall expression. As indicated at the end of Chapter 7.1, the mapping rule lbr one-level

forall expressions can be applied to such a two-level nested forall expression, simply by

recursively applying the mapping rule to its body. For example, Figure 8.5 shows the result

X=
forall i in [O,m + 1]
construct

if i = 0 then A[iJ
elseif i = m + 1 then A[ij
else

forall j in [O,n+ 1]
construct

if j = 0 then A[i,jj
ifj = n+l then A[ij]
else

(A[ij-11 + A[ij+I]
+ A[i-1,j] + A[i+ 1,jJ)/4

endif
endall

endif
endall

Figure 8.4. The model problem: version 1
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)0 m+I1+I 0 -In+1

Figure 8.5. The SDFGL graph of mapping a two-level forall expression

r(
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A J

Figure 8.6. Thle data flow graph for mapping A[iji

of mapping the expression in Figure 8.4, using the mapping rule under the mapping

condition that the result array is to be generated in major normal order. Note how the

nested structure of the forall expression is reflected in the result graph. The subgraph

inside the inner dashed line box corresponds to the inner forall expression It constructs a

sequence of m one-dimensional arrays: row 1 through row m of the result array X.

Now let us study how the two-dimensional array selection operations in the body are

handled in the mapping. As stated earlier, an array selection operation in the form A[ij] is

equivalent to A[i][j] where A[i] can itself be considered an array, i.e., the ith row of A. The

mapping rule for a one-dimensional array selection operation can be extended directly to

the two-dimensional case. Figure 8.6 shows the result of recursive application of the basic

mapping rule in section 6.5 to A[ij]: two SEL actors in series correspond to the selection

operations by index i and j respectively. One can easily understand the above result by

considering A[i][j] as SELECT(SELECT(A,i)j). Thus, the mapping rule associated with

binary operators can be recursively applied to derive the graph shown in Figure 8.6.

i . a,
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It is interesting to note the dilTerent reprLsentations of the result array at dilllerent

stages in the graph. At the output port or the inner MM actor, the arra'y is represented by a

sequence or (m+ 2) x (n + 2) element values carried by tokens on the arc directed to the

inner AGEN at successive moments. That is, the array is completely Ilattened and

generated in major normal order. The rule or the inner AGEN is to "plack" the sequence

or elements values into m +2 one-dimensional arrays, each corresponding to one row or the

array X. Thus, at the output port of' the outer MM, the array is represented as a sequence

of (i + 2) tokens, each carrying a one-dimensional array value on the arc directed to the

input of the outer AGEN. Similarly, the outer AGEN will assemble the m+2

one-dimensional array values into the result array represented by one token carrying a

two-dinmensional array value X on the arc from its output port.

8.3 Optimization of'Two-level Primitive Forall Expressions

The data flow graph derived from the basic mapping rule Ibr a two-level forall

expression may contain certain array actors. The overhead may be even more significant

than in the one-level case, because it often involves nested AG ENs and SEL actors which

must be able to generate and transmit sequences ofrarray values, and store them in memory

when necessary. As belore, the goal of'optimization is to remove the AG ENs and the SEL

actors and replace them with ordinary graph actors. Thus, the result data fow graph may

show much improved performance in terms of pipelining. The optimization procedure to

be presented is based on the one-level case developed in Section 8.2.

8.".' Consistent Array Selection Orders

In this section, we extend the concept of the selection order of an array selection

operation - the order in which the elements of the array are used - to the

multi-dimensional case.

Let us consider an array selection operation A[i+bl,J+b2] in a two-level primitive
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rorall i in l10,m+ II
consl ruct

forall j in J(0,n + I I

Aji4 bhj+h1l

eiidll

Figure 8.7. An array slection operation in a two-level primitive forall expression

m+1

0 n +I

XYZ95

Figure 8.8. The selection order of an array selection operation



- 166-

forall expression as shown in Figure 8.7. The data flow graph is generated by the basic

mapping rule as shown in Figure 8.8, where A[i - bl j +! b] is mapped into two SEL, actors

in series. The selection order of A[i+ blj-+ b2] is the same as the pipelined generation

order of its index vector (i + blj + b2), which is represented by a sequence of pairs of tokens

on the two arcs labeled i'j'. I'This order - the selection order of A[i 4- b, j+b2] - is the

same as the generation order of index vector (i,j), represented by the sequence of pairs of

tokens on the two arcs labeled ij (see argument at the end of Section 8.1).

An important condition of optimization of A[i + bl, j + b2] is that its selection order

should match the generation order of A. This also implies that if more than one selection

operation of A exists, they all should have the same selection order. If this requirement is

met, we say the array A has a consistent selecion order in the code block (or its graph); or

equivalently, we say the code block (or its graph) has a consistent selection order with

respect to A.

Thus, if the body in the above example contains only array selection operations in the

form of A[i + bl, j + b2], the forall expression has a consistent selection order with respect to

array A. This condition is very important to the application of the optimization procedure

to be developed next. Therefore, it is included in the optimization procedure as a key

attribute associated with a forall block.

As a remark, there are cases where a code block may not have a consistent selection

order with respect to its input arrays. For example, in Figure 8.7, if the body of the inner

forall expression contains both A[i+b 1, j+b 2] and Alj+b3, i+b4], then the forall

expression does not have a consistent order with respect to A.

8.3.2 An Example

Let us briefly study optimization of the data flow graph of the two-level forall

example derived from the basic mapping rule as illustrated in Figure 8.5. There are 14 SEL

actors which can be divided into two groups. The first group, called level-I SEL actors,
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consists of eight SI, actors on the lel (labeled 1-8): the second group, called level-2 SEL

actors, colnsists o1 6 SFE actors on the right (labeled 9-14). ''lhe selection indices or the

level-I and Icvcl-2 SEI, actors correspond to the indices of' the level-I and level-2 forall

expressions, e.g., i and j, respectively.

Now consider the optimization of the SEL, actors. Note that the forall expression has

a consistent selection order with respect to A. We assume that array A is generated in

major normal order. Furthermore, we assume that X is also to be consumed in major

normal order. The optimization includes the removal of SEL actors, as well as AG ENs.

1'he principle ol optimization is the same as that fbr the one-level case outlined in the last

chapter. Since the selection order of all array selection opercations of the input array A is

the same as its generation order, each SEL. actor can be replaced by an ordinary graph actor

such as a properly controlled T-gate actor. The key is that the sequence of element values

of A used in the computation must be passed in order, while the unused elements should

be discarded without causing jams.

As before, we need to derive the set of selection index ranges (for all SEL actors) and

the corresponding control value sequenccs (boolean pipelines). In the example under

discussion, the set of ranges are compile-time computable, using the same principles found

in (7.2.1) to (7.2.5). The table in Figure 8.9 lists these parameters for the eight level-I SEL

actors. Note that each value in the selection range selects one row of the array. ' Therefore,

d = n +2 control values are needed to select or discard values in one flattened row. The

selection ranges and control sequences of the six level-2 SEL actors are listed in Figure

8.10. They are similar to those found in a one-dimensional array.

Therefore, an optimization similar to that for the one-level case can be performed.

The result graph of the optimization for our current example is shown in Figure 8.11. All

AGEN and SEL actors have disappeared from the result graph. Note the FIFO sizes for

the level-I SEL actors. Recall that the FIFOs are introduced together with certain T-gates

to hold skewed values and prevent jams. A skew of 1 of index i results in one row of
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Figure 8.9. The selection index ranges and control sequences -- level-I SEL actors

excessive array element values, which should be held by the FIFO. Thus the size of a

FIFO associated with a level-i SEL actor is in the unit of d = n-2. For example, if we use

A[i +1] as a reference, the skew of i for A[i-1] and A[i] are 2 and 1 respectively. Hence

FIFOs of size 4d and 2d are introduced respectively.

In the next section, we present the extended optimization procedure. Using this

procedure, we will be able to derive the simple result graph in Figure 8.11.

control
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F;igure 8.10. The selection index ranges and control sequence -- level-2 SEIL actors

8.3.3 Optimization Of Array Selection Operations with Compile-time Computable

Selection Index Ranges

Let us consider an input array A to a forall code block which has a consistent

selection order with respect to A. Without loss ofgenerality, A is assumed to have the same

index ranges as the index range of the code block. In this section, we look at the case in

which the selection index range for each array selection operation A[i+b 1, j+b 2] is
compile-time computable.

Assume the code block to be handled is the two-level forall expression shown in

Figure 8.12. The top level structure of the body expression consists of a range-partitioning

conditional expression with respect to the index i. It is similar to that in Figure 7.8 (see

Chapter 7), except that each exp s (s = 1...k) may now consist of a one-level forall

expression. All the subrange limits should be known at compile-time in order to compute

coll''ol

SIT. index index range selection rangec value sequenceexlpression p I r

n+l

9 j lo, 0l I(, 01 0 1 n + I C9 'I':

10 j (1, N I I C10: I'I F

n 2
11 j-I 0, n-1l 0 n0 2 ClI I:

[1, n 2 n
12 j+ 1 [2,. +11 2 n 0 C2: F T

n
13 j [1, n n 1 : I ' F

n+1
14 j [n+1I, n+l1j [In+1, n+Il n+i ! 0 C14: F T4

.........



- 170-

Figure 8.11. Result of Removing Array Actors in Figure 8.5

the selection index subranges for all level-i SEL actors. A similar condition is needed for

the level-2 forall expressions. Thus, this case is a two-level version of the case-i forall

expressions introduced in Chapter 7.

Case-i (two-level): A two-level primitive forall expression where the

range-partitioning expression is in its standard form (see Figure 8.12).

Without loss of generality, it is assumed to have only one input array: A. The

r(
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forall i ii 11.hl
cotrislrct

if I <= i<= II I thene xpl
lscicir 2 <= i< = 11 2 then cxpl

isirIk. < =  i < = k- the eCXPk-I
else

CXPk
ecndif

eithull

;igure 8.12. Stantlard case I form

bounds of all subranges are compile-time constant. In addition, the range

expl - CxPk does not contain any conditional expressions whose predicate

expression depends on i and has A accessed in any of its subexpressions. Ifr

an exp s (s = I...k) consists of a one-level rorall expression, it must be in

one-level case-1 form.

