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Abstract

Computers built on data flow principles promise cfficient parallel computation
limited in speed only by data dependencics in the calculation being performed. We
demonstrate how the massive parallclism of array operations in numerical scicentific
computation programs can be cffectively exploited by the fine-grain parallelism of static
data flow architecture. The power of such fine-grain parallelism derives from
machine-level programs that form large pipelines in which thousands of actors in hundreds
of stages are executed concurrently. Each actor in the pipe is aciivated in a totally
data-driven manner, and no explicit sequential control is necded.

This thesis studies the principies of program mapping techniques that can be made to
achieve high pefformance for numerical programs when executed on a computer based on
data flow principles. A simple value-oriented language is specified as the source language
to express user programs. The key of the program mapping techniques is to organize the
data flow machine program graph such that array operations can be effectively pipelined.
Program transformation can be performed on the basis of both the global and local data

flow analysis to generate efficient pipelined data flow machine code. A pipclined code



mapping scheme for transforming array operations in high-level anguage programs into
pipclined data flow graphs is developed. The optimal balancing of data flow graphs is
investigated and an cfficient solution is formulated. Based on the pipelined code mapping
scheme, the pragmatic issucs of compiler construction and efficient architecture support for

pipelining of machine level data flow programs are addressed.
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1. Introduction

‘The past decade has seen sustained cfforts in the design and implementation of
high-performance supercomputers. ‘They are the highest performance machines available
for automatic computation. The most successful supercomputers of the present day are
conventional von Neumann stored program computers basced on sequential instruction
exccution. However, there exists a mismatch between the amount of parallclism available
in many large scicentific conipulations and the amount of concurrency which can be
efficiently supported by computers based on von Neumann architecture. The sequential
nature.of the von Neumann architecture, in which a sequential control mechanism is used
to schedule instruction execution, creates the so-called von Neumann bottleneck [13].

To overcome this bottleneck, a variety of innovative architecture concepts has been
developed to improve the performance of von Neumann computers. The instruction
overlap architecture allows concurrent execution of several instructions; the cache speeds
up the memory accesses; pipelined processors exploit the parallelism expressed in vector
operations, and array processors make it possible to organize multiprocessors working in
parallel in a lock-step fashion.

In spite of these advances, the demands foir ever increasing computing power have
not yet been satisfied. If future gencration supercomputers are to achicve significant gain
in performance over current designs, they will have to process large number (hundreds or
thousands) of basic operations concurrently. The arrival of VLSI technology causes a
dramatic change in cost performance trade-offs for solving large problems on a computer.
High levels of concurrency will be achieved by machines consisting of many instruction
processing units, function units and memory units, which become practical only by the
advent of VLSI technology. To effectively organize and realize these high levels of
concurrency presents a major challenge to computers built on von Neumann architecture
[11]. Attempts to eliminate the von Neumann bottleneck have lead to the introduction of

novel forms of computer architecture such as data flow computers.



Despite the widely recognized feature of proposed data flow model of computation
— its ability to exploit parallelism at the level of atomic operations, skepticism exists
concerning  their  efficiency in high  performance  scientific computation [51]. A
long-standing issuc has been the cefficient mapping of massive parallelism in array
opcrations. A major goal of this thesis is to show that the power of fine-grain parallclism
supported by data flow architecture can be cffectively utilized in handling arrays. In
structuring data flow machine code, we have found pipcelining of array operations a very
attractive way to exploit such massive parallelism,

Most compilers for conventional vector processors do some form of analysis to
identify parallelism in serial code written in conventional programming languages such as
Fortran. After the parallelism is detected, the compiler will gencerate machine code for the
veelor operations using inherently sequential scheduling mechanism available in the von
Neumann processor architecture. Thercfore, in order to perform a successful program
mapping, a vectorizing compiler must overcome two forms of the von Necumann
bottlencck: in the source language and in the machine architecture. While considerable
progresses has been made in parallclism detection of user programs [69], the bottleneck
originating from thc instruction scheduling of machine architecture makes the vector code
generation phase extremely machine dependent. It may require sophisticated analysis to
overcome the barrier caused by problems like conditional statements and vector register
allocation. As a result, such cfforts are often performed under a strategy emphasizing local
optimization rather than global optimization. Therefore, even when massive parallelism in
user programs has been successfully detected, we still nced an effective code mapping
strategy to organize the computation such that thc parallelism can be best handled and
exploited by a highly parallel computer architecture. The von Neumann bottleneck has
been the major obstacle for conventional vector compilers, and so far there are no easy

solutions to the problem.

The program mapping scheme developed in this thesis transforms the user program
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such that the massive parallelism in array computation can be cffectively matched with the
power of fine-grain parallelism supported by data flow architecture. ‘The goal of such
optimization is to achicve effective pipelining of the data flow machine code. Such a
" pipelined program restructure and transformation strategy requires both local and global
analysis and optimization. This adds a new and interesting dimension of optimization
problems faced by a compiler.,

In developing the code mapping scheme, we assume functional languages are chosen
as high level programming languages for writing uscr programs because they cncourage an
applicative style of programming in cxpressing parallel computation. In particular we
choose to use a functicnal language with features which are uscful in expressing array
operations with certain regularitics  frequently found in highly parallel numerical
computation,

This chapter gives an introduction to the various aspects of the thesis rescarch and

outlings its scope.
1.1 Massive Parallclism of Array Opceraions in Numerical Computation

A major driving force in the development of high-performance computcers has been
scientific computation. In applications such as weather forecasting, acrodynamic
'simulation, nuclear physics, seismology and signal processing, enormous computing power
is required to handle massive paraliclism in an efficient manner. Problems in scicntific
computation are usually expressed in linear algebra with all data structured as elements of
arrays. The kernels of such array computation typically demonstrate certain regularitics.
In the computation, the bulk of the elements of an array are processed in a regular and
repetitive pattern through the different phases of program execution. For example,
references to array elements are usually organized in an iteration loop in which the array

elements are accessed by a simple indexing scheme, as illustrated in the following Fortran

program.
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DO10J =1, N
X(LJ) = A(L))
10 X(NJ) = A(N.J))

DO 201 =2, N-]
X(L1) = A(LD)
20 X(ILN) = A(I,N)

DO301 =2,N-1
DO 30J =2, M-1
30 X(1J) = (A(j-D+ AL+ D+AU-LD+AU+1,0))/4

The index computation for all array references of X is done in the form of i+b or j+b
where b is a compile-time constant. Furthermore, all clements of the array X are delined
cxactly once in this loop.

The program in the above example consists of considerable number of array
operations, a fact typical for a scientific numerical computation program. For example,
many applications take the form of computing successive states of a physical system
represented by physical quantitics on an Euclidean grid in two or three dimensions, and the
new values of cach grid point may be computed independently. Thus, the degree of
concurrency is often at least equal the number of the grid points (for a 100x100x100 case,
the parallclism will be well over 109 ). Therefore, the cfficient mapping of the massive
parallelism of ﬁrray computation into machine-level code structure has been a major

consideration in the design of high-performance computer architecture as well as program

transforming compilers.
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1.2 Vector Processing and Vectorizing Compilers

Achicving massive speed-up of array operations has been a challenging task for
designers of von Neumann parallel computers. The array processors, with ILLIAC 1V as a
pioncer [14,18], depend upon simultancous lock-step operations on many clements of an
array. These processors perform well only when data structures can be mapped onto a
fixed machine structure imposed by the physical arrangement of the processors, ¢.g., linear
arrays, two-dimensional arrays, ctc.

Vector and pipelined processors [22,86] perform repetitive operations on clements <
an array scquentially with substantial overlap through the hardware pipelined functional
units. ‘The architecture of such machines usually consists of pipelined function units,
interlcaved memory modules and fast vector registers.  For such processors to be efficiently
utilized, the machine programs must be organized such that the sequence of clements of
the operand arrays needed to complete a vector operation are continuously accessed and
processed by special pipelined function units or by many tightly coupled function units.

The architecture of the various vector processors usually supports a set of vector

operations (instructions). For example, vector add is a typical vector operation described

as:
VADD: C(1) = A(I) + B(D)

where A and B are vector operand, and C is the result vector, and [ = 1 through n — the
length of the vector. A vector operation performs the same scalar operation on successive
elements of the vector. In most commercial vector processors, identical hardware pipelines
must execute the same vector operation at the same time.

User programs for vector processors are written in conventional programming
languages (e.g., Fortran, Pascal) which are sequential in nature. An intelligent compiler

must be developed to detect and regenerate parallelism lost in the use of sequential
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languages. The process Lo replace a block of sequential code by vector instructions is the
so-called vectorization. For example, the following Fortran loop can be vectorized into the

vector VADD instruction discussed above.

DO101=1,N
10 C(1) = A() + B()

For vector processors the fundamental problem, given that the parallclism in the
program is being successlully detected, is to schedule the machine code to overcome the
von Neumann bottleneck. To achieve this goal, the compiler must vectorize complicated
data accesses and restructure program sequences, subject to instruction precedence and
machinc hardware resource constraints. On once hand, an array is a block of storage cells
physically allocated in memory. Transmission of an array from one part of the program to
another occurs directly through physical allocation and moving blocks of data in the
memory. On the other hand, the object programs are coded in von Neumann machine
instruction sct which depends on the sequential control mechanism and lacks clarity in
terms of resource constraints when sharing is concerned. The inflexibility severely limits its
ability to schedulc different computations on different elements of an array. For example,
a barrier to vectorization exists in the handling of conditional and branch statements,
sequential dependencies, etc. It remains to be seen whether an overall program mapping
scheme can match the detected parallelism in source programs with a scquentially
controlled processor architecture,

Morcover, when there is substantial parallelism of operations on multiplc arrays in
different parts of the program, the problem of scheduliﬁg and synchronizing these
operations on multiple pipelined vector processors becomes more difficult. In fact, it has
been indicated that multi-pipeline scheduling is computationally hard, even for a restricted
class of problems [55]. A feasible solution must include a suitable scheme for programming

the communication of tremendous amounts of data traffic bctween processors and
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memorics when many pipelined instruction/data streams are processed. Until recently, the
most sticeessiul vector machines were uni-processors such as the Cray-1 or Cyber-205. The
current direction of vector processing is to allow a small number ol vector processors (2,4 or

8) to form a parallel computer architecture, as in the Cray-X-MP-2 and Fujitsu VP-200 [80].
1.3 Data Flow Computers

The data flow model of computation which has been proposed as an approach for
high-performance parallel computers represents a radical departure from von Neumann
architecture [10,12,25,26,60). In a data flow model, the computation is modcled by a data
low graph — a dirccted graph with nodes that represent actors and arcs that transmit
tokens which carry values to be processed by these actors. Actors are activated for
execution by the presence of tokens carrying operand values at their input arcs. In this
computation model, the execution of a program is intrinsically data-driven, i.c., the order of
exccution between operators is determined only by data dependencies.

In recent years rescarch has been conducted on data flow architecture that can
directly execute programs encoded as data flow graphs [12,34,35]. A machine-level data
flow program, regarded as a collection of instruction cells, is essentially a directed graph,
with cach node corresponding to an instruction and cach arc specifying the destination of
the result valuc of an instruction execution. Unlike von Neumann computers, data flow
computers have no program counter or other form of centralized sequential control
mechanism. The parallelism which can be exploited by an ideal data flow computer is
limited only by the data dependencies in the data flow programs.

Two major approaches to the architecture of data flow computers are currently being
pursued. They are the static data flow model [26] and the tagged token model [11,92]. In
this thesis, we dcal only with the static data flow model. In the static data flow model, an
arc can hold no more than one token. The machine programs for a static data flow

computer are loaded into the processor memory before execution and only one instance of
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an instruction is active at a time. Once an actor has been executed, it cannot be executed
again until the tokens carrying previous result values have been consumed by all successor
actors.

The structure of a static data flow supercomputer proposed by the Computation
Structures Group of MI'T' [35] is shown in Figure 1.1. The data flow programs are held in
the memory local to cach processing clement (PE). When an instruction is enabled for
execution by the arrival of its operand values, an operation packet is formed and sent to the
function unit FU or array memory AM, depending on the type of operation it requires.
The result value of the operation is sent to its successor instructions in the program graph.

The organization of the processing units that handle enabled instructions and initialize

—
—» PE > FU > —
>
—
»{ AM | Distribute
Memory
] AN RN |
» AM >
——>
PE FU > —1
T result
PE : processing element FU : functional unit
AM : array memory RN : routing network

Figure 1.1. A static data flow architecture
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their execution has been described in [27,28,92]. The role, analysis and structure of routing
networks are described in [28,29,16,17]. Performance cvaluation of the static data flow

architecture for a few benchmark programs has been studied in [31,35,84].
1.4 Granularity and Functionality Issucs

Despite its attractive features, data flow model of computation has raised
considerable controversy among researchers. Not surprisingly, the criticisms of data flow
architecture for high-performance numcrical scientific computation have also been
centered on array computation. The main skepticisms about the ability of data flow
computers in handling array opcrations are due to their cmphasis on  fine-grain,
‘operational-level concurrency [51,52].

’amllc'lism can be exploited at different levels of computation: task level,
procedure/function level, or instruction level, Granularity issucs have been an important
consideration in paralicl computer architecture design. The opcerational model of data flow
graphs can cxploit the parallclism explicitly at each atomic machinc operation level, and
the corresponding architecture is said to be based on the fine-grain data flow principle.
For example, both static and tagged token data flow machines use the fine-grain data flow
principle.!

The success of data flow architecture in scientific computation depends on the
program mapping or transformation schemes which can organize the computation such
that the massive parallelism and regularity in array operations can match the fine-grain
parallelism efficiently supported by the architecture.

According to the functionality of data flow graphs, any actors (operations) must be

side-effect free. Conceptually, this precludes the sharing of data structure such as arrays.

1. In contrast, some rescarchers advocated a coarsc-grain data flow principle, where an atomic actor in the
graph is a procedure [S1].
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An array append operation Ali:v] expressed in data flow languages such as Val [4] would
mean the construction of a new array A™ which is a fresh copy of A except that the i-th
clement is replaced by v [4]. One direct implementation is to copy the array A cach time an
append operation is executed. Clearly such a scheme is expensive. The [-structure concept
represents one attempt to remedy the problem [11). An I-structure is implemented as an
array-like structure where a present bit is associated with every element of the structure in
the physical memory. An attempt (o access an empty location in the structure will be
deferred until an update operation to the same location is performed. Although it allows
the possibility of concurrency between simultancous read and write operations of an
I-structure, criticism has been made of the overhead of handling the deferred read
operations. Some rescarchers have arguced that the benefit ef such fine granularity docs not
pay for its overhead [51].

One way to represent an array in a data flow graph is to allow a token to carry the
array as a single value, and use append and sclect actors in the program graph o access and
process array clements and to construct the result array. It appears that the fine-grain
advantage for a graph actor opcrating on arrays is lost. Ifa program involves many random
a!'ravy access operations, the overhecad of transmitting the array vaiues may be high.
Furthermore, if random update functions are involved, the storage management may
become cxpensive [3]. Criticism of proposed tree-like array storage structures in data flow

computers is also well-known [51].
1.5 A Pipelined Code Mapping Scheme

The massive fine-grain parallclism which can be exploited by data flow architecture
presents challenges as well as opportunities for compiler construction for such parallel
machines. The functionality of data flow graphs relicves the burden of solving low-level
scheduling problems due to the von Neumann bottlencck which severely restrict the power

of a conventional vectorizing compiler. As a result, it may provide the foundation on which



- 18 -

programs can be restructured and transformed to meet both global and local data flow
requirements. This certainly adds a new dimension to compilation technigues for paratlel

machincs to which this thesis is devoted.
1.5.1 Fine-Grain Parallclism and Pipelining of Data Flow Programs

Finc-grain parallelism exists in two forms in a data flow machine level program, as

shown in Figure 1.2, which shows seven actors grouped into four stages. In Figure 1.2 (a),

(a) >
A
stage 1 stage 2 stage 3 stage 4
1 3 )
(b) z : >

N

Figure 1.2. Pipelining of Data Flow Programs
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actors 1 and 2 are enabled by the presence of tokens on their input arcs, and thus can be
exceuted in parallel.! ‘This is called sparial parallelism.  Spatial parallelism also cxists
between actors 3 and 4, and between actors 5 and 6. The sccond form of parallelism is
pipelining. In static data fow architecture, this means arranging the machine code such
that successive computations can follow each other through one copy of the code., If we
present a sequence of values at each input of the data flow graph, these values can flow
threuyh the program in a pipelined fashion. In the configuration of Figure 1.2 (b), two scts
of tokens are pipclined through the graph, and the actors in stages 1 and 3 are cnabled and
can be executed concurrently, "Thus, the two forms of parallelism are fully exploited in the
graph.

The power of finc-grain parallelism in a data flow computer derives from
machine-level programs that form large pipelines in which thousands of actors in hundreds
of stages arc executed concurrently. Fach actor in the pipe is activated in a totally
data-driven manner, and no explicit sequential control is nceded. With data values

continuously flowing through the pipe, sustained parallclism can be efficiently supported

by the data flow architecture.
1.5.2 Data Flow Languages and Array Computations

The vse of data flow languages [S] encourages an applicative style of programming
which does not depend on the von Neumann style of machine program execution. An
important feature of this style is that the flow of data values is directly specified by the
program structure. The basic opcrations of the language, including operations on arrays,
- are simple functions that map operands to results. Data dependencies, even those

involving arrays, should be apparent. This construction helps cxploit concurrency in

1. A solid disk on an arc represents the presence of a token.
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algorithms and simplifics the mapping of such algorithms into data flow machine
programs. For the purpose of this paper, we choose o use Val [4] as the high level
language lor user programs.

Since large numerical computation programs involve many array opcrations, their
cfficient mapping is crucial in the design and implementation of high-level languages. In
functional languages, the concept of an array value does not depend on storage locations in
the memory. Array operations, such as the Val array append and sclection operations are
applicative — an array value can be created or accessed, but never modificd. However, a
[unctional scmantics of array opcerations does not guarantee cificient implementation. For
cxample, if a program invokes many append operations, the excessive copying may result
in substantial overhead.

Array operations in large numerical computations usually take place in a regular and
repetitive pattern, as shown by the example in Section 1.1. An array is usually constructed
by a code block such that cach clement in the array is defined only once. As a result, array
construction can be implemented in a way such that copying of the array is normally
avoided. Another regularity is the way an array value is used in computation by other parts
of a.program. The selection operations of an array, clustered in a code block, often cxhibit
a simple indexing pattern such as in the form Afi+b], where i is the index value name and
" b is a compile-time constant. This regularity permits optimization in the transmission of
array values betwecn different parts of a data flow program. The goal of this thesis is to
examine how array operations with such regularities can be efficiently mapped onto static
data flow compiuters.

Since our major concern is how to utilize the regularity of array operations in the
source program, we concentrate on two array creation constructs — the forall and
for-construct expressions.

The forall construct allows the user to specify the construction of an array where

similar independent computations are performed to determine each element of the array.
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The following is an expression which defines a one-dimensional array X from an input

array A,

X :array[real] : =
forall  iin[0, m+1] % range spec
construct
il i = 0 then A[i]
clseif i = m+1 then A[i]
else
(Ali-1]+Afi]+A[i+1])/3
endif

endall

The for-construct expression, proposed as a special case of the Val for-iter construct,
is uscd to specify construction of an array where certain forms of data dependencies exist
between its clements. The following is a for-construct expression which constructs an array

X based on a first-order linear recurrence, using array A and B as parameter arrays.

X := array[real] : =
for ifrom0tom+1 % range spec
T : array[real] from array-empty
construct
ifi =1 then x0

else A[i]*T[i-1]+ B[i]
endif

endfor

Typically the body of a forall or for-construct expression is a conditional expression
which partitions the index range of the result array into mutually exclusive and collectively
exhaustive index subranges, each corresponding to an arm of a conditional expression.

Such a conditional expression is called an range-partitioning conditional expression. In the
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above forall example, there are three index subranges, i.e. [0,0], [m+ 1,m+ 1] and [1,m].
The two constructs just illustrated provide means to cxpress array construction
operations of the desired regularity without using explicit array append operations.

Expressions based on these construcis are the major code blocks studied in this paper.,
1.5.3 Pipclining of Array Opcrations

One objective of the machine code mapping scheme for static data llow computers is
to generate code which can be executed in a pipelined fashion with high throughput. The
pipcline must be kept busy — computation should be balanced and no branch in the pipe
permitted to block the data flow. Furthermore, computation resources should be
efficiently utilized. In particular, the usage of storage for arrays is important, because the
user program usually contains vast amounts of array data to be processed. .