Now let us consider how to extend the optimization procedure to the two-level case-1

forall expression. Recall that an array selection operation A[i + bl, j + b2] is translated by

the basic mapping rule into a series of two SEL actors as shown in Figure 8.6. As before,

the SEL actors are replaced by T-gates controlled by proper control value sequences. The

key is to compute the selection ranges of i and j for A[i + bl , j+ b2]. This can be performed

by using the same equations (7.2.1) - (7.2.5). When cotlstructing the control value

sequences, each value of i in its selection range corresponds to one row of A. Thus when

performing the optimization for a level-i SEL actor, both the control sequence and the size

of the FIFO should be weighted by d, where d is the size of one row of A (i.e., d = I-h+ 1),

as shown in Figure 8.13 and Figure 8.14. The handling of level-2 SEL actors is the same as
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i b
ilk \ ,, d I

pd qdC:1 .1.(1d1:rd:

(a) (b)

Figure 8.13. Optiniization of a L evel-I SEL actor

that described Ifor one-dimensional cases, except that the selection range for j + b2 should

be computed in terms of its corresponding level-2 forall expressions.

Thus, the optimization procedure for a one-level primitive forall expression can be

extended to a two-level primitive forall expression. Such extension is straightforward and

is shown in Figure 8.15.

Let us apply this optimization procedure to the forall expression in Figure 8.5. After

step 2, the graph is transformed into the form shown in Figure 8.16, where all array actors

are removed and replaced by T-gate actors. The selection index range and control value

sequences for each level-I and level-2 SEL actor in the graph (listed in Figure 8.9 and

Figure 8.9) are computed by Step 2. Step 3 adjusts the size of the FIFOs, as shown in the

result graph in Figure 8.17. Step 5 replaces the control link from MB to MM by a proper

encoding control value sequence and removes MB, as shown in Figure 8.18. Step 6

eliminates IGEN. The final result is shown in Figure 8.19. This graph is the same as the
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(Li)

(rI)

s =(b -b )x2d d=h-l+lj t j

Figure 8.14. Skews in the optimization with weighted buffer size

graph in Figure 8.11.'

As in the one-level cases, there are situations in which a two-level forall expression is

not initially in the standard form of Case 1, but can be transformed into that form. We

assume such transformation is done before the optimization procedure is performed.

When the selection index range is not compile-time computable, the optimization

1. When no confusion may occur, we omit some arrows in Figure 8.16 - Figure 8.19 for simplicity.

I
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Proc.edureC OPMIAP

Inpul.s: a data Ilow graph G derived by the application of the basic mapping rule to a two-level primitive

forall expression IV in case-I standard tonn.

)Oullpus: a data flow graph G' with array operations in G optimized

('idmliions: (1) G is mapped under the condition that the result array is to be generated in major normal

order. (2) each input array has a major normal generation order, (3) all array selection

operations of A have a consistent selection order, and it is the same as thdie generation order.

AMeihod: Assume FI is written in the iorm as Figure 8.12. Remove AGi.N in 0 properly. Le.ct S be the set

of input arrays in I. For each A in S, compute the selection index ranges for all its array

selection operations. Rcplace the corresponding array actors in G with properly controlled

'I'-gate actors.

The A/gurithi:

Step 0: Replace all (level-l, level-2) AGFIN subgraphs as shown in Figure 7.12.

Step i: If'S = 0 then go to step 5.

Step 2: Let A E S. For each array selection operation on A compute the values p,q,r according to

(7.2.1) to (7.2.5). Find the level-I SII, actors and their index calculation subgraph for each

A[i+ b]j. and replace them by a 'T-gate actor controlled by C: :lpd'rqdjrd with corresponding

p,q,r as illustrated by Figure (a) and (b), where d = (h-I + 1). Also find the lcvel-2 SEIL actors

and their index calculation subgraphs for each A[j+b 2], and replace them by a T''-gate actor

controlled by C: FlI 1Fr with corresponding p,q,r as illustrated by Figure (a) and (b) (where i

is replaced by j).
Step 3: For each arm of the range-partitioning conditional expression, perform the buffer size

adjustment on all level-I T-gates introduced in Step 3 as shown in Figure 8.14, where d =

(hi-I+ 1). Perform a similar transformation for all level-2 T'-gates but note that d = 1.

Step 4: S : = S -{A), goto Step 1.

Step 5: For each range-partitioning expression of the forall expressions in both levels, remove the arc

connecting MI1 to the control input of MM, and provide an encoding value sequence as

shown in Figure 7.11. (Note that the sequence for level-I forall should be weighted by d.)

Remove Mi1 if it is not used.

Step 6: Remove IGHN, if it is not used.

Step 7: Stop.
Figure 8.15. The optimization procedure for two-level case-1 forall expressions
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Figure 8.16. A two-level forall optimization example -- after Step 2
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- 1

Figure 8.17. Continued from Figure 8.16 -- after step 3

I -

-.
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Figure 8.18. Continued from Figure 8.17 -- after step 5

(
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I ' I

L- -,, , ,, , J

Figure 8.19. Continued from Figure 8.18 -- final result
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procedure is not directly applicable. However, it is olten possible to introduce extra code

to generate the control value sequences atyruntime, just as discussed oIr the one-level case

in Section 7.2.3.

8.4 Multi-level Forall Expressions

The mapping of a multi-level forall expression can be performed using the same

principle as that for a 2-level forall expression. That is, the graph of a k-level forall

expression can be recursively constructed from that of a (k-1) level forall expression, etc.

Therefore, the mapping of a multi-level forall expression is based on the mapping rule of a

one-level forall expression. As ror the two-dimensional case, the mapping rule for an array

selection operation orf a multi-dimensional array A[i1, i2 ..."ik] can be derived by extending

that for a one-dimensional array.

The optimization procedure for a multi-level forall expression can also be constructed

by applying the principles discussed for handling a 2-level forall expression (which in turn

is based on the optimization procedure of one-level forall expressions). Note that the

concept of consistency of selection orders with respect to a multi-dimensional array can be

directly extended from that for a two-dimensional array. Again, we are most interested in

cases where the selection index ranges are compile-time computable. We omit the details

of such extensions.
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9. Th'le Malipping Sclheme Ior IFor-construct Expressions

In this clhaipter, we present the mapping scheme foIr another important array creation

construct in PIPVAI, -• the for-constnuct expression. One imiportant aspect is to illustrate

how our basic mapnpi ng Irulc of the for-consltruct expressions is derived ironim simlplification

or the more general marpping algonrithm for iteration expressions [19]. In Ihct, we have

already seen the pipelined mapping scheme of forall expressions treated as a special case of

the for-construct expressions. In mapping for-construct expressions, we need to properly

introduce and handle feedback paths in the result data Ilow graph.

9.1 The Basic Mapping Rule

Recall that a PIPVAI. for-construct expression can be considered as a special case of'

a Val for-iter expression. Let us consider the one-level for-construct expression shown

below where the body expression is denoted by f.

X =

for i from 1 to n
T from arrayempty

construct
f(i,'T,A)

end for

Here we assume f denotes an expression with one input array A. As stated in Chapter 4,

the above expression is equivalent to the following Val for-iter expression

X =

for i = 1,

T = array-empty
do

if i > n then T
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else

iler

ii=i+1
enditer

eidif
endclor

'Thus, the basic mapping rule for a for-construct expression can be developed based on that

for a for-iter expression outlined in Section 6.7. Our concern is how to use the lifatures of

for-construct expressions to siiiiplify the construction of the corresponding data flow

graphs.

I et us study the data flow graph derived after applying the basic mapping rule to the

above for-iteer expression, as shown in Figure 9.1. Compared with the graph in Figure 6.15,

we can see that the graph inside the dotted-lined box corresponds to the graph of

Mlllitcrbodyl. The set I of reiteration ports (see Section 6.7) of the iterbody consists of the

ports 11,12 for i and T - the indcx value name and the temporary array name being

constructed. Tihe iter? output is derived from a index limit check of i (i< n). The result

output port R of the iterbody is the port of the result array X. At the beginning, the loop

names i and T are initialized to 1 and arrayempty respectively. Each time through an

iteration, the value computed by f is "appended" to the array T at the index value i by the

array append actor. After n iterations, the test i < n will return an F value. The iteration

will be terminated and return T as the result array X.

A very useful feature of the graph is that we can partition it into three different parts,

and restructure the graph as shown in Figure 9.2. The role of the first part - enclosed in

the dotted-line box IG EN - is: (1) to generate the sequence of index values 1...n for i (port

1); (2) to provide the boolean value sequence TnF as the iter? output to control when to

terminate the iteration (at its output port 2). The role of the second part - enclosed in the

dotted-line box AGEN - is to pack the sequence of element values computed by f into a
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Figure 9.1. 'lThe data flow graph of a for-construct expression

result array. The element values and their corresponding indices are taken from input

ports 3 and 2 respectively. Under the control value iter? from the input port 1, the

sequence of element values is assembled into the internal array T at each iteration and the

array value is delivered at R when the iteration terminates. The major role of the third part

1
I I

-J

I I
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Figure 9.2. The Functions of IGEN and AGEN subgraphs

is to compute fand generate'a sequence of element values..

In AGEN, an append actor is used which corresponds to the VAL array append

I (

. .I I I. .. . .I I I
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op~eration [4]. In the data flow graph or AG EN associated with a for-construct expression,

such append operations always start with an empty array arayemipy (denoted by A in the

graph), whose bounds are known at the start of alrray construction. Furthermore, the

pattern in which each clement is to be "appended" to the array is regular - the array is

filled Lup at consecutive indices in the index range, one element Ibr each index value. For

our present discussion, we assume the arrayempty constant operated on by such a series of

append operations will always be perfornmed correctly. The impact of regularity on

ellficient implementation or array operations on the target maichine will be addressed in

Chapter 11.

We can observe that the graph fbr any for-construct expression can be so partitioned,

we introduce two named sulbgraplhs IG EN, AG EN to denote the corresponding parts. In

fact, we hahe also seen how these named subgraphs are used conveniently in the

construction of' the data flow graphs for forall expressions. A discussion of implementation

issues of these subgraphs is included in Chapter 11.

The simple structure of the result graph motivates the development of the following

basic mapping rule fbor the for-construct expressions. A result graph is explicitly

constructed from the subgraphs IGEN, AGEN and the graph of the body expression, the

latter is derived by recursive application of the set of basic mapping rules to the body.

Thus the need of a separate mapping rule Ibr the iterbody (such as MI outlined in Chapter

6) is met by explicitly utilizing the structure embedded in AGEN and IGEN subgraphs.

T'his mapping rule is presented in Figure 9.3. The corresponding SDFGL graph is shown

in Figure 9.4. Note that the feedback path is introduced in the result graph by using the I

output port of AG EN to reiterate the array to the body expression.

Figure 9.5 shows the result of the application of the basic mapping rule to the

first-order linear recurrence in Figure 9.6. Here we use the same convention of simplified

notation introduced for forall expressions (see Section 7.1). Note the role of the feedback

link from the I output port of AG EN.
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Mifor id from cxp, to cxp Z

'I' from arrayempty

construct exp endforD

def
A = IN(MI cxp)- (TI',id)
1. = IN(Mlexp1•)
11 = IN(MIcxp 2l)
1 -= AU 1.U FI

conditions

the result array is to be gencrated in the major normal order
i.e., I(< 11 (where I = val(expl), 11 = val(cxp 2))

relimairks

#1. = #II = I, exp, and exp areC ol'typc integer.

ihput ports: (a E I)a

output ports: 1

links: (i E { l...5})a i, (a E A)fal, p

components:
(aEA)IS-gatc inputs: a4 - 1, a , 2

outputs: 1 --+ #a
Mlcxpll inputs: (aEl.)a -, a

output: 1 -+ a,

Mf[cxP2] inputs: (aGE-l)a - a

output: L --+a 2
IGFHN inputs: a, -, 1, a2 -- 2

outputs: 1 -I a3, 2 - a4
Mj[cxpj inpuLts: (aEA)Pa --+ a, a - 1, , --- I

output: I -, a s
AGEN inputs: a4 --+ , a3 -- 2, a s -- 3

output: R -, 1. I --+ fi

Figure 9.3. The basic mapping rule for for-construct expressions
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/1,

Figure 9.4. The SDFGL graph from the mapping of a for-construct expression

The above basic mapping rule can also be recursively applied to a multi-level

for-construct expression, as it is in the case of the forall expressions. Figure 9.8 shows the

result graph for the mapping of the two-level for-construct expression illustrated in Figure

9.7 (it is the same as the example in Section 4.3, here we include a copy for the reader's
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1 n

Figure 9.5. The data flow graph from mapping a first-order linear recurrence

convenience). Note the similarities between this graph and the graph in Figure 8.5 A major

difference is the two feedback links introduced from the two AGEN subgraphs to the body

of the graph. As before, for simplicity we omit the T-gate and IS actors for both the input

arrays A,B and the two internal arrays.

p
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for i from I 1o n

T from array-emply
construct

if i = I then I[i]
else

A[ij*T[i-1J + Ih[ij
endif

endfor

Figure 9.6. A first-order linear recurrence

9.2 The Optimization Procedures

As with primitive forall expressions, the array operations in the data flow graphs of'a

primitive for-construct expression generated by the basic mapping rule may be removed

and replaced by ordinary graph actors. Such optimization can be performed only if the

generation orders of the input arrays match the selection orders of the corresponding array

selection operations, and the generation order of' the result array matches the order in

which it will be used by the succeeding code blocks. The difference is that the data

dependency defined by a for-construct expression usually demands a certain generation

order of the result array as well as the selection order of the input arrays. Therefore, we do

not have the flexibility of'choosing the order as we do for forall expressions. In this thesis,

we are only interested in the case where the result array is generated in one of' the major

orders.

The principles of the optimization procedures for the primitive for-construct

expressions are similar to that of forall expressions. As before, the key is to compute the

selection index ranges of array selection operations and their corresponding SEL actors. In
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LIT=
for i fro () to iii + I

l from iarrayemiIpty
construlct

if i = 0 then Ulil
elscif i = Im + I then Ul[i
else

for jfront Oto n+ I
'12 from alrrayempty

construct

if j = 0 lithen U1ijI
else j = n+ I then U[iji
else

(U[i+ 1.ji + Ulij+ Ij
+ 'Illi-lIjl + 'T'21i.j+ I1)*1/4

endif
endfor

endif

endfor

Figure 9.7. An example of a two-level for-construct expression

our discussion, we are mainly interested in the situation where these selection index ranges

are compile-time computable. In particular, we are interested in the primitive for-construct

expressions, which are in a similar form as the case-1 forall expressions. We will not repeat

the definition of such for-construct expressions, which can be easily deduced from its forall

counterparts.

As anticipated, the optimization procedure for a case-1 for-construct expression is

very similar to that of a case-1 forall expression. The major difference is the need to handle

the feedback paths introduced for the internal arrays. This need has the following two

impacts. First, the optimization of array operations should include not only the input

arrays generated by other program blocks, but also the internal arrays which are reiterated
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Figure 9.8. The mapping of a two-level for-construct expression

Y
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to be used inside the body. This is easy to handle because the index range ofi an internal

array is the same us that of'a result array, and hence is the same as that o1 the corresponding

for-construct expression. Moreover, it is compile-tinilc computable for a lscase- expression.

The generation order of any internal array is the same as that of' the result array. Since we

are only interested in the situation where dhe selection orders of all selection operations for
an internal array are the same as the generation order or the corresponding internal array,

the selection operations for any internal array can be handled just like the selection

operations or other input arrays.

Another impact is in the optimization of AG EN subgraphs. Remember that when an

AGEN is removed, the array is "llattened" and becomes a sequence or element values

carried hy tokens on one arc which is then branched into the output arc (f'rom output pollrt

R) and the arc for the liedback link (firom the output port I). In order to hold the sequence

of element values or the result array, certain FIFOs should be introduced on both the

a a
2 3 a

1 I 2

I~f~h·o*P

FIFO denotes a FIFO with bounded size

(a) (b)

Figure 9.9. Optimization of AGEN in a for-construct expression

t AGEN

R.
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output arc and the feedback arc. The Ibrmer will be discussed in Chapter 11. The latter is

only visible inside the code bloxck under consideration. ''he problem of introducing FI FOs

of a precise size into a cyclic graph Ibr balancing purposes is still open as addressed in

Chapter 3. Nonetheless, the maxinlum size of the FIFO holding the element values of the

internal array on the feedback link is the same as the size of the corresponding result array

-- a compile-time constant. Thus, we can introduce a FIFO of bounded size on the

fieedback link. The implementation of such FIFOs or, the target machine will be discussed

in Chapter 15.

The optimization procedure for case-1 primitive for-construct expression is very

similar to the corresponding optimization procedure of the forall expressions presented in

the last two chapters. We will not discuss the procedure in detail, but merely point out that

Figure 9.10. The selection index ranges and control sequences -- level-I SEL actors

index selection control
S. expression index range range p q r value scqucnce

I i 0.0] [0,01 0 1 m+1 Cl :'IF -(mn+)d

d md d

2 i[ (,mJ 1 i 1 C2: F1 T FI

imd 2d
3 i-I [0, nim-] 0 m 2 C3 :'T

[1,mj
d I nd d

5 i [,m] nm 1 C5: FTI F

2d md
6 i+1 [2, m+1] 2 2 n 0 C6: F T

d md d
7 [,m] m 1 C7 : FT FI

8 i [m+1, m+1 [m+!. m+1] m+1 1 CS: n+l)d
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Figure 9.11. 'The selection index ranges and control sequences -- level-2 SEL actors

the only change is in step 0, which should now be performed according to Figure 9.9. The

selection operations of the internal array can be treated just as that of other input arrays.

An example in the next section illustrates such changes.

9.3 An Example of Optimization

Let LIs study the optimization process of the data flow graph in Figure 9.8. An

optimization procedure will compute the selection index ranges and control sequences for

the level-i and level-2 SEL actors in the graph, as shown in the two tables of Figure 9.10

and Figure 9.11. Both the AGEN subgraphs and the SEL actors can be removed by a

optimization procedure as shown in Figure 9.12. After further optimization steps, the MB

and IGEN subgraphs are removed. The result is shown in Figure 9.13. It is interesting to

note how the above optimization process is similar to that for the forall expression in

Figure 8.4 (see also Figure 8.16 to Figure 8.19).

sekction control
SII. rsin index rnge range q r value sequence

9 10, 01 [0. 01 0 1 n+-I C9 ": 'lli1 +1

10 j II, Ni I I CI0 : l1'1

n 2
II j-1 0, n-l 0 n 2 CII:'I' pI

1. j - 2 n
12 j+l [2. n+1 2 n 0 C12 : 'I'

13 j [I, nl 1 n 1 C13: I'

14 j [n+1. n+l1 [n+1, n+1l n+I 1 0 C14': I'I+l



+1 0 n+1
- 19 -

Figure 9.12. A two-level for-construct optimization example -- after removing array actors
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I I

Figure 9.13. A two-level for-construct optimization example -- final result

K
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I). A Survey of Related Optimizallion Techniques

Chapters 4-9 complete otur presentation of the basic pipelined code mapping schemes

lbr PIPVAI. expressions, including the two important classes of array construction

expressions -- primitive forall expressions and primitive for-construct cxpressions. 'l'hese

basic mapping rules and optimization proced-ures provide a basis upon which other

transformations and optimization techniques may be incorporated and applied.