In a data flow computation modcl, an array value can be regarded as a scquence of
element values carricd by tokens transmitted on a single data flow arc — as the array A
represented in Figure 1.3 (a). In Figure 1.3 (b), the four input arcs are presented with four
input arrays A, B, C, D, all are spread in time as in Figure 1.3 (a). Obviously, the scqucnces
of input array values can be pipelined through the data flow graph.

We can observe that each actor in Figure 1.3 (b) is effectively performing a vector
operation, e.g., actor 1 — vector addition, actor 2 — vector subtraction, ctc, a total of seven
vector operations. However, unlike the vector operations usually supported in
conventional vector processors, there is no requircment that thc activitics of one such
vector operation be continuously processgd by one or a group of dedicated function units
in the processor. The applicative nature of the data flow graph model allows flexible
scheduling of the execution of enabled actors in thc pipeline. In fact, an idcal data flow
scheduler (with a sufficicntly large data flow computer) will execute each actor as soon as
its input data become available. As a result, the activities of the seven vector operations

overlap each other, performing operations on different elcments of different arrays
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Figure 1.3. Pipelining of array operations

concurrently, Therefore, massive parallelism of vector operations can be ecffectively
exploited by a data flow computer in a fine-grain manner: the scheduling of the physical
function units and other resources for sustaining such vector operations is totally
transparent to tl;e user.

This pipelined principle of array operations can be further extended. The data flow
graph in the above example corresponds to the code block in the user program which
defines array X from array A, B, C, D. The core of each of the several benchmark
programs for scientific computation we have studied usually consists of multiple code

blocks, for example in the order of 10 - 100 code blocks. Each code block is defined by
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Figure 1.4. A group of code blocks

such a forall or for-construct cxpression [35,37,47,84]." A data flow graph corresponding to
a program of five code blocks is illustrated in Figure 1.4. There are three input arrays A, B,
C, and an output array Y. There are also internal arrays X1, X2, X3 and X4 dcfined by the
code blocks. We are particularly intcrested in the casc where cach code block is defined by

a forall or for-construct expression.
1.5.4 The Pragmatic Aspects of Compiler Construction

The issue in compiler construction for a static data flow supercomputer is to produce
machine code structures that keep the processing resources usefully busy and correctly
implement the computation specified in the source program. Using a functional language

such as Val, the detection of parallelism is straightforward; the absence of side effects

1. "This includes the collection of several benchmark programs provided by the six groups of scientists in the
Workshop sponsored by NASA Rescarch Institute of Advanced Computer Science [84).
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allows avoidance of the complexity of such analysis for many conventional programming
languages.

In contrast to conventional compilers, we are primarily concerned with both the
" overall and the local structure of the code. The performance of major code blocks and the
effective communication between them are two key problems that a successful compiler for
a data flow computer must solve. .

The attention of this thesis is focused on a pipelined code mapping strategy to
achicve the goal for high performance scientific computation. As will be outlined in the
next section, the thesis work is mostly devoted to the algorithmic aspects of mapping blocks
of code in the source program into pipclined data flow machine code structure, and the
optimization tcchniques which can cffectively implement the communication between the
code blocks. The pipelined code mapping scheme developed in the thesis can scrve as a
basis on which a practical compiler can be buiilt.

Of course, there are many other important issues in the compiler construction which
are not covered in the thesis. However, the thesis will give a bricf discussion on some of
these issues in Chapter 11. The preliminary structure of a compiler is outlined and the

pragmatic issues of implementation arc addressed.
. 1.6 The Scope and Synopsis of the Thesis

1.6.1 The Scope of the Thesis

As a basis:, the first part of the thesis describes a static data flow graph model as an
operational model for concurrent computation, and presents the timing considerations for
the graph execution on an ideal static data flow computer. Based on such an execution
model, the notion of pipelining and its performance can be characterized. The thesis
discusses the principles and balancing techniques used to transform certain data flow

graphs into fully pipelined data flow graphs. In particular, the optimal balancing of an
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acyclic data flow graph is formulated as a lincar programming problem for which an
optimal solution exists. As onc major result, the thesis shows that the optimal balancing
problem of acyclic data flow graphs can be reduced to a particular class of lincar
programming problem i.e. the network flow problems for which well known efficient
algorithms cxist. This result reverts a conjecture that such problem is computationally
hard.

The sccond part, the kernel of the thesis, concentrates on the development of a
pipelined code mapping scheme for static data flow computers. The key is the pipelined
mapping of array operations in uscr programs. After the source language and object
language arc introduccd and defined, the basic pipelined code mapping scheme is
. developed and formulated in an algorithmic fashion, The optimization of array operations
is also presented in an algorithmic fashion. The major result in this part is to show that a
class of program blocks {expressible in forall or for-construct expressions) can be
effectively mapped into pipclined data flow graphs. The mapping scheme can handle the
code blocks with conditional and nested structures frequently found in numerical
computation programs. Our technique emphasizes both global and local optimization, and
thesxé two aspects are unified under the pipeline principle. The treatment of array
operations is unique in the sense that information about overall program structure can be
used to guide the code generation such that the massive parallelism of array operations can
be exploited in a fine-grain manner by the data flow architecture.

Although our presentation is centered on the formulation of the pipelined code
mapping schemé, it is also important that other related optimization techniques may be
combined to improve the performance of the result data flow graphs. In the sccond part of
this thesis, we include a short survey of several other optimization techniques which can be
used for this purpose.

The third part of the thesis addresses issues which are impoitant for extensions of this

work. One important direction of further extension is the construction of a compiler based
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on the pipelined code mapping scheme. ‘The reader may find a discussion of the structure
of the user programs (the program block graphs as shown in Figure 1.4), and their relations
with pipelined mapping schemes for cach code blocks in the first half of Chapter 11, In
particular, we outline the structure of a potential compiler which can incorpo.rutc the basic
principles developed in the thesis rescarch. Much interesting work remains to be done in
this area, and our limited discussion suggests possible topics for further rescarch. Another
aspect is the pragmatic impact of the pipelined code mapping scheme on the machine

architecture design. This is the topic of the second part of Chapter 11.
1.6.2 The Synopsis of the Thesis

Chapter 2 describes the static data flow computation model which is the basis of static
data flow architecture. It also discusscs important aspects of pipelining data flow graphs,
including basic concepts and performance considerations. The highest computation rate is
achieved through the maximum pipelining of data flow graphs. Chapter 3 formulates the
balancing of a data flow graph as a finear programming problem and discuss an algorithmic
approach to balancing techniques.

Chapters 4 through 9 are devoted to the development of basic pipelined code
mapping schemes. Chapter 4 specifies the representation of the source language. In
particular, it introduces PIPVAL — a subset of Val used as the source language to describe
the user programs fo be mapped. The chapter introduces the major code blocks, i.e. array
creation expressions built using forall and for-construct language constructs. The mapping
of array operations organized in these code blocks are the focus of the thesis. Chapter 5
gives an overview of the basic code mapping scheme. It addresses the topic of array
representations used in pipelined code mapping schemes. It also introduces a static data
flow graph language — SDFGL as an object language for the code mapping scheme.
Chapter 6 presents the code mapping scheme for all expressions in PIPVAL except

expressions built from the two array creation constructs. Chapters 7 and 8 are devoted to
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the pipelined code mapping scheme of forall expressions. This includes the generation of
the data flow graphs as well as the optimization of array opcrations in them. Chapter 9
discusses the mapping scheme of for-construct expressions.

Chapter 10 is a survey of related optimization techniques which can be combined
with the basic code mapping schemes. Chapter 11 discusses considerations of program
structure and machine design to support the pipelined code mapping scheme. Important
pragmatic issues for compiler construction are addressed. It also suggests topics for future

research. The conclusions of the thesis are in Chapter 12.
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2. The Static Data Flow Model

In this chapter, we describe the static data low graph model as an operational model
(or concurrent computation. ‘This model has evolved from a number of graph operational
modcls for studying concurrent computation.  Earlier models concentrated more on basic
theoretical aspects such as decidability of propertics of concurrent computations: deadlock,
nondcterminacy, cquivalence of program graphs, and cxpressive power for parallelism
[7,59.85]. Later works were oriented toward operational models of practical programming
languages designed for data low computers [19,24,25,91]. ‘The static data flow graph model
that originated from this rescarch has provided the power to express most language features
found in high-level programming languages such as Val,

The goal of this thesis is o develop a pipelined program mapping scheme to
cfficiently exploit the degree of concurrency achicvable in the static data Now model. In
Scction 2.1 we bricfly present the static data flow graph model, outline the main features of
an idealized static data flow computer as an implementation model, and introduce
terminologics and notations used in discussing the model and in the rest of the thesis. A
survey of other major data flow modcls can be found in [36]. In Scction 2.2, we describe
the basic concept of pipelining of static data flow graphs, the timing considerations in their
execution, the concept of maximum pipelining and related performance issucs, and finally

the balancing of data flow graphs.
2.1 Static Data Flow Graph Model

2.1.1 The Basic Model

The basic execution model of a static data flow computer is the static data flow graph
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model. As in most data low models, a program module is represented by a direeted graph.!
Nodes in the graph arc also called actors. Associated with each actor are an ordered set off
input ares and an ordered set of ourput ares. “The arcs specily paths over which data valucs
" can be transmitted.

The state of a computation is described by configurations and the firing rules
governing the transition between configurations,  Data values are denoted by placing
tokens on the arcs. A configuration is an assignment of tokens in the graph. One
configuration is advanced to another by firing of the actors. With the exception of a few
special actors (i.c. the ‘i-gate, F-gate, switch and merge actors to be studied later) for
implementing conditional and iteration computations, the fiving rules for static data low

modecl are quite simple:

Regular I'iring Rule:

(1) an actor becomes enabled iff all its input arcs have
one token and all output arcs are empty;
(2) an enabled actor may fire and, once fired, removes

all tokens on its input arcs and places a token on each

of its output arcs.

In Figure 2.1, we show a static data flow graph and a succession of scveral possible

configurations for the following expression:

(a+b)x(c-d)

1. A short summary of terminologics regarding the digraph and the model can be found at the end of this
chapter.
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Figure 2.1. A Static Data Flow Graph

Here we adopt an carlier notation convention that a token on an arc is represented by
the presence of;1 solid disk. Labcls are uscd to denote values carried by the tokens, and can
be omitted if irrelevant to our discussion. For simplicity, constant operands can be
subsumed into the nodes.

The firing of an actor involves the computation characterized by the particular
opcration associated with the actor, and the result token has a new value defined by the set

of values of the input tokens. We assume the sct of operations is rich enough to express the
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computations we are interested in, including arithmetic operations, boolcan operations,
relational operations, ete. An ddentiry actor is a unary actor which, when lired, simply
forwards its input token to cach ol its output arcs. As a notational convention, the function
symbol of the operation o be performed by an actor is directly written inside the actor,
except as otherwise noted.

In order to implement conditional and iteration expressions, we need T-gate, F-gate
and merge actors which have special firing rules. We also include switch actors, although
their function can be performed by using T-gate and F-gate actors. A T-gate (F-gate) actor
has two input arcs: a data input arc and a control input arc which expects a token with a

boolean value. "The liring rules for a T-gate (F-gate) actor are:

Firing Rule for T-gate (I'-gate) Actors

(1) A T-gate (F-gate) actor becomes enabled iff both
data and control input arcs have a token, and all
output arcs are empty;

(2) An enabled T-gate (F-gate) actor may fire; once
fired, it removes the tokens from both input arcs. It
forwards the data input token to each of its output
arcs if the controi input token has a true (false) value;
otherwise the input data token is simply absorbed and

no output token is generated.

The graph notation for T-gate and F-gate actors and theiv firing rules is presented in

Figure 2.2. Note that we adopt the convention of representing control input arcs by open

arrowheads.
A merge actor has three input arcs: two data input arcs and one control input arc.

The two data inputs are labeled T and F respectively. A data input arc is selected by the
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Figure 2.2. Firing Rules for T-gate and I-gate actors

presence of a token on the control input arc with a boolcan value matching the

corresponding fabel. Its firing rules arc as follows:

Firing Rule for Merge Actors

(1) A merge actor becomes enabled if a token with a
boolean value is presented to its control input arc,
and a data token is presented to the selected input
arc, and all output arcs are empty;
{(2) An enabled merge actor may fire; once fired, it
removes the tokens on its control input arc and the
selected data input arc. A token carrying t'he selected

input data value is placed on each of its output arcs.

The graph notation for merge actors and their firing rule is presented in Figure 2.3.

A switch actor has two input arcs: a data input arc and a control input arc which
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Figure 2.3. Iiring Rule for Merge Actors

expects a token with a boolean value. It has two output arcs labeled 7 and F respectively.

The firing rules for switch actors are as follows:

Firing Rule for Switch Actors

(1) A switch actor becomes enabled iff both data and
control input arcs hold tokens, and all output arcs are
empty;
(2) An enabled switch actor may fire; once fired, it
removes the tokens from both input arcs. It forwards
the data input token to the output arc labeled T if the
control input token has a true value; otherwise the
input data token is forwarded to the output arc labeled
F.
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FFigure 2.4. Firing Rule for Switch Actors
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Figure 2.5. Implementation of Switch Actors Using T-gate and F-gate Actors
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‘The graph notation for switch actors and their firing rules are presented in Figure 2.4,
Using a pair of "T-gate and F-gate actors, we can implement the role of classical switch
actors (see Figure 2.5).

Using the special actors, a data Now graph for a conditional expression
il P(x) then [{x,y) else g(x,y) endif

is shown in Figure 2.6. As long as the computation of p, Fand g docs not diverge, exactly
one token will eventually be gencerated at the output arc of the graph. Such a data flow

graph is called a conditional subgraph. ‘The switch actor in Figure 2.6 can be replaced by

X Y

Figure 2.6. A conditional subgraph
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pair of ‘I=gate and F-gate actors according to Figure 2.5. Figure 2.7 shows the static data

flow graph for the following iterative expression which computes the factorial of n,

fori:=0,f:=1

do
ifi>nthenf
elseiteri:= i+ 1, ;= Mienditer
endif

endfor

Here the two merge actors initialize the loop value names at the first iteration and provide

v Result

Figure 2.7. An iteration subgraph
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the redelined values in successive iterations, The termination of the iteration is controlled
by the test i > nin cach iteration, When the test yiclds the value I, the iteration is
continued with the redefined values as the inputs o the next iteration. Otherwise, the
iteration will be terminated and a re <t token generated at the output arc of the bottom
merge actor. Such a graph is called an ireration subgraph. For cach set of input values, an
iteration subgraph will generate exactly one set of result values, unless the computation
diverges.

In this thesis, we only consider data flow graphs that are well-behaved, i.c., have
exactly one set of result tokens generated at the output are for cach set of tokens presented
at the input arcs [20). In fact, the data low graphs derived from expressions found in most
user programs, including the conditional subgraphs and iteration subgraphs, are

well-behaved [26).
2.1.2 Determinancy and Functionality of Static Data Flow Graphs

Recall that the state of computation of a data flow program is defined in terms of its
configurations and that firing rules determine execution sequences corresponding to the
change of states in the computation process. In general, a well-behaved data flow graph
(with a certain initial configuration) may have many legal execution sequences. The
determinate property of the static data flow graph model guarantees that it is necessary to
examine only one cxecution sequence to derive the result of graph execution [82]. In terms
of the results produced by the computation, all execution sequences represent the “same”
computation. As we will see later, this determinate nature simplifies our study of
pipelining for data flow graphs. '

The determinate property of the static data flow model ensures that input/output
behaviors are functional. There is no notion of locus of control, such as the notion of the
program counter in a conventional computer. The execution of an actor does not have

side-effects. All parallelism is faithfully represented in the static data flow graph
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model—the only dependencies among actors are data dependencics. ‘Therelore, the static
data fow graph is an ideal model for mapping applicative or functional programming
languages such as Val. 1t has been shown that a static data low graph generated from a
syntax-correct Val program is both determinate and five, i.c., a complete set of inputs will

eventually produce a unigue set of outputs [79).
2.1.3 Static Data Flow Computers

In the static data Mow graph model, only one token can occupy an arc. ‘Therefore, an
actor can not become enabled unless all its output arcs are empty. Such a requirement can
be implemented by a dataZacknowledgment mechanism in the instruction sct design of
static data flow computers [35]. Actors in a static data flow graph correspond to
instructions in the machine-level data Mow program. Each instruction (actor) has two types
of output arcs: data arcs (also called result ares) and acknowledgment arces (also called signal
arcs). Each arc in the classic data flow graph now becomes a pair of arcs — a data arc and

an acknowledgment arc. Figure 2.8 shows the data/acknowledgment arcs for the cxample

ﬂ‘_ ~

Figure 2.8. Acknowledgement Arcs
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in Figure 2.1 with the acknowledgment ares drawn as dashed lines.! ‘The condition for
liring an instruction in the static data low muchine now demands that a signal token be
placed on cach of the acknowledgiment ares, indicating that the corresponding data arcs are
©empty, i.e., the tokens placed on the corresponding data arcs from the previous liring are
aircady consumed. Furthermore an actor, when fired, must signal its predecessor actors
that the input data tokens have been consumed by placing a signal token on the
appropriate acknowledgment arcs.

Data flow computer systems basced on the static data flow model have been studied at
MIT and cisewhere. The organization of the processing units which handle enabled
instructions and initialize their execution has been described in [27,28,35]. ‘The role,
analysis and structure of routing networks are described in [17,28,29]. ‘The structure of data
flow processors and the interconnection networks for such nmchincs.arc described in
several publications [17,32]. The architecture of a practical static data flow supercomputer
and its applications has been proposed in [28,31,35].

For the purpose of this thesis we adopt a simple, abstract model of a static data flow
computer. This idealized static data flow computer can execute all enabled actors
independently. Such a computer, being an idealization of true static data flow computers,
can fully cxploit potential parallclism in applicative programs. It has been used as machine
* model to study the implementation issues of applicative languages in [6]. Latcr in this

chapter, we introduce assumptions regarding the timing bchavior of the idealized static

data flow computer.

1. Here we adopt the notation described in [35].
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2.1.4 "I'erminologics and Notations

Since a static data low graph is rcpr'cscnlcd by a directed graph, or digraph, we will
use certain terminologics and notations from graph theory. “This section serves as a briefl
summary.

let G = (V.F) be a digraph where Vis a sct of nodes and I is a sct of edges. Unless
otherwise stated, both Vand £ arc assumed (o be finite. In this casc we say that G is finile.
Mcembers of V and £ are also called vertices and arces respectively. 1F G represents a data
flow graph, members of V and £ can also be called actors and links. "These terms will be
usced interchangeably throughout the thesis.

Each cdge e C £ is associated with an ordered pair of vertices (u,v). We sometimes
wrile thisas ¢ = (u.v), or u —~, or simply as €,y When w - v, wesay e is directed from u
to v, and u,v are called the start node (1ail) and end node (head) respectively. Furthermore,
we call e an input edge of node v and an curput edge of node u, and we also say v is adjacent
to u.

The indegree of a node is the number of its input edges, and the outdegree is that of
its output edges. A node is multi-input (or multi-output), if its indegree (or outdegree) is
greater than onc. The set of input edges of a node is called its input edge list and the set of
output edges of a node is its output edge list. A graph is called a one-in-one-out graph if
both its indegree and outdegree are equal to one.

A path p is a sequence of edges (e, e, ... ) such that the end node of ¢; is the start
node of e, _; (1< i< k); the start node of ¢ is called the initial node of p and the end node
ofe, the terminal node of p. The length of the path is k. Also, a node vis reachable from u

if there is a path p from u to v, denoted by u —_ v. A path is simple if all edges and all

P
nodes on the path, except possibly the initial and terminal nodes, are distinct. A path is a
chain if the indegree and outdegree of each node equals one except the initial node and the
terminal node,

A graph in which a number, say w, i is associated with every edge (i,j) in the graph is
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called a weighted graph and the number Wi is called the weight of the edge. The cost of a
path is the sum of the weights of the edges in the path.

A cyele is a simple path with a length of at least one which begins and ends at the
same node. A digraph is acyclic il it does not have cycles.

Throughout this thesis, we use |V] and |F], respectively, to denote the number of

nodes and the number of edges in the graph G = (V. E).
2.2 Pipclining of Data Flow Programs

The concept of pipelined computation as a major technique to achicve concurrency
has been used in diverse ways in computer architecture and organization. [t certainly can
be used in various levels of the design for a data flow computer as well. In this thesis, we
do not attempt to address the broad spectrum of problems regarding pipclining. Instead,
we concentrate on the pipelining of static data low graphs. Such pipclining is a very
effective way to organize parallel computation on a static data flow machine. In this
section, we introduce the basic concepts for such pipelining and establish important criteria
for its performance.