As we said earlier, the performance of the innermost level is critical, bccause it

tusuLally constitutcs the most comptltationally intcnsive part of the program. When the

innermost expression is a primitive forall expression, the basic mapping scheme described

earlier can be applied directly to generate liilly pipclined data flow graphs fbr the

innermost expression. If the innermost level consists of' a primitive for-construct

expression, the degree of' pipelining that can be achieved (by the direct application of the

basic mapping scheme) is often limited by the data dependencies implied by the iteration.

In this chapter we survey a few other transformation techniques which, combined with the

basic scheme, allow such innermost expressions to be mapped more efficiently in terms of

pipelining.

As with conventional language translators, these transformation techniques are

usually known as "optimization" techniques, although the word "improvement" may be

more appropriate. Our survey concentrates on how these techniques can be combined with

our basic pipelined code mapping schemes to improve the performance of the result

graphs. Such improvements are often achieved through compromise among different

objectives. Use of a particular optimization technique depends on both the nature of the

innermost loop and its surrounding expressions in the code block to be mapped and the

relation between this code block and other code blocks. No universal scheme exists which

is suitable for every situation. Therefore, our discussion will be closely coupled with

examples which may illustrate trade-tradeoffs frequently encountered in real applications.

In Section 10.1 we consider the case where the innermost expression computes linear
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recurrences. In Section 10.2, we briefly outline how our work relates to loop-unfolding and

array-interlcaving techniques; in section 10.3, we preselnt technilques which exploit

parallelism embedded in outer level expressions (usually forall expressions).

10.1 Using Comppanion Pipelines in Solving linear Recurrences

,incar recurrences share w rithmetic expressions a role of ccntral importance in

scientific numerical computations. Such recurrences are lilndamecntal to the solution of

lincar equations by Gaiussiain-climination; to all matrix ma nipulations which need an inner

product of vectors; and to the solution of diffcrential cquations [54,67]. The solving of

rccurrenlccs may create bottlenecks in a parallel computer bcau•se of the sequential

constraints implied in the recursive dlefinition. 'l'herefbrc, it is very important to find fist

and efficient solutions to linear recurrences for parallel computers.

T'he techniqLue surveyed inL this section is based on the use of a compaiion uiincliotn to

transform a linear recurrence so that a compainion pipe/line is introduced in the result data

flow graph to achieve maximum pipelining. The concept of conpanion function and the

general optimization technique based on companion functions are described in

[61,62,63,64]. The application of companion pipelines, for maximum pipelining of data

flow graphs is studied in [43,46]. In this survey we assume the readers are Ifimiliar with the

basic ideas, and our goal is to show how such optimization can be combined with the basic

pipelined code mapping schemes. We use first-order and second-order linear recurrences

as examples in our discussion.

10.1.1 Mapping Of First-order Linear Recurrences

A first-order linear recurrence is described by the fbllowing equations:

xI = b1

xi= aixi- + bi, i = 2...n (10.1)
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' 1'41

6 7

Figure 10.1. The data fow graph of a first-order linear recurrence

It can also be spccified by the following for-construct expression

X=

for i from 1 to n
T from array empty

construct
let xl = B[1]

in
if i = 1 then xl
else

A[i]*T[i-11 + B[iJ
endif

endlet
endfor
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Applying the basic mapping rule and optimization procedure to the code block produces

the resu lt dai Ilow graillph shown in Figure 10.1. 'l'hcre are 4 l'-gate actors numIbered 1-4.

'The upper 'l'-gate actor (labeled I) selects 13[1] lbr the illitial value X[1]. he l'-gate actor

(labeled 2) selects the first n-1 vallues of X for feedback. The lower two 'T-gate actors

(labeled 3,4) select the value sequences A[2]...A[n] and H[2]...B[n] respectively. We note

that MM will select the initial value xi rrom its input port 1 as its iirst output X[j. 'The

remaining n-1 outputs x[2]...x[n] are selected by MM from input port 2.

The loop in Figure 10.1 has a Ilength of buLr ("fromi a throlugh nodes 2,5,6,7 back to

a).1 'l'hus, the loop has the capacity to process two elements (e.g., xi and xi.1 ) of the result

array concuirrently when run at the maximally pipclined rate. However, the recurrence

constraint of'( 10. 1) prevents xi and xi- ii"rom being processed concurrently.

A solution based on the use ol' a companion function is to relax the constraint

imposed by the recurrence, i.e., perform a transformation which removes the dependence

orxi on xi.1 . Equation (10.1) can easily be rewritten as

Xi = aalxi-2 + b!' i = 3...n (10.2)

where x 1 = b1, x2 = a2bl +b 2, and

a) =i aiai- 1(10.3)

b!l'= aibi- + bi  (10.4)

The corresponding for-construct expression is shown in Figure 10.2.

Figure 10.3 shows the result graph derived by applying the basic mapping rules and

optimization procedures to Figure 10.2. Compared with Figure 10.1, the main loop

remains the same except that the first two values of x are now selected from the first two

1. Here we assume MM counts as one node.
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ror i fro 1 ( Io n

'' fromt array_eilpty

construct

let xl = 11411,
x2 = A121*xl + 14121,
AP = Alijl*Ali-il,
lIiP = A[ij*IjBi-ll+ IBij

if i = 1 then xl

elseif i = 2 then x2

else
AlP*Tl[i-l + IP

endif
eldlet

endror

Figure 10.2. A first-order linear recurrence with backup

ports (1,2) of MM, which are provided by subgraph INIT for computing initial values.

Another subgraph COMP denotes the so-called companion pipeline [43], which computes

ai", b]" in (10.4). The structure of COMP and INIT are shown in Figure 10.4.

The companion pipeline can be generated automatically by the basic mapping

scheme as long as an adequate source level transformation of the program block is

performed. Thus we have illustrated how the transformation technique of introducing

companion pipeline can be combined with the basic code mapping scheme to

systematically generate efficient data flow graphs.

The reader may find it useful to study the first few steps of the execution as shown in

Figure 10.5 (a) - (c). Here for simplicity, we show only the tokens carrying element values

of the result array and the corresponding feedback values. In the configuration of Figure
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Figure 10.3. A maxinmally pipelined data flow graph for a FLR

10.5 (c), two alternate set of nodes (node 2,4) are fired, processing x3, x4 at the same time.

The loop will continuously run in this maximally pipelined fashion, generating the element

valutes of the result array.

10.1.2 A second-order linear recurrence

Consider the fibonacci recurrence as a simple example of a second-order linear

recurrence:

x -1
x2 =1

xi = xi- 1 + xi-2 i= 3,4,...n (10.5)

Figure 10.7 shows a corresponding for-construct expression which computes (10.5). By

directly applying the basic mapping rules and optimization procedure to (10.5), we derive
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L INIT

2 n-2,F: 'I'

COMP

Figure 10.4. 'The compainion pipeline in Figure 10.3

the data flow graph in Figure 10.6. Note how the two terms x[i-1], x[i-2] of the recurrences

are handled naturally by our mapping scheme.

We observe that the loop consisting of node 2-5 has a length of five, and hence has

the capacity to process more than two elements of the array at the same time. In order to

aI

- -- - -I - - - -

I
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Figure 10.5. Pipelined execution of FLR -- the first few steps

((1)

(b)
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Figure 10.6. A tdaa flow graph for the fibonacci recurrence

X=

for i from I to n

1'from atrrayeImpty
construct

let xl = 1,
x2 = I

if i = 1 lien xl

elseif i = 2 then x2

else
T'I[i-1l + T[i-2J

endif

endlet

endfor

Figure 10.7. A for-construct expression for (10.5)

achieve maximum pipelining, the recurrence constraints of (10.5) should be relaxed by the

following transformation:

=1
-'1
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x= 1

x3 = x1 + X2

xi = 2xi- 2 + xi- i = 4,5,....n (10.6)

Figure 10.8 shows a for-construct expression which computes the transformnicd libonacci

recurrence according to (10.6). Obviously, it is a primitive for-construct expression. Figure

10.9 shows the data flow graph derived by the application of the basic mappinrg rules and

optimization procedures to (10.6). Two FIFOs of total size 3 are placed on the path leading

xi-3 to the ADD actor: the FIFO of size 2 is for the skewing introduced by the optimization

procedure, and the FIFO of size 1 is for the balanlcing purposes.

It is easy to see that the loop in Figure 10.9 can compute the recurrence in a

maximally pipelincd fashion. Figure 10.10 (a) - (c) illustrates the first few steps of the

X=

for i from I to n

T from arrayempty
construct

!ct xl = 1,
x2 = 1,
x3 = xl+x2

in

if i = 1 then xl
elscif i = 2 then x2

elseif i = 3 then x3
else

2*'I[i-2] + T[i-3]
endif

endlet
endfor

Figure 10.8. The fibonacci recurrence after transformation



- 206 -

X

3 4

Figure 10.9. 'he data flow graph for the transformed filonacci recurrence

computation. Note that the loop in Figure 10.10 (c) can concurrently compute x[4] and x[5]

respectively, keeping the loop running at its maximally pipelined rate.

10.1.3 A Discussion

S In a large numerical computation program, a linear recurrence may be only part of

the whole program. Therefore some input vectors, such as aib i, may be arrays generated

by some preceding code blocks in a maximally pipelined fashion. The result of the

recurrence itself may become an input vector for some succeeding computation which may

also consume the values in a pipelined fashion. In such cases it may be very inefficient, in

terms of space and time, to wait for entire input vectors to be computed before starting the

parallel evaluation of the recurrence, as required by the cyclic.reduction method for solving

linear recurrences [54,87]. In contrast, our scheme evaluates the recurrence in a pipelined

fashion, consuming the input and producing the output concurrently. This not only saves

the space that would be needed to hold the intermediate result values, but also eliminates

substantial data rearrangement overhead. It sustains a relatively constant parallelism

during program execution. Furthermore, the machine code size is much smaller and
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3 4

2 3 1 4 (C)

for x

Figure 10.10. Pipelined execution of the transformed fibonacci recurrence
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hence more efficient in terms of nmemory usage.

Finally, note how our mapping scheme handles lfedback array references such as

'T[i- 1], T[i-2]..., where '' is the internal name of the array being produced. Our optimization

procedure removes these array operations just as it does for any other array selection

operations.

Based on the above techniques, a maximally pipelined solution scheme Ibr

tridiagonal linear equation systems has been studied by the author and the results are

reported in [48,49,50].

10.2 Enhancing Pipelining by Loop Unfolding and Interchanging

10.2.1 Loop Untfolding

An important transformation that sometimes can be successfully applied to

optimization is the so-called loop unfolding technique. It is essentially a way to "unfold"

an iteration into multiple copies of the iteration body. Let us consider the following simple

for-construct expression

X=
for

i from 1 to n
T from arrayempty

construct
let xl = f(xO,A[1]) % xO is constant
in

if i = 1 then x1
else

ft(T[i-1],A[i])
endif

endlet
endfor

where f denotes the function computed by some expression. Without loss of generality, we
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assume tlihe loop has only one input array A. 'l'he simplest unlolding of the above

expression is shown below where tihe function f is duplicated.

X=
for

i from 1 to n
T from arrayempty

construct
let xl = f(x0,A[1]),

x2 = (x 1,A[2])
in

ifi = I then xl
elseif i = 2 then x2
else

1( I(° I'[i- 2], A [i- I]),A [il)
endif

endlet
en(dfor

Loop unfolding is a technique frequently used in compilers bfor conventional

computers, where the main goal is to reduce the overhead of loop control, i.e., termination

test and exit mechanisms.

Loop unfolding can also be applied to perform optimization for data flow computers.

Figure 10.11 (a) and (b) illustrates the effects of unfoblding on the above example.' The

data dependencies between different copies of f may often only appear on a so-called

"critical path" encompassing a small part of the computation. Therefore, the execution of a

considerable part of the data flow graph in different copies can overlap. This type of

application has been extensively studied in [6], where loop unfolding is combined with

other techniques such as array interlacing to perform code optimization.

In this thesis, we are interested in the loop unfolding technique for a different reason

1. The figure is not a complete data flow graph We have omitted the initialization part and the part which
merges the clement values into the result array.
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A

't-II

Figure 10.11. Loop unfolding

i.e. to exploit parallelism in terms of efficient pipelining. Assume that the loop in the

above example is completely unwound as shown in Figure 10.12, where we omit the part of

the graph which handles initial values. Since the cycle is completely removed from the

graph, the bottleneck for pipelining is removed. Note, however, that if the expression is

only evaluated once, the parallelism provided by the unfolding may not be fully utilized to

enhance pipelining. Recall that unfolding the loop does not reduce its critical length.

However, by complete unfolding of the loop, the graph becomes acyclic. Thus, it

provides the opportunity for pipelined execution of the graph by different evaluations of

the same loop, each being initiated by a separate input vector, e.g. A1, A2,...Am , as shown

in Figure 10.13. Here we consider the above completely unfolded graph as a

multi-input-multi-output pipeline, with each set of input values corresponding to one row

of a two-dimensional input array A, and each set of output values corresponding to one row

X
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A

A [I

xP I

XI21

Aln

XIl I

Figure 10.12. A completely unfolded loop

of a two-dimensional result X. Since each graph of f is acyclic, the entire graph can be

maximally pipelined.

The above example shows that loop unfolding can be a very useful transformation

technique in the pipelined mapping of a for-construct expression. It can be applied

whether or not the corresponding recurrence has a companion function.

In Section 10.2.3, we present an example that illustrates how the unfolding technique

can be successfully combined with other optimization techniques.
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Atill- - - A12.1 A1, II

X(I,.II- - -- XP II

A01,21- - - AP2,21 All,21

Xfn.2h- - -Xj,2 1

Atn,nl -I-Ap I

A2 A1

Figure 10.13. Maximum pipelining of a completely unfolded loop

10.2.2 Interchanging the Order of the Innermost Loop

Let us consider the following nested mixed expression :

A

-x
I I I
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forall i in [l,mn

construct
folr j form I to n

T from arrayempty
construct

I(A,T,ij)
endfor

endall

The outer expression is a forall expression with index range [1,m], while the inner

expression is a for-construct expression. The code block constructs a two-dimensional

array X with m rows where no data dependencies exist between elements of different rows.

Therefore we can rearrange the computation such that the array is computed in a

column-by-column Ifashion. This can be achieved by interchanging the order of the outer

and inner expression as follows:

X=

for j from 1 to n
T from arrayempty

construct

forall i in [1,m]
construct

f(A,T,ij)
endall

endfor

After the transformation the forall expression becomes the innermost expression, and we

can generate a pipelined data flow graph using the basic code mapping scheme.



-214-

10.2.3 A Mtltrix Mulltiplictiotn Example

Mutrix multiplication provides an interesting exalmple of the diffi•rent ways in which

data flow graphs can be organized and structured to best exploit paraullelism in ternis of

pipelining. In this section we study a special case of vector multiplication and illustrate

how loop unfolding and interchange can be combined in a pipelined solution. This

requires the application of both the basic mapping scheme and some special optimization

techniq ues.

The matrix-vector multiplication problem can be expressed as follows:

"I
I Ip

ml Imp

x

X
PI

y 1

(10.7)

or in matrix-vector notation:

Ax = y (10.8)

where A is an mxp matrix, and x,y, are vectors of size p and m respectively.

The matrix-vector multiplication can be computed by forming the inner product of

each row of A with the vector y, as specified by the expression below.

I-r-I
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forall i in [1,nm]
construct

for k from 1 to p
T from arrayempty

construct
if k = 1 then A[i,k]*X[k]
else

A[i,k]*X[k] + '[k-l]
endif

endfor
endall

In this nested mixed forall expression, the body expression is a for-construct expression

which computes one vector-vector inner product as an clement For the result array y. Note

that the last column of Y is the result vector.'

We can interchange the order or the outer and inner expressions: the program after

the loop interchange transbormation is shown below.

YT =
for k from 1 to p

T from arrayempty
construct

forall i in [1,m]
construct

if k = 1 then A[i,k]*X[k]
else

A[i,k]*X[k] + T[k-I,i]
endif

endall
endfor

The inner forall expression can be mapped by the basic mapping scheme. It computes the

I. For convenience, we use for-construct as the inner loop expression which makes Y (so is YI' below)
appeared to be a two-dimensional array. In practice, a for-iter expression may be used and the same principle
can be applied for its mapping.



-216-

im elements orf one row of YT in parallel, where an element Y'lT[k,i] is the kth partial sum of

the inner product f11r the i-th row ol' A and the vector X. Thus, the p-th row of YT' is the

result vector y. All'tcer the loop interchange, the result array is transposed. The inner forall

expression can still be mapped using the basic mapping scheme, as can the outer

for-construct expression. However, care should be taken that the elements of A are used

one column at a time in pipelined fiashion by the inner forall expression. For convenience,

we can also directly use the transposed array AT for A in the interchanged program, as

illustrated below.

YT .=
for k from 1 to p

I' from array-empty
construct

forall i in [1,m]
construct

if k = I then AT[k,i]*X[k]
else

AT[k,i]*X[k] + T[k-l,i]
endif

endall
end for

Now let us completely unfold the outer loop. This can be done according to the

principles outlined in Section 10.2.1. The result graph of the mapping is shown in Figure

10.14, with each dashed-line box being one copy of the unfolded body expression. For the

purpose of uniformity, the first copy also includes an addition actor with the constant zero

as one of its operands. Note that the entire graph is acyclic and is maximally pipelined.
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Figure 10.14. Matrix-vector multiplication by loop interchanging and unfolding
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10.3 Multiple Pipelines

Let us reconsider the nested mixed expression at the beginning of' Section 10.2.2. If

the index limits of the outer forall expression are known, we can generate m copies of the

graphs for the body expression (the inner loop), one for each index i, and let them run in

parallel. This mapping scheme is illustrated in Figure 10.15. Each box labeled f in the

diagram denotes a graph for an innermost for-construct expression corresponding to a

particular index i, generated by the basic mapping scheme. T"'herefore, each box will

compute one row of the two-dimensional array x in a pipelined fashion. Using multiple

pipelines will increase the parallelism by m Ibld. Thus, in cases where the graph of an

innermost for-construct expression consists of a loop with a long critical length, the

multiple pipelined solution should be tavorably considered.

XII ]

X[2 !

. X[n]
nf

Figure 10.15. A mutiple pipelined mapping scheme

_ I

,• X[n ]
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To assemble x[l], x[2],...x[m] coming out of the multiple pipelines into one result

array, ani extra subgraph may be needed. The strluCture and function of such a subgraph

depend on how the result array is to be expressed and used by the succeeding code blocks.
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II. ('onsiderations in Program Structure, C ('ompilation and •lacihine Design

In this chapter we address certain issues in program StrluctuLrl, compilation techniqLues

and machine design which are important foir the efficient support of pipelin ing on static

data low comlpulters. In Sections 10.1 and 10.2, we outline interesting and challenging

problems in program structure analysis as filtlr'e research topics. In Section 10.3, we

discuss briefly some pragnmatic aspects in compiler design for data low computers,

presenting an outline o'f a compiler structure in which the pipelined code mapping scheme

can be incorporated. In Section 10.4 to 10.6, we discuss certain issues in machine

architecture design. Ol'course, a comprehensive discussion of' data flow conmLpu ter design is

beyond the scope of this thesis. We will concentrate on a li.w points in the instruction set

design that (directly relate to our pipelined code mapping scheme.

11.1 An Overview of Program Structure Analysis

To make effective use of the pipelined code mapping scheme developed in this thesis,

a compiler needs information concerning overall program structure as well as the structure

of each code block. A coherent code mapping strategy will produce a machine code

structure that will fully and efliciently utilize the computation power of the machine.