In Section 2.2.1 we first illustrate the basic concepts of pipelining in the static data
flow model through some examples. In Section 2.2.2, we discuss timing considerations
during program execution of the static data flow graph model. The important notion of

maximum pipelining is introduced in Scction 2.2.3. In Section 2.2.4, we introduce the

notion of a balanced data flow graph.

2.2.1 Basic Concepts of Pipelining

Pipclining is a well-known approach in the design of conventional computers to
exploit parallelism. The general approach of pipelining is to split a function into basic
operations and allocate separate hardware to each basic operation. These range from

components of arithmetic operations to the producer-consumer computation by CPU and
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170 processors. In a real computer system a basic operation at one level of pipelining may
itsell be pipelined at another level,

In this thesis, we arce interested in the pipelining of data flow graphs as a model of
machinc-level programs for a static data flow computer.! For our purposes, a basic
operation of the pipeline is a data flow actor in the graph. Successive operands are
pipelined through actors of the graph. The goal is to structure the data llow graph in such a
way that many actors in various parts of the graph may be exccuted concurrently. This
provides an clTective way Lo exploit parallelism in user programs.

The example illustrated in Figure 2.9 (a) is a three-stage pipeline made of four actors.
When tokens arrive at a and b, actor 1 at stage 1 fires and sends results to actors 2 and 3.
Once actors 2 and 3 at stage 2 fire and acknowledge receipt of their operands, actor 4 at
stage 3 may fire, and actor 1 may fire again on ncw data, as indicated by the two sets of
tokens in Figure 2.9 (b). Thus data tokens may flow continuously through the three-stage
pipe. Each stage is kept busy processing units of data, one after another, as they flow
through successive stages of the pipeline. Thus the computation rate of a pipeline is not
dependent on the number of stages, but is determined by the processing rate of one stage.

Ina typical scicntific program, the machine code may be organized as a huge
pipeline, pcrhaps hundreds of actors long and wide. [fsuccessive values of long vectors can
be pipelined through the pipeline, there may be many thousands of actors in hundreds of
slages in concurrent cpcration. The potential parallelism of such "two-dimensional”

concurrent execution in a properly structured data flow program is cnormous.

1. From now on, the terms data flow program and data flow graph are used interchangeably in our
discussion when no confusion may occur.
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Figure 2.9. An Example of Pipelining

2.2.2 Timing Considerations

The nature of program execution on a data flow computer is asynchronous — there is
no centralized control mechanism to schedule the firing of the instructions. To study
performance, however, it is convenient to associate timing paramcters with the static data
" flow graph model. In this section, we introduce two major assumptions about the idealized
static data flow machine introduced earlier.

Let us consider the time needed to fire an actor in the graph. The firing of an actor
includes the time needed to perform the operation specified by the actor on the operand

tokens presented on its input arcs; to generate the result tokens and place them on its



-45 -

output arcs; and to signal the emptiness of the input arcs such that it is ready to accept a
new sct of input tokens, Recall that an idealized static data low computer can fire all

cnabled actors independently. The following is our first assumption,

Assumption 1 (A-2.1). The firing of any enabled actor can be
completed within a constant time =, where 7 is a parameter of the

idealized data flow machine.

Assumption (A-2.1) limits exccution time for any actor in a graph. The time interval
7 is an important performance measure of the machine. In a real machine, the firing time
may not be a constant for actors of different types. It may cven vary for the actors of same
type as the processing load on the machine changes. For our purposes however, we ignore
such factors and assume 7 is a constant, called the basic cycle time (or for short, cycle time).
We use a clock with cycle time 1 as the timing reference for computations by data fllow
programs. We also assume, without loss of generality, that the firing of any enabled actor
may only happen at the beginning of a clock cycle. This assumption gives the execution of
data flow programs a somcwhat "synchronous” behavior, which facilitates the study of
their pipelined execution.

In a data flow program, many actors may become cnabled at the same time. An
' important performance criteria of the machinc is how long the firing of an enabled actor
may be delayed. Let tybyeretiees be the starting points of a scquence of machine cycle with t, -
ty =7 forall i> 0. According to assumption (A-2.1), any enabled actor that starts firing at
t.; will complete the execution before t. Asa result of the firing, somc other actors may
become enabled during the time from t. | to t. We assume that the machine will not fire
those newly enabled actors until all the actors currently being fired finish their execution;

as soon as that happens, the newly enabled actors should be fired without further delay.

Therefore, we have the following assumption.
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Assumption 2 (A-2.2). All actors enabled during the interval t, | to t,

will start to fire at ti for all i>0.

An immediate consequence of (A-2.2) is that an cnabled actor X cannot start to fire
before the firing of any actor ¢nabled carlier than X. However, this does not exclude the
possibility that they may start to fire at the same time. ‘This guarantees that the machine is
fair in the sense that no actor can be fired twice in a row unless all actors enabled in
between start to fire.!

Both assumptions (A-2.1) and (A-2.2) require that the machine architecture have
cnough parallelism o process multiple enabled actors in a graph simultancously. The two
assumptions are related to cach other in an interesting way. In a real machine with finite

.pumllclism, it is rcasonable 10 expect some delay between the time an actor is enabled and
the time it is actually fired. On the other hand, we certainly would not want the machine to
repeatedly fire some fraction of the actors without firing the enabled actors in the rest of
the program. Assumption (A-2.2) suggests that cvery actor may experience some delay but
that the maximum delay is bounded by a basic cycle time of the machine. By dclaying
certain cnabled actors, machine resources may be devoted to the actors presently being

fired, thus rcasonably limiting the cycle time 7 as specificd in (A-2.1).
2.2.3 Throughput of Pipelining Data Flow Programs

Based on the timing of the machine, we can characterize the performance for
pipelined execution of data flow programs. Let us consider the data flow graph shown in
Figure 2.10. We assume that the input node s of the graph G is driven by an input source
which can gencrate a stream of input tokens as fast as thc pipeline can use them.

Furthermore, the output node t of the graph G is connected to a sink which can absorb

1. A practical implementation of fair-firing mechanisms is discussed by the author in [45].
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the rest of

(a) before the run with respect to ¢

the rest of b

I;

(b) after the run

Figure 2.10. One run of a data flow graph

tokens as fast as the pipeline can generate them. Such a source (or sink) is called a perfect
source (sink). If all inputs and outputs are connected to perfect sources and sinks, the
pipeline is said to be under a maximum loading condition. Note that the perfect sources
(sinks) may themselves be implemented by data flow graphs.

Figure 2.10 (a) shows an initial configuration where an input token c is presented at
the input arc of G. Assume the computation starts at ty: After a finite number of cycle

times we should expect a result token b coming out from G as in the configuration shown
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in Figure 2.10 (b). 'The sequence of firing of the actors in G caused by the input token ¢ is
called one run of G with respect to c.

In Chapters 2 and 3 (except Scction 3.6), we restrict our atlention to a very simple
class of data flow graphs. This can simplify the discussion of the fundamental issucs and
techniques for achieving maximum pipcelining. Two main features of this class of graphs
are (1) the graphs are acyclic; and (2) the graphs contain no special actors, such as
T-gate,F-gate, switch or merge actors. The first assumption excludes data dependencics
between different runs. The second assumption provides a simple environment to facilitate
the development of our framework. It follows directly that any single run of such a graph
will cause the firing of each actor in the graph cxactly once. This imptes that all runs of the
same static pipceline have the same pattern of actor usage regardiess of the value carricd by
the token which activates a particular run. We should note, however, that the second
assumption is not essential to our results and we will extend the result to more general cases
with spccial operators arranged in conditional subgraphs (see the end of Chapter 3). In the
rest of this chapter and Chapter 3, unless otherwise stated, the term data flow graphs refers
to graphs from this simplificd class.

* Now let us consider the case when a sequence of input tokens ¢,,c,.cy... arrives at the
input of G. At time t, the first run with respect to ¢, is activated. The second run with
respect to ¢, can start as soon as the result tokens on each output arc of | (I is the set of
input nodes) gencrated during the first run are consumed by their corresponding successor
actors. The same is true for the successive runs with respectively to C3.C4rees CILC,, aid a
scquence of result tokens is produced at the output arc of t. The concurrent execution of
several runs of a data flow graph such as G is called the pipelining of G, and G itself is
sometimes called a pipeline.

The performance of a pipeline is measured by the activation rate of successive runs,
i.e., the rate at which input tokens can be consumed. Another key parameter in

determining performance is /atency, or the numbe: of cycle times separating two



- 49 -

consecutive activations ol the pipeline. Obviously, two cycle times are the minimum
latency.! IFa pipeline can run with an activation rate of 1727, the exccution of the graph is
maximally (fully) pipelined, or simply, the graph is maximally (fully) pipelined. The
simplest example which can run in a maximally pipelined fashion is a chain of actors cach
obeying the regular firing rule. The performance of pipelining a data flow graph is often
characterized by its throughput, i.c., the rate at which output tokens are gencrated when
driven by a sequence of input tokens. Obviously, the maximally pipelined throughput for
any graph is also 1/27.

Real pipelines are usually more complex. Some actors in the graph may not obey
regular firing rules. The presence of special actors may result in very different patterns of
actor usage, for given runs with dilferent input tokens. There may be cycles in the graph
which imply dependencies between different runs, and thus may place constraints on the

activation rate of the pipcline. These complications will be addressed in the later chapters.
2.3 Balancing of Data Flow Graphs

In gcnerzﬂ. a data flow graph may not be maximally pipclined, as illustrated by the
example in Figure 2.11. Figure 2.11 (a) - (d) presents configurations during the first four
cycle times of the computation, and it becomes apparent that the activation rate of this
pipeline can not be higher than 1/47. Since the types of operations associated with actors
do not affect the throughput of the data flow graph under our assumptions, we can omit
them from the graph. Instead, we use an X inside the actor to indicate that it is enabled in

the configuration shown.

A key notion closely related to the study of maximum pipclining is introduced in the

following definition.

1. Onc cycle time for an actor to fire, and one cycle time for the predecessor and successor actors to fire and
provide necessary inputs or signals [35].
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Figure 2.11. A data flow graph with Maximum Throughput of 1/4r

Definition Let G be a one-in-one-out static pipeline. Let s be the input actor
and v be an arbitrary actor of G other that s. If the lengths of any two distinct paths

from sto v are equal, thzn G is called a balanced graph.

Every path from an input node to an output node through a balanced graph must
contain the exact same number of actors. An apparent consequence is that a balanced

graph can run in a maximally pipelined fashion [79,43). Figure 2.12 shows a balanced
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Figure 2.12. A balanced data flow graph

graph for Figure 2.11 where a FIFO made of two identity actors is introduced on the short

path. It is casy to sce that the graph can be maximally pipelined. Let us state this result as

a theorem,
Theorem 2.1 A balanced data flow graph is maximally pipelined.

Before we prove Theorem 2.1, let us note some important facts about a balanced
graph. Let G = {V,E} be a balanced one-in-one-out graph with input actor s and output
actor 1. Since G is balanced, any path p between s and a node v C ¥ has the same length
(say j, where j is an integer and j > 0.). We can uniquely label the actors by an integer
function L: ¥V — Z such that L(v) = j, where j is the path length from sto v. Now ¥ can be
partitioned into mutually exclusive and collectively exhaustive sets of nodes, or stages of
nodes ¥, V...V, such that VJ = {v| where L(v) = j}. Note L(s)=0, L()=m, where we

assume m is the length of each path from sto «. Obviously we have:
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() Vy = {sk
(2)ifnodeu C VJ and thereis an edge ¢ = (uv) in £, thenv C Vj+ |
() Vi, = ek

We can also partition £ into mutually exclusive and collectively exhaustive sets of
cdges (also called stages of edges) El...lz‘m such that LJ ={(u v|uc le v C Vj}. For

convenience, we include the input edge to s (e,) and the output edge from (¢, in the sets

+

m+1°

of edges by introducing Fpand £ where £, = {cs}. Eni1 = {et}.

E0 = {e0} Vo = {s}

El = {el,e2} Vi = {a,b}
E2 = {e3ed.e5,¢6,e7} V2 = {cde}
E3 = fe8e9elOell,el2} V3 = {fgh}
E4 = {el3eld,el5} Ve = {i}

ES = {el6}

Figure 2.13. Stage Partitioning of a Balanced Pipeline
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An example of the stage partitioning is illustrated in Figure 2.13 which is a pipcline
with 9 nodes partitioned into 5 stages.
Based on such partitioning, the proof of ‘Theorem 2.1 is straightforward.

Proof of Theorem 2.1

Assume that, at time t, (i.c. the beginning of the first cycle time), a token ¢ is prescnted at
the input arc of s, e.. Assume also that all arcs of G are initially empty and the computation
starts at t;. From the machine timing assumptions (A-2.1) and (A-2.2), wc immediately
have the following obscrvations: at time t, (0 < / < m) one token is presented at each arc in
E; and all other arcs are empty. Hence during cycle time 7, all actors in stage / are enabled
and fired, and no actors in other stages are enabled. The above obscrvation can also be
phrased as that a run can be advanced at its maximum speed (onc stage of nodes per cycle
time) under the condition that it is no blocked. The initial emptiness of the pipe is certainly
a sufTicient condition.

Recall that the the input of G is connected to a perfect source. Since the input arc e
is empty at time t,a second token ¢, can be presented to the input at t,. Obviously, since
the first run (initiatcd by cO) is advanced in its maximum rate, it will not block the second
run at all. Thus, the sccond run can also be advanced in its maximum rate. Similarly, a
new token c, can be presented to the input arc at t,, etc. Therefore, the graph G can run in

a maximally pipelined fashion. 0.

As a remark, we note that the proof is entirely based on the partition prcsented

earlier. This is the point where the fact that the graph must be balanced plays a key role.
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2.4 Pragmatic Issucs in Machine Modcl and Balancing

Let us briefly comment on the relation between the machine model and the data flow
graph balancing considerations.

As we outlincd in this scection, we use an ideal static data flow machine as our
machine model. The timing behavior of program exccution on such a machine model is
characterized by the timing assumptions (A-2.1) and (A-2.2). Under such conditions, the
machine supports optimal performance of a balanced data flow graph running in a
maximally pipclined fashion. The rest of the thesis will assume such a machine model is
being used.

What will be the effect if, in a rcal machine, we consider the variation of the
cxccution time for different types of instructions, or even the same type of instructions due
to different communication delay? Our timing assumptions may still be valid if we allow
the cycle time 7 of (A-2.1) be considerced as a bound on the firing time of all instructions.
The bound should be chosen such that it can absorb not only the time differcnce in firing
different types of instructions but also the time variations due to the machine computation
and-communication load.

What effect may occur if the machine has only limited parallelism? An immediate
consequence is that some enabled actors may expcrience some delay for their firing,
because the machine does not have enough computational resources. However, the
assumption (A-2.2) can certainly tolcrate such variations because, as long as the machine
supports a "fair" firing mechanism, it is reasonable to add an average delay to the cycle
time 7.

With the execution time variation of each instruction, it is sometime helpful to
consider the effect of balancing from a slightly different perspective. When a static data
flow graph is balanced and executed in a maximally pipelined fashion, the density of
enabled instructions also achicves its maximum. In other words, balancing is a way to

maximize the quantity of parallei activities in program execution. [f the machine has
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sufficient power of parallel processing, this also means that the pipclined execution of a
balanced graph may maximally exploit the parallelism in the program,

In reality, a machine may only have limited parallclism. The introduction of FIFO
actors in the graph will certainly increase the total number of executable actors. Therelore,
celficient implementation of FIFOs becomes an important factor in achieving desired
performance of a data flow program. A discussion of machine implementation of FIFOs is

included in Chapter 11.
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3. Algorithmic Aspects of Pipeline Balancing

Pipclining of data Tow programs is a very attractive way to organize computations on
static data low computers to cffectively exploit parallelism in programs. In order to
achicve maximally pipelined throughput, a data flow graph must be balanced. The basic
technique is to transform an unbalanced data flow graph into a balanced graph by
introducing FIFO buffers on certain arcs. For the purpose of this discussion, a FIFO of
sizc k is cquivalent to a chain of k identity actors.! The procedure to perform such
transformations is called balancing the data low graph.

An cxample of balancing is illustrated in Figure 3.1. Figurc 3.1 (a) shows an
unbalanced graph with cight nodes. Figure 3.1 (b) is the result graph alter balancing the
.gruph in Figure 3.1 (a). Two FIFO buflers, with size two and three respectively, are
introduced on arcs (f,1) and (e,0) as shown in Figure 3.1 (b). Each bufler is denoted by a
box with a number denoting the size of the buffer. In this case, the total size of buffering
introduced for balancing is five.

In general, there may be more than one balanced version of a data flow graph. For
example, Figure 3.1 (¢) presents another balanced graph for Figure 3.1 (a). However, the
total amount of buffering in Figure 3.1 (c) is three, a considerable savings compared with
what is nceded in Figure 3.1 (b). Since the minimum amount of buffering necded to
balance the original pipcline is three, Figure 3.1 (¢) is an optimal solution. In general, we

have the following definition.

Definition Let G'be a balanced graph for G. If G’ uses the least amount of buffering
among all balanced graphs of G, then G is called an optimal balanced graph of G. A

balancing procedure to transform a data flow graph into an optimaily .alanced data

1. There arc other ways to implement FIFO buffers [35]. We will defer a discussion of these different
implementations until Chapter 11,
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Figure 3.1. An Example of Balancing

flow graph is called optimal balancing procedure.

In organizing data flow programs for maximum pipelining, an efficient algorithmic
procedure for optimal balancing is important. Earlier work to find such an algorithm can

be found in [43,79]. In applications where a data flow program may consist of hundreds of
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instructions, any feasible solution to optimization must rely upon computer programs, A
conjecture was made in [43] that such optimization is not computationally tractable, and
hence makes impractical the construction of a compiler which can perform automatic
optimal balancing on data low programs. Fortunately, this conjecture is not true. In this
chapter, we show how techniques from linear programming can be applied o solve optimal
balancing problems,

In Section 3.1, we introduce the concept of weighted data flow graph which facilitates
our later discussion. In Scction 3.2, we briefly review the previous related work in
balancing techniques using graph-theorctic terms, identify problems in the approach, and
suggest a new solution, By doing so, we not only simplify the formulation of our major
results, but also get a better insight of the balancing problems which is important for the
discussion in the succeeding scctions. In Scction 3.3 and 3.4 we present a different
formulation of balancing and optimizing problems from our previous work. As an
important result, we show that these problems are cequivalent to a class of lincar
programming problems. This class can be redticed to a class of known nctwork flow
programming problems which have practical algorithmic solutions., Hence, the
construction of an automatic program to perform such optimization is computationally

tractable. In Section 3.5, we discuss the extension of the balancing techniques to a broader

class of data flow graphs.

3.1 Weighted data flow graphs

In the discussion of balancing problems using graph-theoretic terms, it is often
convenient to use what is known as a weighted data flow graph. A weighted data flow graph
G = (V.E) is a weighted directed graph where each node in V represents an actor, and each

arc e = (u,v) in E, weighted by W, ,» denotes that a chain of length LA exists between

node u and v (see the definition of a chain in Chapter 2). Obviously, all weights must be

positive integers.
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(b)

Figure 3.2. A weighted data flow graph

For example, Figure 3.2 shows two weighted graphs, where a weight & is written next
to cach arc to denote a chain of length k. We note that all arcs in Figure 3.2 have weight 1.
We also allow wcighted arcs with a weight greater than 1. For example, a chain of m nodes
can be replaced by an arc which has a weight equal to the sum of the weights of those arcs.
Figure 3.2 (b) shows a weighted graph which is equivalent to (a), with each chain of nodes
replaced by an arc with proper weight. The notion of balancing and optimizing can be

" extended naturally to a weighted graph.
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3.2 Related Work on Balancing ‘T'echniques
1.2.1 Balancing Technigues

Balancing a data flow graph requires determining the set of ares where FIFO bulTers
should be introduced and computing the size of cach buffer. Let G = (V.FE) be a
onc-in-onc-out weighted data flow graph with an input node s and an output node r. Let v
be an arbitrary node. The balancing techniques presented in [43] and other related work

[79] arc essentially based on the following observation:

Observation 3.1.  Since the cost of the longest path from s to
any node v cannot be reduced further, one should introduce

buffers on all other paths from s to v to make their costs equal

to that of the longest path.