In terms of pipelined code mapping stirategy, we assume that the structure of the

source program is expressed by a program block graph (PBG). A program block graph can

be considered as a digraph where a node denotes a program block which defines a new

array from some input arrays generated by other nodes. The directed arcs, usually labeled,

denote array dependencies, i.e., an arc with label x directed from node Cl to node C2

denotes the fact that an array X defined by C1 is referenced by C2. The array X is called

the input array of C2, and the output array of C1. The structure of a code block is specified

as a PIPVAL array creation expression, and we are mainly interested in the few types of

code blocks defined in Chapter 4. There are some attributes associated with each code
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block in the PBG which are used to specify certain inlbinlation regarding both the

structure of the block itself and the nature of its inllput/oultpu)t links. l'lhis Ibe)Ccmes very

valuable in making decisions about the mapping strategy lbr each individual block.

The major portion of' this thesis is devoted to the development of the basic pipelined

mapping schemes for the code blocks. The precise notations of the PIBG and the set of

attributes, are not our major concern. We assume, that a compiler will appropriately

analyze the user program and generate a PBG together with specifications of the code

blocks.

In terms of the P13G and P IPVAL representation, a program structure analysis should

concern with the following:

1. 'T'he mapping strategy of each code block in the PBG: should it be mapped directly

by the basic pipclined mapping scheme or restructured for optimization (for

example the optimization surveyed in Chapter 10)? what optimization techniquies

would be appropriate, in terms of the time/space tradeoff?

2. The suitable form of the result array produced by a code block: should its

representation be lattened - pipelined, parallel or mixed lattened? what is the

preferable generation order when pipelined?

3. The suitable form of a link between a pair of' nodes in the PBG: Should it be

implemented without using array memory? Should it be implemented through

FI FOs, and if so, what is the proper size and structure of the FI FOs?

4. A projection of the computational resources needed for code blocks and links in the

PBG.

In order to perform a program structure analysis specific information for each code

block is needed. We have already conducted extensive analysis of the relation between

code mapping schemes and the structure of a code block. Now we summarize the key

attributes associated with a code block:
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1. The type of (lie odeL block: Is it a forall, a for-coInsruct or a mixed code hhblock? I1"

one o( the first two types, is it )prinlitive? I'lmixed, is the innermiost one primitive?

2. 'l'he 1eattlres or a code block: including the numrnber of its levels and the selection

order of each illl)t array; Is the body of each level in standard case-1 fl'orm? Does

thle code block have a consistent order fIr each input array? Ir so, how does tihe

order relate to the major generation order for the result array of the code block?

3. 'l'he parameters of array index ranges: what are the index limits and the subrange

limits of index range-partitioning conditional expressions at each level (it'

applicable)?

4. The comnlputation size of' a code block in terms of the number of scalar and array

operatlions: lHow many ol' iterations occur in a for-iter expression? T'he Iraction of

times each arm of('the conditional expression will be evaluated.

The global structure of a program is essentially embedded in the )PBG. It is

important to consider whether the PBG is acyclic and whether the arrays generated by the

code blocks have compile-time computable sizes.

If the program itself does not provide all the necessary information, the compiler

should allow the user to provide information through an appropriate channel. Successful

implementation of a pipelined code mapping scheme relies heavily on available

information and program structure analysis based on such information.

In addition to the above information, knowledge about machine architecture is also

important in deriving a pipelined mapping strategy from the program structure analysis. It

is beyond the scope of this thesis to discuss this in detail.
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11.2 Consideratllions in Analyzing a Certain Clss or IPrograis

In the last section, we outlined the genUeral objectives of program structure analysis

land indicated the inflbrmation necessary to support such anulysis. Recall lthat our pipelined

code mapping schemes are designed to work most lcrectively for a ccrtain class or

programs. In this section, the issues or program structure analysis kIr this class of programs

tire studied.

We start with discussion or a class of programs with very simple structure, a class that

includes the comnputationally intensive parts of' certain numerical application programs.

We then extend this class in several ways, and predict what impact these extensions will

have. Our goal is to list the issues and problems which must be considered and solved in

such analysis, and to predict possible good solutions. FI-)rmulation or efiectivc solutions to

these problems is beyond the scope or this thesis.

We have observed that the computationally intensive part or a scientific numerical

program is usually formed by one or a few clusters of acyclic connected code blocks.

Within the same cluster, the arrays produced by all code blocks have the same dimension

and size. Such a cluster of blocks often makes iup most of the body of some outer loop

[31,35]. For the purpose or this discussion, however, we concentrate on the acyclic part of

the PBG. This restriction considerably simplifies the problem, yet still covers the most

interesting portion of the computation. The conclusions derived from our study can be

very useful in the analysis of the entire PBG, with outermost loops included.

We further assume that: (1) all arrays have compile-time manifest constants as their

index limits; and (2) each code block has consistent selection orders for each of its input

arrays. The above assumptions are typically met by the kernel code of the several

benchmark numerical applications studied by the Computational Structures Group at

M IT.
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11.2.1 A Cluster consisting entirely of Primitive lbrall Blocks

'lhe simplest situtltion, when all code blocks in a P13G are primitive forall

expressions, is shown in Figure 11.1 (u). In this cluster of 5 code blocks (labeled CI - C5),

each node denotes a forall expression.

In order to study the issues related to the generation and selection orders lfr array

values, we adopt the following nolation. I r the result array or a code block is generated in

C 2

C'
AZ~ ----

C5

C4

Figure 11.1. An acyclic code block cluster -- example I

)
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mllajor nornuial genleration order, a "to+" sign, enclosed by a circle, is placed inside the box of

the code block. A plain "4." sign pla)ced next to 1n input port iln the box of a code block

denotes the libct the selection order or the corresponding input array is in major normal

order. A similar role is played by the "-" sign except that it denotes a major reverse order.

1. Silualion I

Figure 11.1 (b) shows the use of above notation in Figure 11.1 (a), where the selection

orders of each input array ofra code block are all consistent with the generation order ofr the

result array of the block. 'lhis is the first and simplest situation to be considered. It is easy

to see that, with the assignment ol the potential generation orders indicated in the figtlre,

all arrays are consuimed in the salme order in which they were generated. 'I'Ius, there is no

need to store the arrays in array memory. In lict, our pipelined code mapping rules and

the optimization procedures can be applied to generate a data Ilow graph fibr each code

block in which all array operations are replaced by ordinary graph actors.

Since in this example all code blocks are primitive forall exprcssions, the entire code

consists of an acyclic data flow graph with ordinary graph actors. Thus, it can be

transformed into maximally pipelincd data flow graphs. FIFOs are often needed on the

arcs linking code blocks, and their sizes can be computed using balancing techniques.

2. Situation 2

Figure 11.2 (a) illustrates a situation where the selection orders of an input array of a

code block may be different from its generation order. In particular, this happens to both

input arrays of code block C3, while it only happens to one input array of C4. Obviously,

with the assigned generation orders, three internal arrays have to be stored in array

memory as indicated by the "//" signs on the corresponding arcs.

Some improvements can be achieved by proper adjustment of the generation order of

code blocks C3 and C4, as shown in Figure 11.2 (b). As a result, one internal array must be
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C5AU

C4

Figure 11.2. An acyclic code block clusters -- example 2

stored in the memory before it can be used.

11.2.2 Some Nodes are Primitive for-construct Expressions

Now we extend the above class of programs such that some nodes may be primitive

for-construct expressions. In this situation each for-construct expression demands a certain

generation order for its result array, and thus also a certain selection order for its input

arrays. Such order is usually determined by the data dependencies among the elements of

(h)
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the arra'l'y to be comiputed.

ILet us consider the example of' a PBG shown in Figure 11.3 (a). It is similar to

FigLure 11.2 (a) except that C4 is a for-construct expression, specially marked by an "".

Given a similar initial assignment ofr generation orders, there are three internal arrays

which must be stored in memory. However, since the generation order of' C4 is fixed, we

can only adjust C3. T'lhe result is shown in Figure 11.3 (b), where two internal arrays need

to be stored in memory.

C5

C4

Figure 11.3. An acyclic code block clusters -- example 3
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An ideal situation exists when the assignment of lgeneration orders to the code blocks

is such that all arrays are generatecd and constumed in the same order. In such a sittlation,

all array actors can be removed and the entire graph can run in a pipelined Iashion without

use ofr any array operations. H-owever it still may not be possible to rutn the graph in a

maximally pipelined fashion due to the cycles introduced in the subgraphs of for-cons(ruct

expressions.

11.2.3 Remarks

'T'he structure of the class ol'sotirce programs discussed in this section is quite simple;

hence an el'licient algorithmic approach to perlfrm the above analysis seems quite possible.

While it is beyond the scope of this thesis to develop the algorithms, such work would

make an interesting topic fbr filture research.

Further extensions of this class of programs might cover the following situations: a

PBG with nodes which may have inconsistent selection orders for one or its input arrays;

index limits of arrays which are not the same for dilfferent code blocks; and an

acyclic-connected code block cluster which is enclosed by an outer loop.

Finally, it is interesting to incorporate the special optimization techniques discussed

in Chapter 10. These techniques often become important when, after the basic mapping

scheme is applied, there exist particular code blocks - usually with for-construct

expressions as their innermost expression - where the long critical path in their innermost

loops seriously degrades the pipelined performance of the entire graph.

11.3 Pragmatic Aspects of Compiler Construction

A primary goal of studying the code mapping scheme is to form a basis on which an

effective program transforming compiler can be built. In this section, we briefly address

some pragmatic aspects of compiler design for data flow computers. The successful

construction of a compiler is a complicated process which involves many different
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disciplines. IFor our piurpose, we only discuss a fliw issues which are important lr tilhe

implementation of the pipelined code mnapping strategy developed in this thesis. We

assume that the readers are ftIhmiliar with the struticture of compilers oibr a conventional

computter. Our focus is to outline lthe iimportant difierences which must be made when a

data flow compiler is constructed.