An important step in these balancing algorithms is to identify the longest path from s
to v for each vin V. Mathematically, this is equivalent to computing a max-cost function L
: V= Z (7 is the sct of non-negative integers), where £(v) is the cost of longest path from s
to v for any v C V. Once this step is done, we may take a shortcut to determine the location
and size of cach FIFO buffer to be introduced. The key to the shortcut is to not alter the

cost of longest path from s to any node vin V. Or, to state it mathematically, we observe

the following invariant:

Max-cost Invariant : Let G’ be a balanced graph of G as a result
of applying some balancing procedure. Let L and L’ be the

max-cost functions in G and G’ respectively. Then for any

node v, L(v) = L(v) should hold.

The decision to keep such an invariant results in a very simple balancing algorithm,
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In fact, both the locations and sizes of the FIFO buftfers can be determined immediately
from the max-cost function of the pipeline. An algorithm for balancing a one-in-onc-out

data flow graph is presented below:

Algorithm 3.1. A Balancing algorithm for One-in-one-out Data Flow
Graphs.
Input: An onc-in-onc-out weighted data flow graph G = (V. L) with
input node s and output node ¢
-Quiput: A balanced graph G,
Steps:.
Step 1: Compute the mex-cost function L for G
Step 2: For cach arc e=(u,v) in £ construct a buffer of size L(v) -
L(u) and insert the bufferon e.

Step 3: Return the result graph.

Step 1 is equivalent to the problem of finding the longest paths from a source node to
all other nodes in an acyclic dirccted graph. This can be accomplished efficiently using
some known graph-theorctic algorithms. For example, the Dijakstra algorithm for finding
the shortest paths from a source node to all other nodes [8,40] can casily be modified to
compute the above single source longest path problem. In the following we brielly outline
such a solution.

Since the graph is acyclic, we can proceed by first performing a ropological sort [65] of
the node in G. We determine a labeling of the nodes in V with integers 1,2,..n (where n =
IM) such that if there is an arc (i), then / < j. The graph in Figure 3.3 is topologically
sorted. Note that sand 1 are labeled by 1 and »n respectively. Recall from graph theory that
a digraph can be topologically sorted if it is an acyclic graph. Therefore, this step of
topological sorting can detect if the graph to be balanced is indeed acyclic. Since the

balancing algorithm to be presented only applies to acyclic graphs, the benefit of including
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Figure 3.3. A Toplogically Sorted Graph

such a step is obvious.

Oncce the nodes in G are topologically sorted, the construction of an algorithm to
compute the max-cost function L becomes straightforward. Clearly, L(s) = 0. Node 2 can
only be reached from node 1, and therefore
1(2) = I(1) + w,.

Nodc 3 can only possibly recached from node 1 and 2, hence
L(3) = max{L(])+ Wy 3 L(2)+w2‘3}

Similarly, the general expression to compute L(k) can be written as
L(k) = max{L(i)+wi‘k} forall i<k

Based on-the above observation, construction of an algorithm for computing the
max-cost function is straightforward. If we use the adjacency list data structure, the time
complexity of such an algorithm is O(|V]|£E]). For the graphs we are interested in, the
indegree of any node are bounded by a small constant. thus we can use O(]/]) to represent
O(J£]). Thus, the time complexity of computing the max-cost function is O(] d).

Now let us study the time complexity of Algorithm 3.1. The time for Step 1 is O(] 75

as in the above analysis. Step 2 is executed for each arc in £. Therefore, the time
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complexity of the entire balancing algorithm is O(] %)
3.2.2 Relation between Balancing and Optimization

Onc¢ philosophy regarding optimization is to scparate the optimal balancing
procedure into two phases: (1) perform balancing using an algorithm similar to that of
Algorithm 3.1; (2) rcarrange the buffering to achicve an optimal bufTer configuration.
However, the solution to the second part of the problem has not been successful, as was
indicated by the conjecture mentioned at the beginning of this chapter.,

Let us use two examples to illustrate the problems encountered in applying such an
optimal balancing strategy. ‘T'he first example is a weighted onc-in-onc-out graph as shown
in Figure 3.4 (a). ‘The first step is o apply Algorithm 3.1 to derive a balanced graph as
shown in Figure 3.4 (b). 'T'wo buflers of size 10 and 15 are introduced on arc (3,5) and
(4.5). so the total buffering is 25. The label written inside each node is the number derived
from the topological sorting. We can casily obscrve that the graph in Figure 3.4 (b) is not
optimally balanced. Figure 3.4 (c) shows an optimally balanced graph for G which uses
only a buffering of 15. Through optimizing, the amount of buffering is reduced by 40%.

Another optimizing procedure is to perform a transformation which propagates some
buffering back through nodes which have a larger outdcgree than indegree [43]. Such a
transformation will usually produce a graph that uses less buffering. For example, in
Figurec 3.4, we can propagate back a buffering of size 10 through node 2, reaching the
solution in Figure 3.4 (c).

However, it is very difficult to predict the effect of propagating some buffers back
through a node which has a smaller indegree than outdegrce.. Let us look at the example in
Figure 3.5 (a) which is similar to Figure 3.4 (a) except that it has one more arc from node 3
to 4. Applying Algorithm 3.1, we derive the balanced graph in Figure 3.5 (b) with 3 buffers
introduced on arcs (2,4), (3.5) and (4,5) respectively. At this point it becomes tricky to use

the scheme outlined above to perform optimizing. For example, node 4 has an indegree of
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Figure 3.4. An Example of Applying Algorithm 4.1

1 and an outdegree of 2. It is difficult to envision any benefit in propagating buffers from
| its output arcs back to its input arcs. Assume that we have propagated a buffer of size 10
back through node 4 and reached the graph in Figure 3.5 (c). It appears that the graph in
Figure 3.5 (c) is less desirable then that in Figure 3.5 (b), since the total buffering has

increased by 10. However, from Figure 3.5 (c) we can propagate a buffer of size 10 on arcs



- 65 -

(a) (b) © (d)

Figure 3.5. Problems in Classical Balancing Approach

(3.5) and (3,4) back through node 3, which can be further propagated back through node 2
together with a buffer of the same size from arc (2,4). This lcads us to the configuration in
Figure 3.5 (d). We observe that Figure 3.5 (d) is an optimally balanced graph with a total
buffering of 15.

The above example indicates that optimal balancing is a global optimization process;
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hence it is difTicult to determine the effect of moving buflers around based only on local
information about a particular node. In order o find a better solution, let us examine the
decisions made in the Max-cost Invariant based on Observation 3.1. Step 2 in Algorithm
3.1is a dircct consequence of such a decision. Since the cost of the longest path from s (o
any node can not be changed, bullers are always introduced on the input arcs of
multi-input nodes, i.c., on the last arcs of any paths which need them. Although this
decision makes the balancing algorithm simple, it is somewhat arbitrary in terms of
optimization. For the example in Figure 3.5, we must violate this decision in order to
achiceve (')ptimimlion. This raises the guestion: is the max-cost invariant cssential (o the

balancing process? In the rest of this chapter, we will answer this qucestion,
3.3 A Lincar Programming Formulation of the Optimization Problem

The examples presented in the last section clearly show the weakness of the optimal
balancing approach proposed in [43]. In this scction, we take a very different approach to
attack the problem. Instead of separating the optimal balancing strictly into two phascs, we
view the entire analysis as one combinatorial optimization problem. We do not rely upon
ad hoc decisions such as the Max-cost Invariant requirement. Instead our decision process
is based on the set of constraints imposed by the structure of the graph itsclf. Both the
locations and sizes of buffers are computed under the same theoretical frame work. In fact,
under the new schéme we can transform an optimization problem into a particular class of
combinatorial optimization problem known to have efficient solutions.

Let us first introduce a mathematical formulation of an optimal balancing problem.
Let G = {V,E} be a weighted data flow graph for which we have computed the max-cost
function L, using the algorithm outlined in the last scction. The nodes in V are numbered
(according to the topological sort) by integers 1,2...n, where n = |V] with s numbered by 1.
We assume that G is balanced by some process; hence the cost of any path from s to a node

vin ¥ has a unique value. In mathematical terms, we can define a labeling function ffor a
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balanced graph which associates cach node in ¥ with an integer value, i.c., /2 V — Z, where
7 is the sct of integers. As a convention, we use u; to denote f7), i.c., u, = A7) for all nodes
iwhere 1 <7< n. Wecaninterpret u-u; as the delay of the firing of node 7 with respect to

node 1 (i.c., node s) for a particular run.

ul:0

u4:9

(a) (b) (©

Figure 3.6. Delay Changes due to Buffer Moving
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i 1 2 3 4 5

1.(i) 0 1 5 9 20
1) 2 9 5 1 0
1A5) - L) 0 11 15 19 20

Figure 3.7. The Earliest and Latest Firing T'imes

Different balanced graphs may correspond to different labeling functions,  For
cxample, the Max-cost Invariant implies a labeling function such that u-u, = L(J) for all
nodes i In other words, it requires that cach node 7 in the graph be fired at the carliest
possible time (called the earliest firing time) determined by L(/). However, since the graph
is one-in-onc-out only the total delay from s to ¢ is important. To ensure that such dclay
does not increasc, none of the nodes on the longest path from s to ¢ can have a time delay
longer than the minimum dclay. However, for nodes not on this path, the time dclay may
be allowed to slip to a certain extent. This gives us some freedom to adjust the buffer
configuration in a graph for optimization purposes. Increasing or dccreasing buffcrs on an
arc can cause corresponding changes in time delay in the firing of some nodes on the graph.
Figure 3.6 shows such delay changes due to buffer adjustment of Figure 3.4. Figurc 3.6 (a)
shows the values of u, for the balanced pipeline in the result graph of Algorithm 3.1.
Propagating a buffer of size 10 back through node 4 is cquivalent to changing (by 10) the
delay of firing time for node 4. Thus we have a new labeling function as illustrated in
Figure 3.6 (b), where u, has changed from 9 to 19. After further moving the buffers back
through nodes 3 and 2, u; and u, have been changed from 5 and 1 to 15 and 11
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respectively, ‘The result graph is shown in Figure 3.6 (c).

We should note that the adjustment of the labeling function cannot proceed without
constraints, For example, in Figure 3.6 the time delay of node 4 can not exceed 19;
otherwise the total delay from the input node 1 to the output node § will exceed 20. In fact,
the maximum time delay of any node i is related to the cost of longest path from ito t. ‘To
compute such cost, et us reverse the direction of every edge in G, and name the result
graph G . G is a onc-in-onc-out graph with node # as its input node and node 1 as its
output node. ‘The nodes in G are still topologically sorted, but the order is reversed, n,
n-1..2,1. Let T. denote the max-cost function in G, i.e., L (/) denotes the cost of the
longest path from node i to node nin G . ‘T'he latest firing time for node i can be expressed
by £(n)-1. (i). Figure 3.7 shows the values of both L(/) and L. (/) for each node i, together
with its latest firing time,

We have just seen that u; is constrained by both 7(/) and L. We can directly relate
the constraints for u, to the weights of cach arc in the original graph. Recall that, in any
balanced graph, the size of buffer b, jto be introduced on arc (i) is (uj -u)- Wi where Wi
is the weight of arc (i) in the original graph. Since all buffers should have nonnegative
size, we have b, i > 0 for all arcs (ij). Thercfore, the following set of lincar inequalitics
should hold:

u; - > Wi for all arcs (i)

We also add another constraint so that no extra delay from input to output is

introduced: -

where Wo, = L()

Up "t = Wse

Let us denote the total amount of buffering in G'by B which can be computed by the

summation of the sizes of the buffers introduced on each individual arc. Thus we have:

B = za'j'"i'“’i,j)
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= 2uy(indegrec( N-outdegree() + )Iwi.j \ 3.1

1
Since lei.j is a constant, minimizing B is cquivalent to minimizing
2Iui(indcgrcc(l)-ouldcgrcc(l)). or to maximizing Eui(mlldcgrcc(l)-indcgrcc(l)). We also
note that (outdegree(d)-indegree(s)) is a constant for cach node i, determined solely by the
structure of G. Hence (3.1) is a lincar combination of u. "Thus, optimal balancing of the

graph G can have the following lincar programming formulation:
LP1 Lincar Program for Optimal Balancing of a Data Flow Graph

Maximize Eui(outdcgrcc(l)-indcgrcc(i)).
i

Subject o
up -y, < Wi forall(G)Cc E - (D
U, U= W, (2)
u; unrestricted 3)

) In matrix notation, the above lincar program can be expressed as
LP2 Linear Program LP1 in Matrix Notation
Maximum ub
Subject to

B} uA <c¢
u unrestricted

Here ub is the objective function, b is the objective vector of size n where the i-th
component b; = outdegree(/)-indegree(?); the constraint matrix A is the incident matrix of

the original graph; and c is the constraint vector with its clements corresponding to the right



hand side in (1) and (2) of LPL!

The lincar programming  (ormulation explicitly specifies all assumptions and
constraints of the model, thus give a clear mathematical insight of the balancing problem,
The optimal balancing of a graph is cxpressed and studied under one theoretical
framework. ‘There are many well-known solution techniques for lincar programming

problems. in the next section, we discuss cfficient solutions to L.P1 and LP2.
3.4 Solution of the Optimal Balancing Problems

3.4.1 An Example

Let us first study an example. We formulate the optimal balancing problem of the

graph Gin Figure 3.6 as follows:

Example 3.1
Maximize 2ul +uy +uy-u, -3u5
Subject to

up-uy < -1
up-us <-20
uy-u, < -3
Uy - U, <-4
u3-uy < -4
- Uy - Ug <-1
Uy g < -5
ug - Uy <20

1. Without loss of generality, constraint (2) can be replaced by up, - up < wg t for the sake of simplicity. We
can think of this as adding an cxtra arc from nodc 2 back te node 1 with weight W o treating the auxiliary arc
the same as other arcs in the graph.
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IR IPRUP U TR unrestricted.

In matrix notation (1.P2), the above lincar programming model can be expressed as in

Maximize ub

A < ¢

where

u = (ul,u2,u3,u4,ud)

b=(11-1-3) 20
1 1 -1
-1 1 1
A= -1 1 1 u,
-1 -1 1
-1 -1 -1 1

¢ = (-1,-20,-3,-4,-4,-1,-5,20)

ul, u2, u3, ud, us unrestricted total buffer: 15

optimal solution:

ul=0,u2=11L,u3 =15,u4 =19, us = 20

Figure 3.8. A Matrix Notation for the Example 3.1
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Figure 3.8 (a).

An optimal solution to the problem is:

uy =90

= 11
uy =15
l4=19
l5=20

The optimal value of the object function is 53. Recall that our goal is to optimize the
total amount of buffering B, where B = X(Uj U 2.”wi .j)' Note that ZIWLj = 38, hence B
= 15. The amount of buffering needed for each arc can be computed casily from the
above solution and the result graph is shown in Figure 3.8 (b).

As we expected, all the variables in the above solution have integer valucs. We note
that the constraint matrix A is totally unimodular, meaning that cvery subdeterminant of A
is either +1,-10r 0. A linear programming problem with a totally unimodular coefficient
matrix yields an optimal solution in integers for any objective vector and any integer
constraint vector on the right-hand side of the constraints [71]. This guarantecs the

integrality of the optimal solutions for balancing problems.?

3.4.2 Solution Techniques

Thus, we can apply any solution technique for linear programming problems to
optimal balancing problems to get optimal integer solutions. The most well-known

technique for solving general linear programming problems is the simplex method [23].

1. Obscrve that the cocfficient matrix A in 1.P2 corresponds to the incident matrix of the graph under

considcration. Hence its unimoduiarity is straightforward.
2. Here we have applicd without proof some important results from lincar programming theory, such as the
theory of solution integrality and its relation to unimodularity of constraint matrices. ‘These results are

well-known and discussed clscwhere, for example in [71]}.
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There are a number of combinatorial optimization technigues based on simplex methods

[71). Other solution technigques are available, notably the polynomial Ellipsoid algorithm

[58]0
T'he structure of the balancing problems, however, is closely associated with a special

class of lincar programming problems, i.c., network flow programming problems [42). In

fact, the dual of the optimal balancing problem LP2 can be formulated as follows:

L.P3 Lincar Program Dual of LP2
Maximum cx

Subject to

Ax =b
x>0

We immediately recognize that LP3 can be reduced to a class of well-known network

flow programming problem — min-cost flow problems which have an efficient solution

[71,57].
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3.5 Extensions to the Results
1.5.1 Graphs with Multiple Input and Output Nodes

It is intuitively clear that any balancing technigue for one-in-one-out graphs should
also work for graphs with multiple inputs and outputs. Using the linear programming
formulation, such an extension is straighttorward.

Let us consider a graph G = {V,E} with multiple input and output nodes. Assume G
is under maximum loading conditions, i.c., all inputs and outputs are connected to perfect
sources and sinks respectively. Let the set of input and output nodes be / and O
respectively, and without loss of generality, we assume that cach nodc in / has indcgree one
and cach nodc in O has outdegree one. Let us introduce a dummy input node s such that
all input arcs directed Lo cach node in / emanate from s, and let us name this set of arcs £,
Similarly, we introduce a dummy output node ¢ such that all output arcs emanating from
nodes in O are directed to ¢+, and the corresponding sct of arcs is called om Let us study an
augmented graph G* = {V £} for G, where V' = Vu{s.d}, £" = EUEUE. Assume that
arcs in £ and £ have unit weights. It is easy to sce that G’ is an one-in-one-out graph
Therefore, the optimal balancing technique developed in the last section can be applied
dircctly to G, with the following extensions.

First extension is in the dclay constraints between the input nodes and the output
nodes, which are térmed the interface delay constraints. For a one-in-one-out graph, the
only interface delay constraint is that the total delay from the input node to the output
node be unchanged by the optimal balancing procedure. Accordingly, this is called the
critical constraint. (Recall that the last inequality in LP1 and LP2 reflects this constraint.)
For a graph with muitiple input and output nodes, there may be a set of interface delay
constraints, one constraint for each pair of nodes in the set / X O. Hence the total number
of interface constraints is bounded by |/]JO]. In practice, it may be that only certain

interface delays are critical, i.e., the cost of the longest paths between corresponding pairs
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of input and output nodes cannot be increased (by some "boundary conditions™). As long
as the interface delay constraints are given, it is straightforward to add the sct of
corresponding lincar inequalitics (o the constraint matrix and give a complete. formulation
of the lincar program,

To establish the set of critical interface constraints, we need to compute the cost of
the longest paths between cach pair of nodes in / X O. This can be solved based on the
algorithm for finding the longest paths between all pairs of nodes in a graph. Since the
graphs we are interested in are all acyclic, the polynomial time Floyd-Warshall algorithm

for finding the shortest paths between cach pair of nodes can easily be modified to compute

Figure 3.9. Balancing of conditional subgraph
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the longest paths [8]. We simply replace the weight on each arc with its negative value and
the computation of the shortest-path algorithm can be cond;nctcd on the transformed
graph. Remember, however, that this is equivalent to linding longest: paths, rather than
shortest paths, in the original graph.

Assume that G is balanced by an optimal balancing algorithm. Hence, all nodes can
be executed with the maximum rate, including all nodes in 7 and O. The function of
dummy nodes s and ¢ can be removed and their function can be performed by a set of

perfect sources and sinks (under the maximum loading condition). Therefore, the original

graph G is also maximally pipelined.
3.5.2 Conditii.nal Subgraphs

Another straightforward extension is to conditional subgraphs. Let use examine a
conditional subgraph as shown in Figure 3.10 which computes the expression if p(x) then
f(x) else g(x) endif. Assume the subgraphs p,f, and g are acyclic. As before, in order to
balance the graph, each path from the input to the output should contain exact same
number of actors. However, a token may take one of the two different paths, i.e. for g,
depending on the value it carries, Since the value is not known a priori, a strategy one may
take is to always consider the worst case. As indicated in the graph, a FIFO is introduced in
the arc between the output of P to the control input of merge actor to balance the graph,
where the FIFO is chosen that it will balance the arc with the longer one of the two
alternative data_ paths [32,43]. With such a strategy to extend our earlier work, we count
each special actor in a conditional subgraph as an ordinary actor in formulating the linear
program. Then the solution of the linear program will be a balanced graph. Obviously, no
matter which path a token may travel in the balanced conditional subgraph, they all

guarantee to have the same path length. Therefore, the graph can be maximally pipelined.
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Figure 3.10. Balancing of conditional subgraph
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4. 'T'he Structure and Notation for Source Programs

In this chapter, we describe briefly the structure of the source programs to be handled
by the pipelined code mapping scheme developed in this thesis. An important feature off
such programs is the regularity of array opcerations as outlined in Chapter 1. Such
regularity is frequently found in scientific and numerical applications, and provides a good
opportunity for a suitable computer architecture to efficiently exploit the parallelism in the
programs.

The major portion of such a program usually consists of a collection of program
blocks. Each block defines a new array from one or more input arrays. Figure 1.4 in
Chapter 1 illustrates an example of a program which consists of five code blocks. All array
operations are organized in these program blocks and take place in regular and repetitive
patterns,

The communication between two program blocks in terms of an array can be viewed
as a producer-consumer pair. One block, the producer, generates the clements of the array,
while the other block, the consumer, uses them to produce results which may become the
clements of another array. The mapping strategy for such programs on a data flow
machine is particularly attractive when the machine code of the produccr and the consumer
can be executed concurrently, in a pipelined fashion. In an ideal case, the data flow
machine program for both blocks can run in a maximally pipelined fashion and the
communication between them can be implemented directly as a simple arc in the data flow
graphs for carrying the element values of the array, avoiding the use of memory for the
entire array. Thus, the corresponding array operations can be removed from the machine
code and the overhead of memory operations effectively avoided. Often a certain dclay is
needed to balance the computation between various code blocks, and it may be necessary
to implement the communication link through a FIFO. Even so there will still be less

overhead because implementation of FIFO is expected to be more efficient in the target

data flow machine than ordinary memory operations.
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Sometimes, the data Now machine programs for both blocks cannot run concurrently,
For cxample, the order of the array values generated by the producer block may be
different from that needed by the consumer block. In such a situation, although the
producer and consumer blocks may cach run in a pipelined fashion, their execution may
not be able o overlap, and the communication link should be implemented through some
form of storage.

Our objective is to design a suitable code mapping scheme for such programs. For
the purpose of clarity and simplicity, we introduce PIPVAL — a small subset of Val with
slight extensions = as the source language. It is particularly suitable to represent the
program blocks to be handled by the mapping scheme. In the Sections 4.1 and 4.2 we
outline PIPVAL and its main language {catures in terms of array operations. In Scction 4.3,

we describe several types of code blocks that are of most interest to us.
4.1 The PIPVAL Language

4.1.1 Anoverview

In this scction we brielly introduce the language PIPVAL, which is basically a subset
of the programming language Val [4] with slight extensions. As a subsct, the language
inherits most of the Val syntax notation and semantic conventions. Most important,
PIPVAL is an applicative (or valuc-oriented) language. As in Val, each basic syntactic unit,
called an expression, corresponds to a function whose evaluation produces a set of values.
The language is free of side-effects, i.e. the evaluation of an expression does not interfere

with the evaluation of other expressions.

| A major feature of PIPVAL is the way in which array operation constructs are
provided. In choosing the set of array operation constructs for the language subset, we
hope both to simplify the task of expressing the class of Val programs where array

manipulation has strong regularity and to facilitate the formulation of the basic code
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mapping scheme for such programs. Some extension is made in this direction — mainly
the introduction of the for-construct expression.,

Now we discuss the basic syntax of PIPVAL. Again, our major concern is not to
" provide powerful language features to allow flexible programming (for that purpose,
rcaders should refer o the full Val language). ‘The language is intended to provide a
reasonably simple source language to express a class of Val programs to be handled by the
pipelined code mapping schemes,

The syntax of the language is given in Figure 4.1. Here, we eliminate certain
syntactic sugaring of Val to keep the syntax simple. Type information is not explicitly
included in the syntax. However, we assume the values expressed in a PIPVAL program
have the correct types, which are a subsct of types delined in the full language Val. That
is, PIPVAL. provides values of ordinary scalar data types (such as integers, rcals, boolcans
and characters) and a structured data type, i.e., array. We also assume that the PIPVAL
programs handled by our mapping schemes are type correct in the sense described in [4].

The basic syntactic unit of PIPVAL is an cxpression. There are four major major
types of expressions: prirﬁitive expressions, conditional cxpressions, let-in expressions,
for-itcr expressions, forall cxpressions and for-construct expressions. An cxpression can
have arity greater than one, as in the form of exp.exp.

In the rest of this section we briefly outline the first five types of expressions and
related terminologies. They nced little explanation since they are equivalent to those in
Val, or any similar constructs found in other applicative languages. Readers who are
familiar with Vél may wish to proceed to the next section where array sclection operations
and array construction expressions (mainly forall and for-construct expressions) are
described.

A PIPVAL primitive cxpression is either a constant, a value name (a term inherited

from Val), or an expression constructed by the primitive operators in the form

op, exp
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exp = primitive-exp
| exp.exp
| let-in-exp
| conditional-cxp
| forall-exp
| for-construct-exp
| for-iter-exp

primitive-exp :: = const | id | op exp | exp op exp | idfexp]
let-in-exp :: = let idlist = exp in exp endlet

conditional-exp :: =
if exp then exp
{elseif exp then exp}
else exp
endif

for-iter-exp :: = for idlist = cxp do iterbody endfor
iterbody ::= cxp | iter idlist = exp enditer

forall-exp :: =
forall id in [exp]
construct exp
endall

for-construct-exp :: =
for
id from exp to exp
idlist from exp
construct exp
endfor

idlist ::= id {,id}

Figure 4.1. The Syntax of PIPYAL
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or

exp, op, exp,

where exp, exp,, exp, are expressions of scalar data types, and Op;. 0P, belong to the set
of unary and binary opcrations respectively,  ‘These operators are defined on  the
appropriate data types and include the usclul scalar operations found in Val. The sct of
primitive cxpressions also includes an expression Afi] that denotes array  selection
operation, It is discussed in the next section,

A let-in expression is of the form
let x|, Xy, = B, Byl in E endlet

A let-in cxpression is usced o introduce new value namces such as Xy to x, and define
their values by expression E, through E, respectively. The body E is evaluated in the scope
making use ol the values defined for x;...x,. Note that each value name may be defined

only once. We can also usc an alternative notation for let-in expression, as shown below:

let
= El'
Ez,

X
)

endiet

Such syntactic sugaring is useful when . e definition expressions E,..E, are

complicated. It can also be applied to other expressions introduced beiow where a

definition idlist = exp is allowed.
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The PIPVAL nesting rule of scopes is essentially the same as Val. The scope of cach
value name introduced in a let block is the scope of E less any inner constructs that
reintroduce the same names. As in Val, a value name in E, other than KooK o is called a free
value name of the let-in expression, unless it is in the definition part of any inncer let-in
expression. ‘The only difference is that in PIPVAL, value names x,...x, cannot be used in

A - !
hl'oobdki
A conditional expression is of the form

if B() then EO
elseif BI then F.l

.

elseif B, | then E, |
clse E,
endif
The expressions By Bjw Bi following the keywords if and elseifs are test
expressions which must have arity one and be of type boolean. The cxpressions following
then and else are called arms and should conform to cach other, i.e., they must have the
same arity and type. When an expression has more than two arms, it is called a multi-armed
conditional expression. The above examplc is an cxpression with k arms.
The value of a conditional expression will be the value of one of its arms, depending
on the values of the test expressions. Let B, be the first test expression in the sequence
By...B, .| that evaluates to true. The corresponding arm E is said to be selected. Otherwise,

if the values of all B;s (i = 1...k-1) arc FALSE, the last arm Ek is selected. The value of the

1. In Val, the let-in allows a sequence of definitions. Our simplification, however, does not limit the
expressive power of the language by noting that a sequence of definition in Val can also be replaced by a
nested let-in expression. It helps to simplify the presentation of the mapping rulc for let-in expression.
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selected arm is the result of the expression,
Finally, let us describe the PIPVAL for-iter expression briclly by the example shown

below.

for
f=1, % initialization
i=n
do
ifi =O0thenf % iterbody
clse
iter
= i,
i =i-1
enditer
endifl
endfor

This cxpression computes the factorial of n. Two value names fi — called loop names —
are introduced and defined in the initialization part. The iterbody part is evaluated using
the current definition of the loop names, and the result is cither to terminate the iteration,
with the value I returned, or to iterate again with the new definition of the loop names. In
this thesis, we are particularly interested in two iteration constructs for constructing arrays.
These are introduced in the next scction.

The set of expressions just described and any expressions constructed from these
constructs are called simple expressions. The set of simple expressions which do not contain
any iterative expression as subcxpression is called the set of simple primitive expressions.

Simple (primitive) expressions are important building blocks for the more complex

expressions to be discussed later.
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4.2 Array Opceration Constructs

An important aspect of PIPVAL is the way in - which array operations are expressed.
. Remember that the purpose of PIPVAL is to represent the main feature of a class of VAL
programs in which array opcrations arc organized in a regular pattern. The sct of array
operation constructs provided in PIPVAL should cffectively meet this goal.

A PIPVAL array is similar to a Val array. Arrays and their operations arc abpliculivc.
An array is nothing but a value, An array value consists of : (1) a range (1O, HI) where
1.O, HI arc integers and 1.O < HI + 1; (2) a sequence of HI - L.O -+ 1 clements of the
same type. We should note the distinction between the concept of an applicative array and
the concept of an array in conventional languages. In conventional languages an array is a
place in store in which values may be stored in scquence.

Array indices should be considered as a mechanism to provide value names for the
array clements. An element of an array can be accessed by an array selection operation
construct which has the form A[E]. Here A is an array to be accessed and E is an
expression which specifics an index value (say i) within the index range of A. Then the
evaluation of the expression A[E] returns the value of the i-th element of A.

As in Val, the syntax provides abbreviated forms of the selection operations for
~multi-dimensional arrays. Multi-dimensional arrays are regarded as arrays of arrays.
Hence, if A is a two-dimensional array, a straightforward way to write an expression to
sclect an element is A[i][j]. PIPVAL allows the use of A[ij], as a form with syntactic
sugaring added to A[i][j]. We will discuss multi-dimensional arrays in more detail in later
chapters.

The means of expressing array creation operations distinguishes PIPVAL from Val.
Like most functional languages, Val allows arrays to be generated by append operations
[4]. Since arrays are treated as if they were values, an array append operation such as Afi:v]
in Val conceptually means the creation of a new array which is identical to A except that

the i-th element is replaced by v. The excessive overhead due to the copying of the entire
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array makes the append operation very ineflicient in terms of its implementation [2,3]. In
designing PIPVAL., we have concentrated on a class of programs where the unrestricted use
of append operations is disallowed. In fact, the append operation is not even included in
the language subsct. Instead, suitable array creation constructs are provided which allow
arrays to be generated in a regular fashion,

As outlined at the beginning of this chapter, the programs to be handled by our
mapping schemes are organized as a collection of code blocks where cach block is
essentially one of the PIPVAL array construction expressions. Such an expression consists
of cither a forall or a for-construct expression, Although both constructs can be considered
as special cases of the for-iter construct, the unique features of forall and for-construct
.make them particularly usceful in expressing programs in which arrays are constructed and

accessed in aregular fashion,
4.2.1 Forall Expressions

A forall expression can be uscd to cxpress the construction of an array where all
elements of the array can be computed independently. The following is an example of a

forall expression which defines a one-dimensional array X in terms of array A.

X =

forall i in [LLO,HI]

construct
ifi = LO then A[LO]
elseif i = HI then A[HI]
else
(Afi-1]+A[i]+ Ali+1])/3
endif

endall

The forall construct may introduce one index value, such as i in the above example,
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and define its range. ‘The body expression of the forall construct is evaluated for cach
index value in the range, and an array is constructed with the index range so defined. Since
the result array value can be considered as constructed from an empty array, and the
clement value for cach index is only computed once, we do not need to use any explicit
append operations in the expression.

The main feature of a forall expression is that the array clements can be evaluated in
parallel because there are no data dependencies between them., Typically the body of a
forall expression is a conditional expression which partitions the index range of the result
array into mutually exclusive and collectively  exhaustive index  subranges, cach
corresponding to an arm of the conditional expression. Such a conditional expression is
called an range-partitioning conditional expression. In the above example, there are three

index subranges, i.c. [ILOLO][HLHI] and [1.O+ 1, HI-1].

X =
forall i in [0,m+1]
construct
if i = 0 then Afi]
elseif i = m+1 then Afi]
clse
forall jin [O,n+ 1]
construct
if j = 0 then Afi j]
ifj = n+1 then Afij]
clse
(Alij-1] + Aflij+1]
+ Afi-1j] + Ali+1j])/4
endif
cndall
cndif
endall

Figure 4.2. An example of a two-level forall expression
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‘The forall expression in the above example constructs a one-dimensional array X,
where cach clement is computed by a simple expression which computes a scalar value,
We call such an expression an one-level forall expression. ‘The forall constructs can also be
nested to compute a multi-dimensional array, thus forming a multi-level forall expression.
A k-level forall expression (k>1) constructs a k-dimensional array, where its elements are
constructed by cither (k-1)-level forall expressions, or simple expressions.

For cxample, Figure 4.2 shows a two-level forall exoression which constructs a
two-dimensional array X.! The result array A can be viewed as a one-dimensional array
constructed by the outer forall expression. This expression, called a flevel-1 forall
cxprcséion, has an index range of [0, m-+1]. The clements of this one-dimensional array
are also onc-dimensional arrays with an index range of [0, n+1]. The majority of these
arrays are constructed by the inner one-level forall expression which is called a level-2
forall cxpression in this case. The two expressions that compute the two boundary arrays
(i.e. i=0, i=m+ 1 respectively) are not forall expressions. But they are simple expressions,
i.e., expressions made of array selection opcrations.

!n this way, the nesting levels of a forall cxpression are paired naturally with the
diménsions of the result array being constructed. This construction defines
multi-dimensional arrays as arrays of arrays.2 The notion of nesting Ievels will also be used

in the nested for-construct expressions and other nested expressions introduced later.

1. 'T'his forall cxpression is the core of the Possion solver program known as the (two-dimensional) model

problem [41]. .
2. Other different views of multi-dimensional arrays and their impacts on the rcpresentation and

implementation are discussed in later chapters.
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4.2.2 For-construct Expressions

When data dependencies exist between array clements, some form of iterative
construct is usually needed to express the corresponding array creation operation. In Val
the for-iter construct and the array append operations are used to perform this function. In
PIPVAL, we introduce the Tor-construct cxpression to express array creation operations
with certain regularity which allows one 1o avoid the use of the append operation.,

A typical Val for-iter expression with such regularity is shown in Figure 4.3.' The
initiulization part defines an internal array name and an index valuc name, corresponding
to T and i in our cxample. ‘The internal array ‘T is initialized to an empty array denoted by

a constant array-empty.” ‘The cvaluation of the expression is conducted iteratively,

X =
for
i=40,
x = B[],
T = array_empty
do
ifi>nthen'l’
clse
iter
T = "ITl:x],
i=i+l,
x = A[i|*M]i-1] + B[i]
enditer
endif
endfor

Figure 4.3. An Example of a Val for-iter construct for creating an array

1. 'This for-iter expression specifics a first-order lincar recurrence.
2. PIPVAL inhcrits this constant array from Val and reader is referred to [4] for a discussion of its mecaning.
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controlled by the simple test expression i > n. i < n, the iteration is continued and ‘T and
i are redefined as specified in the iter arm of the body. When the test expression returns
fulse, (i.c. i > n), the evaluation of the for-iter expression is completed by returning the
“array 1 as the result array X.

Once important feature of the above for-iter expression is that the array is built from
array_cmply by a series of append operations, one for cach index i in a specific range (i.c.
[1...n] in our cxample). Such an expression is characterized by having a loop name ( e.g., i
in the above example) be a counter, and having the iteration termination predicate be a
simple range limit test of that counter (c.g., i > n in the example). The importance of such
for-iter array construction expressions is also obscrved in [4]. The iteration is cdvanced by
incrementing (or decrementing) the counter by one. In this thesis, we are interested mostly
in the case where the number of iterations is known in advance through the cvaluation of
the index limit expression (c.g., n) or at least is known before the iterations are started.
This means that we are mostly interested in the mapping of arrays which have compile-time
computable bounds. ‘

In PIPVAL, the for-construct expression is introduced to express the feature of such
regﬁlar array construction operations. The following shows the for-construct cxpression

which is equivalent to the for-iter expression in Figure 4.3.

X =
for ifromlton
T from array_cmpty

construct
ifi = 1 then Bi]
else
A[i]*T[i-1] + BYi]
endif
endfor

Between for and construct, the index value name and the internal name (T) for the
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result array are introduced and specified. The mechanism from-to specifies not only the
index range but also the order of the indices to be generated. ‘The introduction of the
internal array name 'I" is important  because it may be used extensively inside the body
expression — the expression after construct. For the purpose of this thesis, the constunt
array_cmpty is always assumed to be the initial value of the internal array. As with the
forall construct, l'or-constrdct provides a mean to express array creation operations without
using the append construct.

The body of a typical for-construct expression also' has a range-partitioning
conditional expression as its top-level structure. In the above example, it partitions the
index range into two subranges: [1:1], [2,n]. The for-construct expressions can be nested to

.construct a multi-dimensional array. Following the same rule for constructing a multi-icvel
forall expression, we can construct a multi-level for-construct cxpression. Similarly, the
nesting levels of a nested for-construct expression correspond to the dimensions of the

array it gencratces.
4.3 Code Blocks with Simple Nested Structure

Code blocks in a program often have nested structures. In this thesis, we are
particularly interested in the following three classes of code blocks which are frequently

found in the computation intensive part of source programs.,
4.3.1 Class-1: Primitive forall expressions

A one-level forall expression is primitive if its element is computed by simple
primitive expressions. A k-level (k>1) forall expression is primitive if its elements are
constructed either by (k-1) level- primitive forall expressions, or simple primitive
expressions. -

For example, the code of the model problem in Figure 4.2 is a two-level primitive

forall expression. Its body is a range-partitioning conditional expression which partitions
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the array elements into two boundary rows fori = 0, i = m+1 and the internal rows
correspond to index range [1,m]. The boundary rows are specified by simple expressions,

while the internal rows are specificd by a one-level primitive forall expression.
4.3.2 Class-2: Primitive for-construct blocks

A one-level for-construct expression is primitive if its element is computed by simple
primitive expressions A k-level (k>1) for-construct cxpression is primitive if its clements are
constructed cither by (k-1) level primitive for-construct cxpressions, or simple primitive

expressions.
In Figure 4.4, we show a two-level primitive for-construct cxpression which takes an

input array U and constructs a two-dimcusional array UT. The index range of i is divided

U'l‘ =
for ifroim0tom+1
Tt from array_cmpty
construct
if i = 0 then U[i]
clseif i = m+1 then Ufi]
else
for jfromOton+1
‘I'2 from array_cmpty
construct
if j = 0 then U[ij]
else j = n+1 then Uli,j]
clse
(Uli+ 1] + Ulij+1]
+ TI[i-1,j] + 12[i,j+ 1]D*1/4
endif
endfor
endif
endfor

Figure 4.4. A two-level primitive for-construct expression
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into three subranges: the two boundaries and the subrange [1,m]. A level-2 for-construct
expression computes the clements of UT (one-dimensional arrays) as the internal rows.

Note how the arrays T1 and '12 are used in the body.

4,3.3 Class 3: Multilevel expression with innermost level primitive forall or for-construct

cxpressions

The forall and for-construct constructs can be nested in an arbitrary fashion to form a
multi-level mixed expression to compute a multi-dimensional array. For example, a
two-level expression may consist of a forall construct to form its level-1 expression, but may
contain for-construct cxpressions as its level-2 expressions as shown in Figure 4.5. Another
situation is shown in Figure 4.6, where thc the level-1 expression of the two-level

expression consists of a for-construct expression and its body contains a forall expression.

X=
forall i in [0,m+ 1]
coustruct
if i = 0 then Bfi]
elscif i = m+1 then BYi)
else
for jfromOton+1
I from array_empty
construct
if j = 0 then B[ij]
else j = n+1 then BYi,j]
else
AlijI*Tli-1} + Bli.jf
endif
cadfor
endif

endall

Figure 4.5. A two-level mixed code block -- example 1
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for ifrom0tom+1
1 feom array_cmpty
construct
ifi = 0 then Bi]
clse
forall j in [0, n+ 1]
construct
Al ITi-14] + il
forall
endif
endfor

Figure 4.6. A two-level mixed code block -- example 2

It may be more complicated for situations with many nesting levels. Recall that for a
nested loop in a conventional language such as Fortran, the dominant factor for the overall
performance of the implementation is the mapping of the innermost loop. We anticipate
that the same will be true in mapping a nested expression on data flow computers. Hence,
the nested mix'cd expressions to be studied in this thesis are partitioned according to the
structure of thcir innermost expression. In particular, we are interested in the situation
where the innermost level cxpressions consists of (1) a primitive forall expression; or (2) a
primitive for-construct expression.

A slight extension of the above cases occurs when the innermost level expression

allows its body to contain a for-iter expression which computes scalar values.
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5. An Overview of the Basic Pipelined Code Mapping Schemes

‘The rest of this thesis will investigate pipelined code mapping schemes that can
. match the regularity of array operations in the PIPVAL representation of the source
program with the power of the target data flow machines to exploit parallelism of data flow
graphs.