In a conventional optimizing compiler for sequential machine, a great deal ofr

optimization effort is spent on local optimization, such as srengthll reduction, common

subexpression elimination, etc. Another sort or optimization is performed on sections of'

code, and is olften concerned with speeding tip loops. A typical loop improvement is loop

invariant imotion and code avoidcnce. For example, loop invariant mnovement is to move a

cotmputation that produces the same restult each time around the loop to a point in the

prograrn (ollen before the entry or the loop) so that it is computed only once. Usually such

optimization will improve the speed of the code and reduce its size. These optimizations,

although they involve control and data flow analysis of loops, do not address the issue of

producing the overall machine code structure that best exploits the parallelism in the

prograim.

Most vectorizing compilers for pipelined vector processors perfiorm sophisticated

parallelism detection on user programs. The optimization is focused on the maximal

vectorization orf each (nested) loop. As outlined in the introduction or this thesis, after the

parallelism for each loop is detected, the vectorizing compiler faces the problem of

mapping the vector operations onto the von Neumann architecture. The intermediate

languages and machine languages reflect the sequential nature of the machine architecture,

as well as the imperative model of computing [13]. Central to an imperative model of

computing is the concept of a state, which encompasses the program counter, the stored

values of registers and storage locations, etc. Two separate pieces of code may share the

same locations (variables) and it is difficult characterize parallel execution when several

independent loci of execution can have side-effects on each other. Therefore, global
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program translorniation iand optimiation oare more difl'iculL because the imperative mIlodel

does not lend itself' to easy and clear flunctional charlacterization. We have already

mentioned the difl'ficulty of' scheduling multiple vector operations on multiple hardware

pipelines. A compiler may need other sophisticated techniques to perlform optini ations

between a group ofI vector operations as in vectoir chaining and vector register allocation.

Such optimization is still "local" since it takes little consideration olf the overall data flow

and load balancing based on global program structuLre.

A most important •eature orf a data flow compiler is it emphasizes the role of overall

programr structure and the strategy of global optimization of machine code structure. The

data flow compiler should include a stage where global program mapping and

transibrmawtion strategy are determined. More specilically, an important section orf the

compiler should be devoted to the program structure analysis and the way to implement

the pipelined code mapping strategy.

A preliminary view or a data flow compiler is shown in Figure 11.4. The firont end

performs conventional functions such as syntax analysis, static semantic checking, etc.

Besides producing an intermediate form of the source program (which should retain

enough structure information about the source program), it also gathers the information

about the program structure needed for the analysis and strategy decision processes.

The Analyze and Map modules are the core parts for program transformation and

optimization. A discussion of what may be done by the Analyze module is outlined in the

previous two sections of this chapter. The mapping schemes defined in Chapter 5-9 form

the foundation of the Map module. The optimization techniques for further exploiting

parallelism and improving performance of pipelining (such as those discussed in Chapter

10) should also be considered and applied in the Analyze and Map modules. The goal of

these two modules is to establish a proper mapping strategy for each component (code

block) of the program. The generated machine code should run with high throughput,

while achieving balanced utilization of computational resources. The later can only be
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riitn iice

Figure 11.4. The Structure of a Dataflow Compiler

achieved if certain machine parameters are provided to the compiler, which we will not

explore in detail.

We should note that the structural description of the source program may not contain

all information required for carrying out the necessary analysis. The compiler should allow

an interaction channel be established such that the user may supply some additional

information, as illustrated in Figure 11.4. Interactive techniques have also been adopted to

vectorizing compilers for conventional machines [80]

Some conventional optimization techniques can also be applied in dataflow

compilers. For example, optimization techniques similar to common subexpression

elimination, constant folding, dead code avoidance, and loop invariant motion should be



- 232-

considered aind inmlPemeCned in the Analyze and Map modules. The detailed lbrm of such

opl'timi/ation techniques and their position in the imodules are beyond tile scope of this

thesis.

I'The Analyze and Map modules will produce data flow graphs with basic structure

very muclh like that of the final machine code. These may be processed by another phase

ofr the compiler - Codegen, which will perlorm sonime machine dependent optimization

and final code generation.

11.4 Considerations in Instruction Set Design

11.4.1 Instructions fbr Conditionals

In the discussion or a miulti-arnied conditional expression, we have introduced two

graph actors, MB and MM, which lead to a cleaner representation of the corresponding

mapping rule. 'lhey become very help•lil in the formulation of the mapping rules for array

construction expressions, the body of which olten consists or such a multi-armed

conditional expression.

Let us reconsider the data flow graph in Figure 6.10 and Figure 6.11 for the function

of MB and its internal structure (see Section 6.4). The core of MB is a B-gate actor which

has one input for each test expression (except the last arm), and one boolean-valued output

for each arm as well. It also has an output for an encoded value which is to be connected to

the corresponding input of MM. The function of MM is to merge the results from the

multiple arms Linder the control of the encoded values from MB.

Of course, MB (mainly B-gate) and MM can be implemented by subgraphs of several

graph actors. We propose, however, that the B-gate and MM actors are directly

implemented by graph actors which are supported by special machine instructions. It

appears that one difficulty may be the number of inputs and outputs for the two actors

depending on the number of arms. However, we are most interested in using them in the
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mapping ofr the range-partitioning expiressions found in the body of array construction

expressions. The number of arms of such a conditional expression is a small constant (f)r

exanmple less than 10) known at compile-time. The machine instruictions for a B-gate actor

should have the flexibility to allow a small number of' operands. It should also include a

proper mechanism, such as some field in the instruction representation, to allow a code

generator to set the desired numbers of operands. Since each operand value or a B-gate

actor is of boolean data type, it should not be dif'ficult for an instruction to hold multiple

operands. The machine also should support the data type for the encoded values needed in

B-gate and MM actors.

E'licient implementation of the MB and MM actors may result f rrom active research

on a newly proposed static data flow architecture [37]. In the new architecture, the control

values and data values are handled in separate processing units and no explicit T/F-gate

actors and merge actors are needed. Further discussion of architectural improvements is

beyond the scope of this thesis.

11.4.2 Control Value Sequences

In a result graph, after successfiully applying optimization procedures, there are often

a considerable number of T-gate (F-gate) actors controlled by long boolean-value

sequences. They are included to replace array SEL actors, and hence to reduce the number

of expensive memory operations. Therefore efficient implementation of the boolean

pipelines is important to the performance of the entire program.

A situation which is of particular interest to us is when the pattern of a boolean value

sequence is known at compile-time. This happens frequently in real applications. In such

a situation, a sequence of boolean values can be "generated" at compile-time, and be

packed such that little memory space is needed for storing them. The machine may include

a special instruction which can have a packed boolean vector as its operand and generate

the necessary control value sequence for the corresponding T-gate (F-gate). This can be
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done locally to avoid the overhead of sending boolean values over long distances.

11.4.3 'IThe IGEN Instruction

T'lhe IGEN actor, a Ifrequently used graph actor throughout (his thesis, act(s as an

index generator which generiates a sequence of index values within a specific range. Its

liunction is specified by the subgraph shown in Figure 9.2 (see Chapter 9). 'I'he subgraph

consists of a loop of four actors. We suggest Lhat the machine instruction set should

provide ia single instruction to perform the fiiunction or the above IGEN subgraph. The

implementation details ofl stch an instruction are beyond the scope ol this thesis.

11.5 Considerations in Machine Support of Array Operations

Although we are mainly focused on the class of programs where array operations can

be removed by the optimization procedures, the machine should also provide efficient

support of array operations where they are needed. In this section, we outline additional

graph transformation techniques wvhich will assist achieving this goal and mention several

instruction set design issues.

11.5.1 Flattening of Arrays

The model of multi-dimensional arrays we use in presenting the basic mapping

schemes is the "vector of vector" model, and we have seen its advantages in presenting the

basic mapping rules. From the standpoint of machine implementation of array operations,

flattening multi-dimensional arrays is more convenient. An important benefit of flattening,

among others, is that no array values (descriptors) are stored in the array memory, hence

eliminating the associated overhead of manipulating them -- a painful job in an applicative

system.

An r-dimensional array selection operation is first mapped into a series of r SEL
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Figure 11.5. The flattening of an array -- a selection operation

actors using the basic mapping scheme. Let us consider a mxn 2-dimensional array A.

The graph for A[ij] is shown in Figure 11.5 (a), where A[i,j] resides in the body of a 2-level

nested code block. When A is flattened in the so-called "last index varying most rapidly"

order, A[ij] becomes A[i*m+j], with A becoming a one-dimensional array of mxn

elements. The results of flattening are shown in Figure 11.5 (b), where the number of SEL

actors is reduced to one.

Next comes the problem of flattening the AGEN actors. Consider again a 2-level

nested array creation expressions with the index value names i, j, corresponding to the

level-i and level-2 respectively. A direct application of the basic mapping rule will

generate two AGENs in series as shown in Figure 11.6 (a). Recall from Chapter 9 that this

implies the use of two append actors. When the result array X is flattened, it becomes one

linear array of mxn elements. Hence, only one append actor is required, and the index

Im

I
I
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Figure 11.6. The flattening of an array -- an array generation subgraph
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value to the append should be adjusted as it is fbr the flattening ol' the selection operations.

'I' is can be perrormed by combining the two AG fENs. Figure 11.6 (b) shows a result of the

flattening where only one array append actor is used. F'urLthermore, the graph Ior

generating the result array is encapsullated as a separate subgraph (on the right) which is

very similar to the structure of an AGEN subgraph in a Figure 9.2 (see Chapter 9). ''lhe

principle outlined above can also be easily extended to the flattening or a

multi-dimensional array.

11.5.2 Flattening And Pipelining

in this section we explore the power or array flattening by combining it with the

optimization techniques developed in this thesis.