The buasic pipelined code mapping scheme (Chapters 6-9) concentrates on the
analysis and handling of the class-1 and class-2 PIPVAL code blocks (hence also the core of
class-3 code blocks) outlined in the last chapter. 1t is also the basis upon which a number of
other related transformation techniques can be used (chapters 10). In this chapter we give a
bricl gencral outline.

The basic code mapping scheme is essentially a two-step process. ‘The first step
consists of the application ol a sct of basic mapping rules which can translate the code
blocks into pipcelined data flow graphs. These graphs arc described in a static data flow
graph language (SDFGL.) to be introduced in the last section of this chapter. In this step,
conceptual arrays in the source program — i.e. the input and output arrays as scen by cach
code block — remain unchanged, but the array opcrations are translated into
corresponding data flow actors in the result graph. The links between code blocks are now
_represented by data flow arcs carrying tokens with array values.

The second step consists of the application of a sct of optimization procedures which
can remove the array actors from the result graphs of step 1 and replace them with
ordinary graph actors. Thus, the links between code blocks become ordinary arcs of a data
flow graph. The result graph for a pair of producer and consumer code blocks may be
executed concurrently, both in a pipelined fashion, without involving array operations.

In presenting the basic mapping schemes, our efforts are devoted both to the
development of the mapping algorithms for :he code blocks, and the formulation of the set
of conditions under which they can be applied. These conditions are derived by analyzing

the structure of cach type of the code block, especially the pattern of the array operations
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involved in its computation, ‘Therelore, these conditions are certainly important in terms of
mapping cach individual code block. Morcover, the information provided by the
collection of these conditions becomes very valuable for some global analysis necessary in

making critical mapping strategy decisions (sce Chapter 11).
5.1 Data low representation of arrays

To develop the mapping scheme for both step 1 and step 2, it is important to choose
appropriate  representations  for the arrays in a data flow graph, let us use a

once-dimensional array A of integers as an example, where A has 1Lm as its low and high
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Figure 5.1. Daia flow representations of a one-dimensional array
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index limits respectively. Figure 5.1 shows the possible data flow representations of A, In
Figure 5.1 (a), array A has an unflattened representation, i.e. array A is represented as an
array value carried by onc token on a data flow arc. An array can also take flattencd
representations as described below. In Figure 5.1 (b), array A is represented by a set of
clement values conveyed at some moment by tokens on a certain group ol data flow arcs,
one for cach index value. In Figure 5.1 (c), array A is represented as a sequence of element
values carried by tokens on a single arc at successive moments.

The unflattened representation in Figure 5.1 (a) is used in developing the basic
mapping rules for array operations because it is conceptually close to the model of arrays in
the source language. Consequently, the mapping rules can be presented in a general and
simple fashion. As will be shown later, this representation is particularly helpful in
formulating mapping rules for multi-dimensional arrays recursively from  those of
onc-dimensional arrays. In this thesis, we do not study the detail of the format of an array
token (e.g., array descriptor values, array memory addressing convention, ¢te.) but merely
assume that it carrics all the information nceded for the corresponding graph actors to
perform the necessary operations. A brief discussion on the cfficient implementation of
such array opcrations in the target machinc is included in Chapter 11.

In contrast to Figure 5.1 (a), the two flaticned representations in Figure 5.1 (b) and
(c) directly represent values of the array elements. Thus, they both provide a basis for
eliminating the overhead caused by manipulation of array values. Accordingly, graph
actors for array operations can be replaced with ordinary actors. The difference between
Figure 5.1 (b) and (c) reveals the basic space/time tradeofT in structuring machine code for
cfficient operations on a data flow computer. The pipelined code mapping scheme in this
thesis uscs all these representations in different aspects of the translation process.

In a flattened representation as in Figure 5.1 (c), the order of the element values in
the sequence is an important part of the representation. For a one-dimensional array,

there are two sensible orders of the representation as described in Figure 5.2 (a) and (b)
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Alm] -+ A[2] All]
()

All] -+ A[m-1] Alm]
(b)

Figure 5.2. ‘T'wo major orders for a Nattened representation of a one-dimensional array

which are called the major normal order and major reverse order respectively.

So far our discussion has centered on one-dimensional arrays. The same principle
can also be used for representing multi-dimensional arrays, although complexitics arise
when we claborate the concepts of an array value and the order of its flattened
representation. We leave the detail of such extension until Chapter 8, where the mapping

scheme for multi-dimensional arrays is discussced in detail.

5.2 Basic Mapping Schemes

The basic mapping rules are presented as a set of recursive algorithims, These
mapping rules together define a mapping M which translates PIPVAL expressions in each
syntactic category into data flow graphs. In the next section, a static data flow graph
language SDFGL is introduced which will be used to specify object data flow graphs
generated by such mapping rules and the conditions under which they can be appliced. In

the result graph, there may exist explicit array actors, which are supported by array
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operations in target machines (A bricl discussion of their implementation is in Chapter 11).

As in most carlier work on the translation techniques for Val programs [6,79], our
mapping rules are based on the framework of Brock's translation algorithms [19,20].
Therelore the data ow graphs generated by our mapping scheme are a correct semantic
representation of the source program according to the semantic model developed in [19,20].
It is beyond the scope of this thesis to describe Brock's algorithms and his formal semantic
model, and interested readers are referred to the above references.  Instead, in the
presentation of our basic mapping rules, we frequently indicate how it is related to Brock's
algorithms.

T'he data low graphs gencrated by the basic mapping rules may contain array actors.
The direct architectural support of the actors may be expensive in data flow computers,
especially when array descriptor values need o be manipulated [2,78]. For example,
assume an array A is generated by code block Cl and is used by code block C2. In the
corresponding data flow graphs, C1 may have array actors to "pack” the clement values
into array A, and C2 may have array actors to "unpack” the array so that its elements can
be used. Storing an array in some form of RAM mcemory provides both the buffering
between Cl and C2, and the mechanism to support random access so that the orders of
"packing” and "unpacking™ do not matter. However, if the two orders match each other,
we do not need to pack or unpack the clements through memory. The array actors can be
directly implemented through ordinary data flow actors, and the links between the two
code blocks become regular data flow arcs, perhaps attached with certain FIFO buffers.
The goal of the bptimization procedures is to perform such transformation.

Although the optimization procedures are applied directly to data flow graphs,
certain parameters used in the process are related to the attributes of the original code
block. Therefore, optimization procedures are presented for different situations of the
code block structure, and the conditions for each situation are outlined. These will

contribute to the construction of the set of useful attributes associated with code blocks
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uscful for mapping strategy decisions. They together also characterize the set of PIPVAL

code blocks which can be cffectively optimized.
. 5.3 SDFGL — A Static Data Flow Graph Language
5.3.1 The Basic Language

We now introduce a static data flow graph language (SDFGL) as a textual
description language for static data low graphs. SDFGL is not a complcte data flow
programming language. It contains only those features which provide a convenicnt  tool
for the specification of the result graph generated by the basic mapping rules. Using
SDFGI., a graph for a PIPVAL cxpression can be constructed from the graph of its
subexpressions by recursive application of the mapping rules. This language is based on
the graph assembly language in [19].

A SDFGI. graph has two scts of labeled ports: input ports and output ports used for
input/output conncctions. Internally, it contains a sct of actors and links. A nodc in a
SDFGL. graph denotes an actor in the corresponding data flow graph. It also has two scts
of ports, i.e., input ports and output ports. As a convention, the input and output ports of
an actor are usually labeled by consccutive non-ncgative integers, unless otherwise
-specified. SDFGL provides the two functions IN, OUT to get the twe sets of ports. For
cxample, for an addition actor with 2 input ports 1,2, and an output port 1, we have IN
(=) = {1,2}, OUT (+) = {1}. The cardinality of a set L of ports is denoted by #(L.). For
example, #(IN(+)) = 2, #(0OUT(+)) = L. Similarly, IN and OUT can also be applicd to
graphs for the same purpose. Providing graphs and actors with the same mechanism for
their input/output specification facilitates the recursive graph definition.

The set of links is used to interconnect ports of actors or graphs. A link can be
considered as a copy actor (or an identity actor), which has one input port and multiple

output ports. Since there is no need to distinguish the ports, each link can be conveniently
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denoted by a unigue label.

As a syntactic convention, a graph is described by the following four basic parts:

input ports: <input-ports>
output ports: <output-ports>
links: <links>

components: {components>

In the above representation, <input-ports> and <output-ports> are the the sets of
graph input and output ports; <links> is the sct of all links of the graph; <componcents> is
the set of all actors or named subgraphs (explained shortly) in the graph, as well as

assignments specifying the direct connections between the input and output ports of the

graph.
Each actor is specified by its operator name OP (¢.g. +.-.*./, ctc.) followed by two

sets:

OP Inputs : <input-assignments>

oulputs : <output-assignments>

Each member of the set <input-assignments> specifics the assignment of an input

port a of the actor, written as:
a—Q

Similarly, each member of the set <output-assignments> specifics the assignment of an

output port a wrilten as:

Here, the arrow — always points in the direction of data flow, and a denotes a graph
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inputZoutput port or a link. Interconnections between actor ports are indicated by being
assigned o the same link.
A subgraph can be named by an opceration label and wwo lists for its input and output

ports. ‘Thus, it can be specilied in the same way as an actor.

5.3.2 An Example of a SDFGI. graph representation

In Figure 5.3 (b), a SDFGL. graph of the data flow graph in Figure 5.3 (a) is given.
The corresponding SDFGI. description, shown in Figure 5.4, is sclf-contained. The input

port of the graph, labeled trigger, is assigned to cach constant actor in the graph. For

TN
o O= O I
o )
s/
BN
(b) | @
b

Figure 5.3. An example of SDFGL -- part 1
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input ports: trigger, a, b
output ports: ¢

links: i € {l...S}ai
components:

3 inputs: trigger — trigger

outputs: | — a

*inputs;a— I,b— 2

outputs: | — a,

5 inputs: trigger — trigger

outputs: | — a;

+ inputs: a, -+ 1, a, —2

outputs: | — a,

- inputs: a, — 1, a; — 2

outputs: | — ag

/ inputs: ay — 1, ag— 2

outputs: 1 — ¢

Figure 5.4. An example of SDFGL -- part 2

simplicity, the constant is usually written dircctly in the actor as the OP part of a constant

actor.
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5.3.3 Extension of the basic SDFGIH.

1. Definitions, Conditions and Remarks

In this thesis, we use an extended version of SDFGL. We add three more

components to a SDFGL graph to get

def: <dcfinitions>
conditions <conditions>
remarks <remarks>
input ports: <input-ports>
output ports: output-ports>
links: <links>
components: {components>

The <definitions> part is used to introduce a set of temporary names for a list of
ports, a subgraph, etc. This component is used to simplify the graph presentation. The
<conditions> part is used to specily the list of conditions or restrictions under which the
graph construction is appropriate. The <conditions> part in the graph can also be used to
formulate the set of attributes from which mapping strategy can be dcetermined. The
<remarks> part is rescrved for comments.

Finally, any or all of <definition>, <condition> and <remark> parts need not be

present in a SDFGL graph.

2. Naimed SDFGL Subgraphs

Fer convenience, a SDFGL graph may be given a name, known as a named subgraph,
to be used as a component to construct other SDFGL graphs. For example, the SDFGL
graph in Figure 5.5 (a) computes the difference of the squares of its two inputs. We can

turn it into a named subgraph SQDF and use it elsewhere as shown in Figure 5.5 (b), where

two copies of SQDF are used.
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, - SQDF
. l \C/D |
'
' |

2 |
L - - - __ __ _
xl——»l
SQDF 1
xy —>f2 )
-x4)
(b)
x3—>l
SQDF 1
Xg4 2

Figure 5.5. An example of using named subgraphs in SDIFGL

3. Range Constructor

It is often necessary to construct a graph over a range of items or sets of input/output

port labels. For this purpose we use
(a € W)item

to specify a set which, for every b € 4 (4 is a set), contains an occurrence of an item with a
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replaced by b, Here an irerm may be a port label, an assignment, cte. For example

(ae {xy.z}) a—a

will generate a set

a—=X, a—-y a—12

where the irem is an assignment.
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6. Mapping Rules for Expressions without Array Creation Constructs

The translation of a PIPVAL cxpression without urruy‘ creation constructs into
SDFGIL. graphs is quite straightforward. 'The basic mapping rules for such expressions are
developed direetly from Brock's translation algorithms [19]. ‘These algorithms consist of
two functions which respectively map ordinary Val expressions and iteration bodices into
their graph representations. ‘The translation aigorithm for for-iter cxpressions is bascd on a
combination of these functions.

In this chapter, we first study the rules for PIPVAL expressions without iterations,
which arc then used in the mapping rules of primitive forall and for-construct expressions.
Scctions 6.1-6.5 present translation rules for simple primitive expressions on a case by case
basis. Scction 6.6 addresses the issuc of pipelining for the result graphs generated for such
expressions. A bricl outline of the mapping of the for-iter expression is given in Scction 6.7

The two major array construction expressions — the PIPVAL forall and for-construct
expressions — are considered as special for-iter cxpressions (also called loops in [6]). The
structure of the two types of expressions makes it possible (o present their mapping rules in
a simpler fashion than that for general iterative expressions. In Section 6.7, we briefly
outline the basic mapping algorithm for for-iter expressions. Our goal is to provide a basis
for introducing the specialized mapping rules for the two array construction cxpressions in

the rest of this thesis.
6.1 Mapping Rules — M[id], M[const], M[op exp], M[exp op exp]

The mapping rule for M[id] is very simple, as shown in Figure 6.1 (1a). The result
SDFGL graph is shown in Figure 6.1 (1b). The graph has a single input port labeled id,
and a single output port labeled 1. In the <components> part, there is only one assignment
by which the input port is directly connected (assigned) to the output port.

The mapping rule for M[const] is also simple, as shown in Figure 6.1 (2a). The result
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. id
M[id ]
inputs port: id
outputs port; |
components:
id — 1
vy |
(la) (1b)
trigger
M [ const]|
input ports:  (rigger
output ports: 1
const
components:;
const: inputs: rigger —trigger
outputs: | — 1 v |
(2a) (2b)

>M fop cxp]
remarks  (#OQU I (cxp) = #IN(op) = 1) \LJ/

input ports:IN (M[exp] )
output ports:  OU'l'(op) M{exp ]

links : o

components: *
M [exp] : inputs: a € IN(M[exp])a — a
outputs: | — «a
op :inputs 4 o |
outputs: 1 — |
(3a) (3b)

Figure 6.1. Mapping Rules M[id], M[const], M[op exp]
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SDFGIL. graph is shown in Figure 6.1 (2b). It has a single input port labeled trigger and an
output pori labeled 1. 1t contains only one component — a constant actor with Const as its
operator name.

The mapping rule of Mfop ¢xp] is shown in Figure 6.1 (3a). The result SDFGILL
graph is shown in Figure 6.1 (3b). "The graph MJop cxp] is constructed by connecting the
output port of M{exp] o the input port of the unary actor op. A requirement stated in the
<remark> part is that the graph Mf[exp] may only have one output port which provides an
opcerand for the unary actor op.

‘The mapping rule of Miexp, op exp,] is shown in Figure 6.2 (a), where op is a binary
opcerator. The result SDFGL. graph is shown in Figure 6.2 (b). 'The graph  can be
constructed by connecting the two output ports from Mfexp,] and Mfexp,] to the two
input ports of actor op respectively. ‘The set of input ports of the result graph is the union
of the input ports of expl and cxp2, and these are assigned to the subgraph for the two
subexpressions. The output port of the op actor is assigned to the output port of the result
graph. A requirement stated in the <remark> part is that Mflexp,] and M[exp,] must both

have cxactly one single output port, and op must be a binary actor.
6.2 The Mapping Rule for exp,exp

The mapping rule of ¢xp,exp is shown in Figure 6.3 (a). The result SDFGL graph is
shown in Figure 6.3 (b). The graph of an expression with higher arity such as M[exp,,
exp,] is constructed from the two subgraphs of Mfexp,] and M [exp,] in a straightforward
way. The input ports of either subgraphs are connected to the graph input ports with the
same label respectively. The output ports of M[exp, ], ranging from 1 to #OUT(M[exp,]),
are assigned to the output ports of the graph with the same label, respectively. The output
ports of M[exp,], ranging from 1 to #OUT(M[exp,]), are also assigned to the
corresponding graph output ports. However, in order to distinguish the two sets of output

labels, the labels of the output ports for Mﬂexpzﬂ are shifted by #OUT(M[[expl]]), i.e., they
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M([[cxp, op exp,]

def G1 = Mfexp,]
G2 = M[exp,]

remarks: # (IN(op)) = 2, #OUT(G]) = #0UT(G2) =1
input ports: IN(G1) U IN(G2)

output ports: 1

links: aga, )
L

components:
. M| Cxplﬂ M cxp7]]
M[exp, ] inputs: (a € IN(G1))a— a -
outputs: (i € OUT(G1))i — a,
M{exp,] inputs: (a € IN(G2))a — a
outputs: (i € OUT(G2))i — a, @
op inputs: a, — 1, a, — 2
outpuis: 1 — 1 L 1
@
(b)

Figure 6.2. The Mapping Rule for M[exp, op exp,]

row range from #OUT(M[exp,]) + 1to #OUT(M[exp,]) + #OUT(M[exp,]).
6.3 The Mapping Rule for Let-in Expressions

The mapping rule for let id,. id,...id, = exp;...exp, in exp endlet is shown in Figure
6.4. The dcfinition part in a let-in expression is uscd to introduce and define value names

idl, idz,...idk. Hence the free value names of the entirc let-in expression are the free value -
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Mfexp,. exp,]
def Gl = M(exp,]

G2 = M[chpzﬂ

n = #OUTG)) + #(0UT(G2))
input ports: IN(GI1)U IN(G2)

output ports: (i € {1...n})i

components:

M[exp, || inputs: (a € IN(G1))a — a

outputs: (i € OU'T(GL))i — i M cxp l]] M CXPz]]
M[[cxpzﬂ inputs: (a € IN(G2))a— a

outputs: (i € OUT(G2))i — i + #(OUI(GI))

hV4 ~
(@)
(b)

Figure 6.3. The mapping rule for exp,exp

names of exp, through exp, plus the free value names in exp less id,...id,. The result

SDFGL graph is shown in Figure 6.5.
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[letid .id | = exp...exp, inexp endlet]

del: G = Mlexp [..G | = M[exp, |
G = Mexp]
1= lN((‘nl) U..uU IN(G“)
12 = IN(G)

remarks: #(()LJ'I'(GI)) =., = #(()U'l’((‘x")) =1
input ports: (2 € 1HUI2)a

output ports: (i € OUT(G))i

links: (i € { I...n})uri

colmponents:

(i€ {1..0HG, inputs: (a € IN(G))a — a
outputs: | — a;

Ginputs: (i € {l...n})ai —id. (@€ (l2-{id|...idn}))n — a
outputs: (i€ OUT(G))i — i

Figure 6.4. 'The Mapping Rule for a Let-in Expression

6.4 The Mapping Rule for Conditional Expressions
6.4.1 A Simple Conditional Expression

The mapping rule for a simple conditional expression if exp, then exp, else exp,
endifl is shown in Figure 6.6. The result graph is shown in Figure 6.7. It is constructed by
the appropriate interconnection of the three subgraphs M[exp,], M[exp,], M[exp,] listed

in the component part.

The evaluation of the boolean-valued expression exp, will control which arm (exp, or
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Figure 6.5. The SDIFGL graph for mapping a Let-in Expression

exp3) of the conditional expression will be evaluated. This is implemented by introducing
a pair of T-gate actors and F-gate actors for each input to exp, and exp;; these actors are
controlled by the output of M[exp,]. Furthermore, the output ports of the two arms
should be combined for assighment to the output ports of the graph. This is impiemented

by a set of M-gate actors, one for each arm.
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Mif exp, then exp, else exp endif]
def G, = Mflexp] i= 13
remarks: #OUT(G)) = 1. #OUT(G,) = #0UTN(G,) = n
input ports: ING)HU IN(GZ) U IN(GJ)
output ports: l..n
links:  «. (@€ IN(G))B,. (a E IN(G )y, (a € OUT(G,))8 (a € OUT(G A,
components:

M[]cxp!]] inputs: (a € IN(G))a— a
outputs: | — «

(e IN(G7))'I’-gntc inputs: @ — 1, a — 2
outputs: | — B

e IN((}j))I’-gauc iputs: a = lLa— 2
outputs: | — vy,

M{lexp, ]| inputs: (a € IN(G,))B, — a
outputs: (i € OUT(G,))i — 5,

Mf{lexp, ]l inputs: (a € IN(Gy)y, — a
outputs: (i € OU'I‘(GJ))i — )\i

(i€ {l.n})M-gatc inputs: a — 1, 522N -3

outputs: 1 — i

Figure 6.6. The mapping rule for simple conditional expressions

6.4.2 The Mapping of Conditional Expressions with Multiple Arms

A conditional expression with multiple arms is cquivalent to a properly nested simple
conditional ~xpression as illustrated by the cxamples in Figure 6.8 (a) and (b). Therefore,
the mapping rule illustrated in Figure 6.6 can be recursively applied to the nested version.

For example, Figure 6.9 is the result SDFGL graph of the 4-arm conditional expression in
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Figure 6.7. The SDFGL graph of mapping a simple conditional expression

Figure 6.8, derived by the application of the mapping rule of Figure 6.6 (without loss of
gencrality, we assume there is only one input value name to expression x). From the graph,
we note that the test expressions of the arms are evaluated in order until one becomes true,

and the corresponding arm is selected. The expressions in the other arms will not be
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il B, then exp, if B, then exp,

clseil B, then exp, else il 13, then exp,
clseif By then exp, clse if B, then exp,
clse exp, clse exp,
endif endif

endif
endif
(a) (b)

Figure 6.8. A multi-armed conditional expression

evaluated at all. Furthermore, the test expressions of the arms following the sclected arm
are also not evaluated. This may result in a considerable saving of computational resources.

Unfortunately, the maximum depth of the 'T'/F-gate network, as seen by the last arm,
may grow lincarly with the number of arms. The depth of the M-gate nctwork may also
grow lincarly, Furthermore, the SDFGL graph representation becomes overwhelmed
auickly by the T/F-gates and M-gates.

In this thesis, we propose a succinct version of the basic mapping rule for conditional

expressions. It becomes particularly helpful in presenting the mapping rules of the forall
and for-construct cxpressions, which usually have a multi-armed conditional expression as
their range-partitioning expression. Our alternative representation of the mapping rule
also gives hints-about the machine design that may cfficiently support such multi-armed
conditional expressions.

Let us first consider the SDFGL graph in Figure 6.9. We can introduce some named
subgraphs and reorganize the graph into Figure 6.10. First, subgraphs MB and MM are
introduced. The subgraph MB evaluates testing expressions such as B, B, and B;. It has
an input port X, as well as five output ports: four boolean output ports, labeled 1 - 4 for

each of the four arms, and a control output C which generates encoded control values. The
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Figure 6.9. The SDFGL graph of a multi-armed conditional expression -- version 1

subgraph MM performs the function of the M-gate network in the old graph. It has four
input ports labeled 1-4 for each of the four arms. [t also has a control input port 0 which is
usually connected to the control output port C of the corresponding MB subgraph.

The structure of MB is illustrated in Figure 6.11 (a), where BI-B3 are the graphs for
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Figure 6.10. A SDFGL graph for a multi-armed conditional expression -- version 2

the test expressions. The function of the actor B-gate (branch gate) is illustrated by the
truth table in Figure 6.11. If B, (i = 1,2,3) evaluatcs to T, B-gate actor will generate T at
the output port i and an encoded control value "i" at the output port C. Otherwise, the last
arm is selected, and it will generate a T value at the output port 4. An appropriate
encoding value "i" is also gencrated on the port C.! The subgraph MM, upon receiving the

control value "i", will decode and forward the values at its input port i to the output port.

1. For convenicnce, we assume "i" is an integer value, encoding the information that the ith arm is sclected.
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Figure 6.1%. The MB subgraph

Another change made to the old graph is to replace the T/F-gate network by a row of
T-gate actors, one for each arm. When an arm is selected, the input value of x is passed
only to that arm (see Figure 6.11).

It is easy to see that the graph in Figure 6.10 will compute the same function as the
graph in Figure 6.9. A slight difference is that in the new graph, the test expressions are
always evaluated, while in the old graph, if a text expression has value T, later test

expressions will not be evaluated. This difference is not important with respect to the kind
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of range-partitioning conditional expressions in which we are interested, because the test
expressions are usually quite simple and their evaluation will not diverge.

‘The B-gate (and the MB subgraph) as well as the MM subgraph may be implemented
by ordinary graph actors. However, for the purpose of cfficicncy, they may also be
implemented directly by graph actors supported by special instructions in the target
machine. ‘The latter possibility is discussed in Chapter 11.

Finally, the new version of the basic mapping rule for a multi-armed conditional
cxpression is presented in Figure 6.12. The result SDFGL. graph is shown in Figure 6.13.
For simplicity, the structure of the MB subgraph is not included; it can be formed casily

based on the principle illustrated in Figure 6.11.
6.5 The Mapping Rule for Array Selection Operations

So far, only one type of expressions in <primitive-cxp> has not been discussed — an
array sclection operation. L.et us consider the expression Afexp] where A is an array value
name and exp is an expression that computes an index value. In the source language, A
dcnotes an array value consisting of a series of element values along with low and high
bounds indicating index limits for these values. Assuming the evaluation of exp returns an
index value i. An array sclection Afexp] sclects the ith clement value of the array A.

Figure 6.14 (a) illustrates the mapping rule for the expression Alexp]. The result
SDFCL graph is shown in Figure 6.14 (b). The array selection operation is directly
translated into the graph actor SEL, and its connection to the subgraph M[exp].

The array operation A[cxp] can also be conceptually written in another version such
as SELECT(A,exp), where SELECT can be considered as an array opcration construct in
the source language equivalent to the role of "[" and "]" in the original expression. Thus,
the mapping rules for a primitive expression op(cxp;.cxp,) as outlined in Section 6.1 can be

directly applied to generate the above mapping rule.
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MIf 13, then exp,
clseifl3, then exp,

clseilB, | thenexp |
clse exp,
endif])

def: G, = M[exp] i= Lk
H=MIB] i= Lkl
H=HUlLU..UH,_

remarks: #OU'I'((J'I) =1, #OU'I'(Gz) =.= #()U'I'((ik) =n
input ports: IN(G ) U IN(G,) U .. U IN(G U INUT DU IN(H) U ..U IN(H, )

output ports: (i € {1..n})i
iinks: (i€ {l.k}Da,(i€ {L.k})(ae lN(Gi))B:,» (e {l.k})Ma€E OU'I'(Gi))SfT a,
components:

M[MB] inputs: (a € IN(H))a — a
outputs: (i € {1..k}) = a,c — a,

e {l.kiae IN(G;))T-gate inputs: a; — l,a—2
outputs: 1 — g

(i€ { l...k})M[[cxpi]] inputs: (a € lN(Gi))ﬂ:, —a
outputs: (j € {l...n}))i — 8}

( € {l..nphM-gatc inputs: a, — 0.(i € {1...k})6} —t i
outputs: 1 — i

Figure 6.12. The mapping rule for multi-armed conditional expression
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Figure 6.13. SDFGL graph showing the mapping of a multi-armed conditional expression
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M[id[exp]]
def: G = [exp]
remarks: id is an array value name

input ports: IN(G)U id

output ports: 1 i
links: a
components: M ﬂCXP 1
M{exp] inputs: (a € IN(G))a — a
a

outputs: | — a

SEL inputs: a — 1, id — 2 Syl
outputs: 1 — | By

(a)
(b)

Figure 6.14. The mapping rule for an array sclection operation

6.5 Pipelining of the Graphs for Simple Primitive Expressions

The data flow graphs gencrated by the basic mapping rules described up to this point
are acyclic [19] and all special actors are only used in forming conditional subgraphs (In
terms oi pipelining, MB and MM graphs can be considered as a multi-armed conditional
subgraphs, and the principle of balancing simple conditional subgraphs can be extended
easily to cover them). Hence, they can be balanced into maximally pipelined data flow
graphs by the balancing scheme developed in Chapter 3. This fact is important because the

bodies of the array construction expressions to be discussed later consist of such



- 124 -

expressions,

The pipelining of array sclection operations needs more discussion. In order to
conceptually use our pipelined excecution model for static data flow graphs in Chapters 2
and 3, a SEL actor should receive as its input a secquence of tokens on both of its input
ports. However, onc of the input ports expects tokens carrying array valucs. The
manipulation of array valucs dircctly in a data flow computer may be expensive [2]. As a
result, the overhead may scriously degrade performance of the pipcline. This motivates

our study of the optimization of array operations in later chapters.
6.7 An Cverview of Mapping General Iteration Expressions

The t.sic translation algorithm described in [19] for an iterative expression such as

the for-iter expression

for idl,idz...idk = CcXp
do iterbody

endfor

is outlined in Figure 6.15. It defines a separate mapping function M, for the iterbody part.
The graph M[literbody] is an acyclic graph which has two lists of output ports 1 and R, and
an iteration termination control output port labeled iter? (for simplicity, we use ? to label
the port). The set of ports in I is used to reiterate the values of the set of loop names
redefined in the iterbody; the set of ports in R is used to return these values when the
iteration is terminated; the output port iter? is used to signal which of the two possibilities
has occurred.

For each loop value name id, - id, in the iteration body, there is an FM-gate which
will merge the values from the initialization expression (M[cxp]) with the corresponding
iteration output in the set of I ports of M[iterbody]. An FM-gate can be considered as an

M-gate which has a built-in initial control input value F to ensure the initial data output
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Figure 6.15. The mapping of a for-iter expression

?

value is selected from M[exp]. The control input of the M-gate is connected to the iter?
output of M fiterbody]. There is also an IS-gate for each free value name in the iterbody
controlled by iter? v.i.ich also has a built-in initial control value F. Each of these will

absorb and pass the first value received, and will keep generating the same value each time

a T value is received from its control input port.
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As stated before, we are mainly interested in the mapping schemes of forall and
for-construct expressions, both are special cases of for-iter cxpressions. Since only the two
kinds of expressions will ve studied and extensively used, we do not specify the complete
mapping rule of iteration expressions which can be found in [19]. Here we only outline the
rule using a SDFGL graph in Figure 6.15. In Chapter 9, we will discuss the development
of a spccial version of the mapping rule, and state its relation to the rule of mapping the

for-iter expressions outlined above.



- 127 -

7. Mapping Scheme for One-Level Forall Expressions

In this chapter, we develop the basic mapping scheme, i.c., the basic mapping rule
and the optimization procedure, for one-level forall expressions. In Chapter 8, we show
how to extend the result o nested forall expressions.

In source programs for scientific computation, forall expressions olten form a large
portion of the code, Furthermore, there is usually massive parallelism embedded in such
portions and the corresponding regularity of the array operations makes it very attractive
for our pipelined code mapping schemes. ‘Therefore, the forall construct deserves primary
attention, and its mapping scheme is a most important part of the code mapping scheme

developed in this thesis.
7.1 The Basic Mapping Rule
7.1.1 Pipcelined Mapping Strategy

Let us first consider the one-level forall expression shown below

foralliin [0, m+1]
construct
il i = 0then A[0]
elseili = m+1 then A[m+1]
else
A[i-1}LA[iLA[i + 1].1)
endif
endall

For simplicity, the example code block has only one input array A, and the result array is
X. We use fto denote a primitive expression which is the body of the code block.

Recall that forall is a parallel construct which states explicitly that there are no data
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Figure 7.1. Parallel and pipelined mapping schemes for a forall expression
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dependencies among elements of the array o be constructed. Therelore, we can choose a
parallel mapping strategy, i.c., the graph consists of a copy of the program body for cach
array clement, as shown in Figure 7.1 (a). Since the value of the index i is fixed for cach
copy, the top-most conditional vanishes. In order to perform such " full-paralle!]” mapping,
the index bounds should be known before the data low graph is generated. In the result
graph, both the input array A and the output array X are in a parallel flattened
representation,

In this thesis, we are mostly interested in a pipelined mapping scheme where
computation is arranged in a way that the clements of the output array are generated in a
pipelined fashion. Instead of providing multiple copies of the body, the pipelined mapping
scheme uses one copy of the body and exploits the parallelism by mceans of pipelining,
Therelore the clement values of the input arrays of the code block, such as the array A in
the above cxample, are consumed in a pipelined fashion.  Since there are no data
dependencies among the computations of the different array clements, the result array docs
not need to be fed back as an input to the body. Thus the pipclined mapping strategy does
not introduce a cycle in the graph. This becomes a very important feature when maximum
pipclining of the result graph is desired. Such a pipelined mapping strategy is illustrated in
Figure 7.1 (b).

The potential advantages of the pipclined mapping scheme include the saving of
considerable program memory space and the effective use of actors in data flow graphs.
Furthermore, the overhcad storage for the input/output arrays can be reduced or even

eliminated. We will come back to this point after we present the mapping rule in the next

section.



7.1.2 "The Basic Mapping Rule

In the pipelined mapping scheme, a forall expression is equivalent to a special case of
the for-construct cxpression. For example, the above forall expression is cquivalent o the

for-construct expression below

X =
forifromm-+1t00
T from array_cmpty
construct
ifi = 0then A[0]
elseili = m+ 1 then Alim + 1]
clse
A[i- 1LA[)LALi -+ 1)0)
endifl
endall

in terms of the result array value computed. Such for-construct expressions have no real
data dependencies among the array elements generated in each iteration. Thercfore the
mapping rule for gencral for-construct expressions can be simplified to construct the basic
mapping rule of forall expressions. However, the bulk of our discussion of the basic
mapping scheme for a general for-construct expression will not be presented until Chapter
9. In this chapter, we mcrely present a simplified version tailored for mapping forall
cxpressions. The version is straightforward enough to be understood easily, without going
into the detail of the more general scheme for for-construct expressions. In this discussion,
we will use some named SDFGL subgraphs to encapsulate such detail, and the reader may
find a description of their internal structure in Chapter 9.

As mentioned above, the basic pipelined mapping rule of a forall expression can be
derived directly from the basic mapping rule of an equivalent for-construct expression.

However, the latter usually imposes a certain order in which the elements of the result array



- 131 -

M{forall id in [exp .exp,| construct exp endall]

def
A = IN(M[lexp])) - {id}
|, = IN(M[[cxpl[])
1= IN(Mfexp,[)
B=AULUI
conditions

the result array is to be generated in the major normal order

renirks
#1.= #11 = 1 expp and exp, arc of type integer.
I < h(where | = val(exp), b = val(exp,))

input ports: (a € B
output ports: 1
links: (i € {1...5} )a;, e /\)/3“

components:

(a€A)IS-gate
inputs: ey — La—2
outputs: 1 — B

Mﬂcxplﬂ inputs: (a€l.)a— a
output: 1 — a

M[exp,] inputs: (a€l)a — a
output: 1 — a,

IGEN inputs:a; — L, a, — 2
outputs: 1 = a;,2 > a,

M[exp] inputs: (a€EA)B, — a, a;— |
output: I — ay

AGEN inputs: ay — 1, a,— 2, a5 K}
output: R — 1, I — SINK

Figure 7.2. The mapping rule for a forall expression
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Figure 7.3. The SDFGL graph of mapping a forall expression

are generated. For example, the for-construct expression in the above example specifies
the order of the index i as 1 to n. The index value name i controls the progress of the
iteration (see Chapter 9). A forall expression does not demand any specific order to

generate its elements. Therefore, the pipelined mapping strategy of a forall expression
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must also state the preferred order in which the clements of the result array are (o be
produced, which is called the generation order of the array.! We include such information
as part of our mapping rule representation, In Figare 7.2, we show the basic mapping rule
for a onc-level forall expression, ‘The Figure 7.3 shows the result SDFEGI. graph,

First note that in the <condition> part, it explicitly states in which order the elements
of the result array are to be generated. In this case, the generation order goes from X|[1] to
X[ih] (assuming X is the name of the result array), i.c., the array is generated in major
normal order. ‘The subgraph IGEN behaves as an "index generator”. It has two input
ports (labeled 1,2) for the low and high index limits respectively, and generates a sequence
of h-14- T index values: L.h at its output port (output port 1). Note that val(exp ), val(exp,)
denote the values of expp, exp,. Under the the condition | < h,* the order of IGEN
conforms to the major normal order suggested in the <condition> part. IGEN also
generates, at another output port (output port 2), a sequence of control values 1o control the
progress of the iteration. In this case, the control sequence is 'I™F, wherem = h-1+1.

The result array is internally represented by a sequence of values carried by tokens on
the output port of Mfexp], i.c., ag in Figure 7.3. To assemble these clements into a result
array A, another subgraph AGEN is used. AGEN has a control input port 1 which receives
the control value sequence from the corresponding output of IGEN. The other two input
ports 2,3 are for the scquence of index values and their corresponding array element values.
AGEN has two output ports labeled R and 1, which correspond to the R and | output ports
in the M[iterbody] described in Section 6.7. In Figure 7.3, only the R output port is
actually used. Sincc there are no data dependencies between array elements, no iteration

path between the array value and the body is needed. Thus, the [ output port is assigned to

1. As stated in Scction 5.1, the two major orders arc important to this thesis. A more thorough discussion of
the gencration orders of an array and other related concepts can be found in Chapter 8.

2. If 1, h are compile-time computable, this condition can be automatically checked. Otherwise, it may be
specificd as an attribute provided by the uscr, or derived from other sources.
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a SINK node.! The role of AGEN, under the control of the sequence of control input
values, is to assemble the sequence of element values into the result array according to their
corresponding indices. We can observe that the body expression is evaluated exactly m
times, once for cach index value in the range L..h, and these values become the clement
values of the result array.

For convenience, we introduce in Figure 7.4 a simplified SDFGL. for the mapping of
forall expressions. The links designated for the control values from IGEN are denoted by
the dotted lined box passing through IGEN, AGEN and the IS-gate actors. ‘The link
between IGEN and AGEN for index values is omitted from the graph since it always exists.

In Chapter 9, we will examine the internal structure of IGEN and AGEN, and how
they relate to the mapping of for-construct expressions. We will also see that the above
mapping rule of forall expressions is a special case of that for a l'or-colgslruct expression
which is derived from Brock's translation algorithm,

As an example, in Figure 7.5 we apply the basic mapping rule to the primitive forall
expression in Scction 4.2.1. Note that the T-gates for array value A lcading to cach arm of
the conditional cxpression are omitted for simplicity.

The mapping rule in Figure 7.2 is based on the condition that the genceration order of
the result array is a major normal order. We can also specify in the mapping rule (in the
<condition> part) that the rcsult array is to be gencrated in major reverse order. The only
change in the mapping rule would be to reverse the connection of the two input ports of
IGEN. The IGEN will then "count down” from h to 1, gencrating the indices h, h-1...1

As we will show in Chapter 9, the graph M[exp] is generated recursively by applying
the basic mapping rule to the body, and there is no specifi¢ restriction that it must be a

simple cxpression. Thus, although our discussion is centered on onc-level primitive forall

1. ‘The role of SINK is to model a perfect sink (scc Chapter 3) which can absorb input tokens. We denote it
by the symbol shown in the figure.
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Figure 7.4. A simplified version of Figure 7.3

expressions in this chapter, the basic mapping rule presented in Figure 7.2 also applies to a

forall expression the body of which is a PIPVAL expression, including another forall

expression.
If the code block is a one-level primitive forall expression, the subgraph M[exp] is
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Figure 7.5. The SDFGL graph of mapping a one-lcvel forall expression
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acyclic. Since there is no feedbick path between AGEN and its input, Mapfexp]] can be
executed in a maximally pipelined fashion, provided the IGEN and AGEN subgraphs
behave as a perfect pipelined source and sink. An implementation of the two subgraphs is
discussed in Chapter 11, Another factor which affects the performance of the pipelining is
how the clements of an input array are delivered Lo the code block and how clements of the

result array are used. This factor is the major focus of the next section.
7.2 Optimization Of Array Opcrations

The basic mapping rules transform cach PIPVAL array sclection operation into a
graph actor SEL., which performs the role of a "subscripted read” opceration in
~conventional machines. 1t also generates a subgraph AGEN, which performs the role of a
serics of "subscripted write” operations. ‘Therefore, the data low graph gencerated directly
by the basic mapping scheme may involve a considerable number of array operations,
which are expensive in a data low computer [2,3].

In many situations, however, two code blocks gencrating and using an array as a
produccr-consumer pair can be organized so that clements of the array arc directly
transmitted between the two blocks without using memory as an intermediate storage at all!
This not only substantially saves storage space, but also removes all array opcrations, thus
climinating the overhead of array memory opcrations and the data traffic in the

processor/memory interconnection network. Such optimization is the topic of this section.