Let us consider a 2-dimensional primitive forall (for-construct) code block which has

I I I - I

I I

I, I

Figure 11.7. Using flattened techniques for pipelining

F - - .- - - - II I
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L- - - _
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an input array A and a result array X. Assume that h a structure analysis or the PIG hras

determined that A and X must be stored in AM. II' thle code block has a considerable

number of array selection operations we may still want to perform the optimization

procedure to remove the array selection operations. We also may want to remove the two

AGENs. The only change is that two additional subgraphs should be provided: one for

reading the sequence of elements or array A from the memory, and the other for

assembling the sequence of elements of the result array X and putting them in the memory.

The flattening techniques in the last section can be extended to perform the functions

of the extra subgraphs described above. The approach is illustrated in Figure 11.7 (a) and

(b). The subgraph on the left is ibr accessing array A, and the subgraph on the right is for

assembling the element values and storing them as the flattened result array X.

The advantage ol combining the array flattening and the optimization techniques for

pipelining are obvious: it may reduce considerably the total number of array operations in

the graph, on top of the other benefits for both pipelining and flattening.

These input and output subgraphs for array flattening are similar to the array

"unpacker" and "packer" in [6], but used for a different purpose. The target computer

should be able to support these operations efficiently.

11.5.3 Array Memory Management in a Target Machine

Supporting array operations in target computers always presents a tradeoff between

generality and efficiency considerations. This is true both for conventional computers and

data flow computers. Memory mechanisms suitable for data flow computers have been

studied by researchers, and the generality/efficiency tradeoffs have been addressed in [3],

and most recently in [6].

For the purpose of this discussion, we are not interested in mechanisms for

supporting dynamic arrays in the general sense, i.e., arrays having dynamic bounds. In fact

we are mostly interested in static memory allocation for arrays.
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Th1rough the progracm structure analysis outlined in the last chapter, the memory

usage of' the arrays (in the class of' programs we are interes(ed in) should be determined:

thus a static allocation would be a favored approach. We expect that most of the array

actors - SELs and appends - reside in standard subgraphs such as the array packers and

unpackers described earlier. Since the arrays are all fully flattened, the SEL and append

can be directly implemented by ordinary array memory indexed read/write operations.

The program should be partitioned such that each such packer/unpacker subgraph will be

accessing the array in some local AM module. Since the size of such an array is known at

compile-time, and remains constant during its entire life, the AM memory modules do not

need to support the general dynamic allocation and management mechanisms.

If a need does occur, the locality and regularity of array operations in the

packer/unpacker subgraphs can be used to implement a memory management scheme with

certain dynamic features. For example, we can use a simplified reference count scheme to

manage the blocks of storage for arrays (as described in [6]). The key observation is that an

array is always generated by a packer subgraph and used by one or several unpacker

subgraphs known at compile-time. We use the number of unpackers as global reference

count for the array. Both the packer and the unpacker subgraphs are accessing the array in

a regular fashion and thus do not change the reference count while they are running. After

a packer is done, the array is generated and ready to be used, so the global reference count

is set accordingly. After an unpacker is done, the array A is no longer being used by the

corresponding code block, hence the reference count can be reduced by 1. Thus, instead of

adjusting the reference count each time an array reference is made (as in the conventional

reference count scheme), the global reference count is updated only when a packer or

unpacker subgraph is terminated. Of course, we may include extra data flow graphs for

each array to perform the reference counting. Each AM module should also support

dynamic-allocations of memory blocks when an array token is generated. Since the block

size is known and remains constant, the memory management scheme should be much
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simpler than a general dynamic scheme.

There are allso arrays which are implemented through large FIFOs. These arrays may

also be stored in the array memory, and we discuss them in the next section.

11.6 FIFO Implementation

FIFOs are used extensively in the data flow graph of a code block or'on links

between code blocks as required by balancing or array skewing. Therefore, efficient

support of FIFOs should be considered in the instruction set design for a static data flow

computer. The function of a FIFO with fixed size, known as afix-sized FIFO, is equivalent

to a chain of k identity actors. FIFOs may indeed be implemented by ID actors, but it is

quite expensive, in particular for long FIFOs. Data flow implementation of FIFOs has also

been studied and discussed earlier, for example, in [43,35].

We propose that the instruction set of a static data flow machine should provide

adequate mechanisms to directly implement the FIFO ftunction. The instruction set may

include a dedicated FIFO instruction to support the fix-sized FIFO. For short FIFOs, the

memory space can be directly allocated in the program memory in the PE. If the operands

(data) are stored in a separate memory, the FIFO may use the space in that memory as well.

For long FI FOs used between code blocks, we should consider employing array memory as

the primary FIFO storage space. In such cases, a FIFO usually uses blocks of storage -

for example one or several rows of an array. Such a scheme was described in [43].

The flexible-sized FIFO is more or less like a ring buffer in the conventional

computer. As long as a size limit is known (the case we are interested in), there should be

no difficulty in implementing such a FIFO. For reasons of efficiency, both the PE and the

AM modules should provide mechanisms which can efficiently manage the FIFO storage

when executing a flexible-sized FIFO instruction. We leave the details of such mechanisms

to the designer of the target data flow computers.
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12. Conclutions

12.1 A Sumnmary or the l'hcesis Work

We have developed a pipelined code mapping scheme which may produce machine

code structure such that the potential parallelism in the user programs may be efTcctively

exploited by static data flow computers. Our code mapping scheme is particularly suitable

for a class of programs frequently found as the kernel of certain scientific numerical

application programs. Strong regularity of array operations is a major featur'e of such

programs.

The functional language Val is our choice as a high level language to express user

programs. In particular, we define a subset of Val - PIPVAL - to represent the source

Sprograms to be handled by the basic mapping rules. An important I'ature of PIPVAL is

that two array creation constructs are provided by the language to express the construction

of arrays - the forall and for-construct. Using these two constructs, array creation

operations with the desired regularity can be expressed without using Val array append

operations. Other array regularities are also utilized by the code mapping scheme,

including the regularity in the form of array selection indexing scheme.

Pipelined code mapping schemes are developed for PIPVAL expressions. The focus

is on the mapping rules of array creation constructs, especially the primitive forall and

for-construct expressions. Optimization procedures are presented which can utilize the

regularity in array operations as found in these expressions and transform the data flow

graphs such that array operations may be effectively removed or replaced by ordinary

machine operations. In addition, certain related optimization techniques are discussed

which can be used together with the basic mapping scheme to improve the performance of

pipelining.

The code mapping scheme developed in the thesis is based on the power of a

sufficiently large data flow computer which can effectively exploit the parallelism by means



- 242 -

of the pipelined execution of machine level datu flow program1ns. Certain issues in the

architecture design, in particular the instruction design, which are iniportant to support

pipelining, are addressed.

12.2 Suggestions ibr FLututre Research Topics

We suggest the following research topics which are important in extending the results

of this thesis. They include the areas or language design issues, mapping algorithm issues,

and issues in compiler construction and machine design.

The generality of user programs which can be effectively andlcd by pipelined code

mapping schemes is one area of substantial room for liuture research interests. TIhe

optimization techniques for array operations depend heavily on their regularities. In terms

of array selection operations such as A[exp], what will be the impact if we allow exp to be a

more complicated expression than an affine function of the index values? In terms of array

construction expressions, what will be the effect if we relax the restriction that the bounds

of array must be compile time constants? What changes should be made in the

optimization procedures to handle such cases efficiently? How about the situation when

the code block does not have a consistent selection order in terms of an input array?

In terms of compiler construction, a number of areas remain to be studied. As

indicated in Chapter 11, this includes the development of algorithms which can effectively

perform the allocation of the arrays which cannot be implemented simply by FIFO, so

array memory is needed. The solution should not only minimize the array memory storage

usage but also keep the locality as well as the simplicity of array accessing mechanisms.

Although the emphasis should be placed on the kernel of the computation where regularity

usually makes the algorithm simple, the compilation scheme should also take into

consideration the complexity for other parts of the problems. For example, we may

consider the code blocks which do not belong to the several classes studied in the thesis, or

program block graphs which are not acyclic.
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As indicated in Chapter 10, there are other optimization techniques which can be

combined with the pipelined code mapping scheme to improve performance or the

resulting object code. How can they be incorporated adequately and effectively in a

compiler? One suggestion is that the compiler should provide a tool for performance

estimation of the object program to be generated, thus a user may be prompted with some

statistics of how well the basic pipelined code mapping scheme will perform. If the result is

not satisfactory, he may direct the compiler to perform other transformations using

additional optimization techniques. Ideally, the user may also be informed of potential

bottleneck program modules. How hard is it to build such a performance analysis tool and

how accurate can the performance estimation be? What machine and program parameters

will it need? What form of interface should exist between this tool and other parts of the

compiler? This is both an interesting and challenging task a compiler implementor must

face.

Many architecture design issues should be further studied. An ideal static data How

machine model was adopted for this thesis to provide a simple and clean framework for

formal analysis. However, to apply the code mapping scheme successfully, we face

pragmatic and problematic issues in real data flow computers. First, parallelism of the

machine will have a strong impact on the balancing strategy for data flow programs. We

should also consider the variation of execution time between instructions due to the fact

that they may perform different operations or due to the processing load fluctuation of the

machine and interconnection network. The author believes that the balancing and

optimization should achieve the ultimate goal of keeping the processors usefully busy.

Therefore the above factors should certainly be considered in both the architecture design

as well as compiler implementation. Other issues in instruction set design and machine

architecture support, such as those that have been outlined in the previous chapter, should

be fully investigated.

While we assume that the machine should have enough parallelism to support high
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concurrency fior the pipelined execution of data flow programs, no assumption is made

about how the code is to be partitioned and allocated to the processing elements. To what

extent does the locality of allocation will affect overall performance of programs? It is

difficult to evaluate a solution strategy without understanding the nature of the

communication cost in terms of the interconnection network architecture, the behavior of

the programs and the technology of the hardware modules. Much work remains to be done

in these areas.
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