7.2.1 An Examble

Assume, in the data flow graph shown in Figure 7.5, that the input array A has indcx
range [0,m+ 1], the same as that of the code block. If the generation order of the clements
of A is the same as the order in which they are consumed by the SEL actors in the body
expression, it is perfectly possible to remove these SEL actors. The key is to arrange the

mapping such that the clements of A used in the computation are pipelined passing
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Figure 7.6. Result of Removing Array Operations in IFigure 7.5

through in the right order and the unused values are discarded without causing jams.

In Figure 7.6 we show a data flow graph for the example in Figure 7.5 which satisfies
these requirements. Compared with Figure 7.5, we see that each SEL actor (labeled 1 - 5
respectively) is ;'eplaced by a T-gate actor. The subgraphs computing the index expressions
for each SEL actor are replaced by the proper boolean sequences, providing the control

input for the corresponding T-gate actors.
As shown in the table of Figure 7.7, these T-gate actors act as filters which let through

the element values in exactly the index subrange needed for the computation. Note that

the 4th column in the table denotes the range of indices for elements selected by each array
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Figure 7.7. A iable of selection index ranges for array slection operations in Figure 7.5

selection operation (or SEL actor) in the code block. It is called the selection index range of
the corresponding SEL actor. We can note how the three array sclection operations (i.e.,
A[i-1LAfiLA[i+1]) in the arm corresponding to the index range [l1,m] are trcated.
Necessary skews are introduced by inserting FIFOs of proper size in the paths of A[i-1] and
Ali] respcctively. |

The MM actor which merges the values from the three arms is also controlled by a
scquence of encoded control values 12™3. It passes the two boundary values (port 1 and 3)
come from the first and the last arms, and sclects the other m values from the middle arm
(port 2). The result array X is represented as a sequence of element values X[0]...X[m + 1]
at the output port of MM. If the elements of X are also to be consumed by succeeding
code blocks in the same order in which they were generated, there is no need to assemble

them into an array value, thus eliminating the overhead of storing them in array memory
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and handling the array value at runtime, Accordingly, the graph shown in Figure 7.6 also
excludes the subgraph AGEN. As we can sce, the graph after the transformation does not
contain any array actors.

The basic ideas behind the optimization of array operations are straightforward. In

the next section, we formulate how to perform such transformation,

7.2.2  Optimization of Array Sclection Opcerations with Compile-Time Computable

Sclection Index Ranges

Consider the range-partitioning expression of a forall expression shown in Figure 7.8,
which is a onc-level primitive forall expression with index i ranging from | to h (I<h). We
assume the bounds of the index range (i.c. Lh) of the code block are compile-time
computable constants. ‘The range-partitioning  conditional ¢xpression .is said o be in
standard form il the following holds: 1, = L1 =h__ +1(m = 2..k-1) and h.  <h

Assume, that the above forall has an input array A with the same index range [1,h].

In the data flow graph produced by the basic mapping scheme, A is accessed by SEL actors

forall i in [1.h]

construct
ifl, <=i<=h; thencxp,
elseifl, <= i<= h, then cxp,

elseifl,_ <= i<=h,_ thenexp,
clse
CXpy
endif
endall

Figure 7.8. A range-partitioning conditional expression



- 141 -

which correspond o array sclection operations Afi+b] in the source program. A key
parameter in optimization is the sclection index range ol the array sclection operations,
Here we concentrate on situations where the sclection index ranges are compile-time
computable, and leave other situations to the next section.

IFany arm in the body (exp-exp,) does not contain further conditional cxpressions
with predicates depending on the index i, the sclection index range for A [i+b] can be
sasily computed. ‘The example of forall expression used in Figure 7.5 belongs to such a

class.

Case 1: A one-level primitive forall expression where the top range-partitioning
expression is in its standard form as shown in Figure 7.8, and the following
conditions hold: (1) the bounds of all subranges are compile-time constant;
(2) expy - expy, do not contain any conditional ¢xpressions whose predicate
expression depends on i, while having A accessed in any of its

subexpressions.

. Now let us discuss several major steps in the optimization procedure. without loss of

gencerality, it is assumed to have only one input array: A.
1. Sclection index range and control sequence computation

Let A[i+b] be an array sclection operation which resides in the subexpression exp, .
Its selection index range [x,y] can be computed directly from the subrange [l m.hm], by

noting that

x=1_+b (7.21)
y=h_+b (7.22)

The only constraint is | < x <y < h. If this was not observed, the compiler would signal an
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out-of-bound exception. A bound-checking routine should be available to handle such
exceptions. For the purpose of our discussion, we assume that all array sclection operations
are bound correct.

As shown in Figurc 7.6, cach SEL actor and its index calculation subgraph can be
transformed into a properly controlled T-gate actor, provided that the array A is
represented by a sequence of element values. Each ‘T-gate is controlled by a boolean
pipeline C in the form F"IYF", Such a transformation is illustrated in Figure 7.9 (a) and
(b). From the sclection index range [x.y] and the index range [Lh] of the array A the

parameters p,g,r can be computed by

p=x-I (7.2.3)
gq=y-x+1 (7.2.4)

r=h-y (7.2.5)
l b A A

r
29,

D -

v

(@ (b)

note: Afi+ b] has sclection index range [x,y] where x, y arc defined in (7.2.1) and (7.2.2)

p=xlq=yx+Lr=h-y

Figure 7.9. The optimization of a SEL actor
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I the clements of A are generated in the major normal order, a control sequence C =
F'I9ET is constructed, from (7.2.3) - (7.2.5). ‘The T-gate will then select exactly the clement
values in the selection index range in the right order, T the generation order of A is major

reverse order, the control sequence should also be reversed: C = FUIYEP,
2. Skew introduction and Skew FIFO adjustments

FIFOs should be introduced in order to achieve necessary skews and avoid jams. We
propose that this be done in the following way. Let us still use the input array A as an

cxample. Let A[i+b|]...A[i+bl] be the set of array sclections in one arm (say, the m-th

mSEl)
i C : (a)
A ,
:@ Inth arm
—(rt)
SEI /!
(b)

Figure 7.10. Skews in the optimization of array selection operations
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arm), and let all the corresponding SEL. actors be replaced, as outlined above, by properly
controlled T-gate actors, Without loss of generality, we assume by <'b, < ... <'b. This
situation is shown in Figure 7.10 (1) and (b). Skews are introduced through FIFOs, where

5 = 2*(bl-bj) forj = L..t.
3. Other simplifications.

At compile-time we can also compute the encoded value scquence for the control

input of the MM subgraph as 1122k, where

(=ho-L+1 i = l..k-1 (7.2.6)

= h-h, (7.2.7)

as shown in Figure 7.11. After this is done, the MB subgraph for the range-partitioning
conditional expression may not be in use and becomes "dcad code” which can be removed.
Such may also happen to the IGEN subgraph, if all of its outputs arc no longer uscd.

The efTicicnt implementation of the optimization depends on target machine design,

Figure 7.11. The Control Sequence of MM actor
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in particular machine support of boolean and cncoded control sequences, as well as the
T-gate and MM actors. A briel discussion is included in Chapter 11,

Now, we summarize the above transformation in the form of an optimization
procedure OPMAP for the casc-1 forall expression. This procedure, as well as other
procedures 10 be presented later, takes as input a data Nlow graph generated by the basic
mapping rules, and transforms it into a graph in which array actors such as AGEN and SEL
actors are removed or replaced by ordinary graph actors. The optimization procedure is
shown in Figure 7.13. Since the output array is o be generated in the major normal order,
the removal of AGEN in Step 0 s justified. The validity of the transformation of cach SEL.
actor and its index calculation subgraph (Steps 1 — 3) is based on the conditions listed in
the condition part of the procedure, and the validity of the sclection index range calculation
of the corresponding array sclection operation Afi+ b] are based on (7.2.1) to (7.2.5). The

skew adjustments (step 3) are based on our carlier analysis. 'The remaining steps are

straightforward.
a [¢
2 3 a
l 2
2 3
—_— AGEN |
R —
Y
B Br
(a) (b)

Figure 7.12. The optimization of AGEN
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wocedure OPMAP

Inputs: a diata Now graph G derived by the application of the basic mapping rule te a onc-level primitive

forall expression E in case-1 standard form.
Ouiputs: a data ow graph G* with array operations in G optimized

Conditions: (1) G is mapped under the condition that the result array is to be generated in major normal

order, (2) cach input array has major normal generation order.

Method: Assume E is writen in the form as Iigure 7.8. Remove AGEN in G properly. l.et S be the set
of input arrays in E. For cach A in S, computces the sclection index ranges for all its array
selection operations. Replace the corresponding array actors in G with properly controlled

‘I-gate actors.
The Steps:

Step 0: Replace all AGEN subgraph as shown in Figure 7.12.

Step I: 'S = & then go o step 5.

Step 2: Let A € S. For cach Ali+b] computes the values p.g.r according to (7.2.1) to (7.2.5). Find the
SEL actors and their index calculation subgraph for cach Afi+b]. Replace cach SEL and its
index calculation subgraph by a 'I-gate actor controlled by C: 191" as illustrated by Figure
7.9 (a) and (b).

Step 3: For cach arm of the range-partitioning conditional expression, perform the buffer size
adjustment on all ‘I-gates introduced in Step 3, as shown in Figure 7.10.

Step 4: S := S-{A}, goto Step 1.

Step S: remove the arc connecting MB to the control input of MM (where MB and MM are associated
with the range-partitioning conditional expression). An cncoded sequence is computed from
(7.2.6) and (7.2.7) and provided as the control input for MM as shown in Figure 7.11.
Remove MB if it is not used.

Step 6: Remove IGEN, if it is not used.

Step 7: Stop. .

Figure 7.13. The optimization procedure for case-1 forall expression

Now let us apply the optimization procedure OPMAP to the data flow graph in

Figure 7.5. The table of valid selection ranges and control sequences shown in Figure 7.7 is
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Figure 7.14. An example of optimization by OPMAP-- after Step 2

automatically C(;mputed by step 2. After step 2, the graph is transformed into the form
shown in Figure 7.14, where all array actors are rcmoved and replaced by T-gate actors.
Step 3 adjusts the size of the FIFOs, and the result is shown in Figure 7.15. Step 5 replaces
the control link from MB to MM by a proper encoding control value sequence, as shown in
Figure 7.16. Step 5 and Step 6 eliminate MB and IGEN respectively. The final result of
the OPMAP procedure is shown in Figure 7.17. We note that it is the same as the graph in
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Figure 7.15. Continued from Figure 7.14-- after Step 3

Figure 7.6, as we expected.

In some cases, a primitive forall expression may not be directly cxpressed in the
case-1 form, but can be transformed into this form by some simple source level
transformation. For example, the top level range-partitioning conditional expression is not

in the standard form, as illustrated in the following expression:
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Figure 7.16. Continued from Figure 7.15-- after Step 5

ifi>=1 [i<l, than exp,
elseif i>=1,]i< I, than exp,

elseif i>= lk_! i< b1 then exp,
else expy
endif
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Figure 7.17. Continued from Figure 7.16-- Result

The above expression can easily be transformed into standard form by replacing 1, by
h, I by h,..., where hy =1, - 1, h, = I; - 1., etc. Then all "<" signs in the predicate
- expression can be replaced by < signs. After such transformation, the expression is in the
standard case-1 form.

In another situation, the range-partitioning conditional expression may be in the
form of a nested conditional expression. For example, let us consider the following

range-partitioning expression:
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ifl, <= i]i<=athen
ifl; <= i[i<= bthencxp,

else Cxp,

endif
elseif I; <= i|i<= h; then exp,
else exp 4

endif

where I, = a + 1, b <a. This expression can also be transformed into the following

standard case-1 form:

if1, <= i]i<= h, then cxp,

elseil I, <=i|i<= h, then exp,
elseil [; <= i|i<= h; then exp,
clse exp,,

endif

whereh; = b,l, =b +1,h, = a
From now on, we will assume all foraili exprcssions in the above forms are

- transformed into standard case-1 form before the application of the optimization

procedure.
In general, the graph derived after the optimization procedure may not be optimally

balanced. We niay need to apply balancing techniques, if maximum pipelining is desired.
7.2.3 Selection Index Ranges Not Computable at Compile-Time

In some situations, the selection index ranges of array selection operations are not
compile-time computable. This happens, for example, when the subrange limits in the

range-partitioning expression are not compile-time constants. In this section, we discuss
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how to extend the optimization procedure to this situation, i.c.

Casc 2 - as case 1 (section 7.2.2), except that .1, hp..hy | are not compile-time

constants.

We still assume that index range [I,h] is known at compile-ti.ac. Let us consider the
selection index range [x,y] of A[i+b] in an arm, say exp .. The key equations (7.2.1), (7.2.2)
are still valid for computing x,y. The only diffcrence is that the values of Im,hm are not
compile-time constant, e.g., they may be results of some otheul expressions. This, in turn,
will affect the computation of cquations (7.2.3)-(7.2.5) for control sequence paramelers
p.q.l.

We propose a solution which introduccs additional data flow graphs for computing
(7.2.1)-(7.2.5) for the array sclection operations as shown in Figure 7.18 and Figure 7.19.
The subgraph RGEN plays the role of computing p.q,r from | h . according to (7.2.1) to
(7.2.5). The subgraph CGEN will generate the control sequence F'TYF" from p,q.r at
runtime. Step 2 in the OPMAP procedure in Figure 7.13 can easily be modified to

| h
.lm
———p ——> p
RGEN ———p q
h
Im .,

Figure 7.18. The RGEN subgraph for computing the control scquence parameters
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Figure 7.19. The optimization of a SEL actor using CGEN subgraph

accommodate such changes. Steps 5-6 are no longer necded because the encoded sequence
is computed naturally by the IGEN and MB subgraphs. We omit the optimization

proccdure which can be constructed easily.
7.3 Pipelining of One-Level Primitive forall Expressions

Let us consider the behavior of the result data flow graph oi a onc-level primitive
forall expressio;l after an adequate optimization procedure is successfully applied. We are
particularly interested in case-1 expressions where each SEL actor is simply replaced by a
T-gate, and AGEN is replaced by a single arc.

Recall that the core of the graph before optimization — the graph derived from the
basic mapping rule — is acyclic. The optimization procedure obvicusly preserves the

acyclic nature of the graph. Furthermore, it eliminates AGEN and sometimcs even IGEN.
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Best of all, all SEL actors are removed and replaced by ordinary graph actors. ‘Thus, the
graph afler optimization is the sume as any acyclic data flow graph without array actors.

Hence it can be maximally pipelined if appropriate balancing is performed.
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8. Mapping Scheme for Multi-Level Forall Expressions

In this chapter, we extend the basic mapping rules and optimization procedures

developed in the fast chapter o nested class-1 forall expressions.
8.1 Representation of Multi-dimensional Arrays

8.1.1 Flattened Representation of Multi-dimensional Arrays

As in VAL, a multi-dimensional array in PIPVAL is conceptually a one-dimensional
structure whose clements are arrays.  For example, a two-dimensional array of integers is
equivalent to a onc-dimensional array whose clements are one-dimensional arrays of
integers. We call this model for multi-dimensional arrays a vector of vectors model. In
contrast, some languages such as Fortran use a flar model, where the arrays of lowest
dimension are concatenated to make a onc-dimensional array.

In developing the basic mapping rules for multi-dimensional arrays, the
vector-of-vectors model is a better choice, because it facilitates graph construction in a
recursive manner. However, in the data flow graph, the array values represented in this
model are expensive to manipulate in target data flow computers.

As in the one-level case, the goal of the optimization procedure is to cffectively
rcmove the array operations and replace them with ordinary graph actors. In dcaling with
multi-level forall expressions, this requires the use of the flattened array representation. In
a data flow graph, a multi-dimensional array can be fattened at any level, and cach level
can have a flattened representation, like that of a one-dimensional array. In our discussion,
we are most interested in complete flattening, i.e., an array flattened in all dimensions, as
illustrated by the following example.

Let us consider A — a two-dimensional array of integer values whose first and_second
dimensions have index ranges (1,m) and (1,n) respectively. Figure 8.1 (a) shows one

representation of the array, where only the first dimension is flattened. That is, A is
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IFigure 8.1. Flattened data flow representations of a two-dimensional array

represented by a sequence of m one-dimensional array values A[1]...A[m] carried by tokens
on a single arc in ccrtain order, where A[i] denotes the array value for the ith row of the
array A. We can also represent the array in a complete flattened fashion as shown in

Figure 8.1 (b), where A is represented as a sequence of mXxn tokens arriving at one single

arc in a certain order.
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8.1.2 Index Vectors and Their Orders

The order of Nattened representation introduced Tor a one-dimensional array also
needs to be extended to the multi-dimensional case.
Consider a k-dimensional array A where k > 1. An clement of A can be sclected by a

k-dimensional index vector i = (il'i7“°ik) via an array sclection operation A[il.iz...ik], where
ie NxNx..N

with N being the set of non-negative integers. Furthermore, there is a set of index limit

constraints, onc for cach index, such as
. <i. <h. (G = 1.k)

where lj and hj correspond to the low and high limits of the jth dimension respectively.
Later we will often need to refer to the order of array clements in a flattened data
flow representation. This can be defined easily in term of an ordering of index vectors. Let

us define the order among index vectors.

Definition lcti = (il,iz...ik),j = (il'jr"jk) be two index vectors. We define i — j

(rcad as i less than j), ifT there exists t (1<t<k) such that it <p and iS = g fors = 1,2...t-1.

Now consider the following function f: V — V, where V is the set of k-dimensional

index vectors, such that
i) = (il+bl,i2+ bz...i3+ b3) i= (il,iz...ik) @8.1)

where each element of i) is a simple affine function of the corresponding index in i =
(ijsiy--iy). The function fis called a simple affine function of i. Now, let us prove the

following theorem.
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Theorem 8.1 Il = (il,i,...ik).j = (g ) e WO index vectors in Vsuch that i §, then

the following holds: Ri) = [{j), where Ri) = (i| -+ hl,i2+b,...i‘ Fby).
Proof of Theorem 8.1.

Since i+ j, there exists L (1<tk) such thati <j. i = j, fors = L2.t-1. Hence, i, +b, <
j+b.and and i,+b, = j,+bfors = 1,2..t-1. As a result, (i) — f{j) and the theorem

holds. O

8.1.3 Major Orders in Flattened Data Flow Representation

When an array A is completely fMlattened, it is represented as a sequence of element
values carried by tokens on a single arc at successive moments. Among the many possible
orders of the flattened data flow representation of an array, two orders are ol most interest
to us: the major normal order and the major reverse order. The two orders are called major

orders. The concept of major order has been used in the discussion of one-dimensional

arrays. Now we define it more carefully.

Definition let 48, be (wo clements of an array A with index vectors ij respectively.
" An order of A (on an arc) is called a major normal order if a, p & implies i — j, and vice
versa. Similarly, an order of A is called a major reverse order iff 4 A implies j— i, and

vice versa.

When an array A has a major order on an arc, we also say it is represented in a major
order on that arc. For example, the representation of the array A in Figure 8.1 (b) isin a
major normal order on the arc. For convenience, we say an array is generated in a major
order by the graph of a code block (or simply, by a code block), if it is represented in a
major order on the output arc of the graph. In this case, we also say that the generation

order of A (by the code block) is a major order.
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Figure 8.2. A pipelined representation of a sequence of index vectors

The concept of generation order can be applied naturally to index vectors. Let us
represent an index vector i = (il’iz'"ik) by k tokens carrying values il...ik respectively,
conveyed on a group of k arcs as shown in Figure 8.2(a). Then a sequence of n
k-dimensional index vectors i} = (l“.llz...llk), i, = (‘21"22""2k)’ s b = (Inl,lnz...lnk) can

be represented as shown in Figure 8.2(b). Now we can cxtend the concept of pipelined
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order (o the sequence of index vectors such that i, — i il‘l‘ilj a i2j forj = l.k. Thus,:
sequence of index vectors is said o be generated by a graph.in a major order it it is
represented in a major order on the corresponding output arcs of the graph,

Let F denote a data low graph which computes a simple affine function fin (8.1) as
shown in Figure 8.3. Assume a sequence of index vectors is presented at the input ports of
F. F will gencrate a scquence of index vectors at its output ports. It is casy (o see that F
preserves the pipelined order between the two sequences. Let iy, iy be two index vectors at
the input and i, = iy. ‘Their corresponding output index vectors i, j, must satisfy j, oy Jy-
If the input vectors are represented in major normal order, i.c., we have il iy, then we
must also have jI — j2 since jl = l(il). j2 = l’(iz) and the function F is a simple affine
function. As a result the sequence of output index vectors will also be in major normal

order.

i .
| J

o— —
i i

o2 o2 s

F

-—-—-.LL——P PRSI

i i

Figure 8.3. Orders betwecn input and outputs of an affine function
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8.2 Mapping of I'wo-1.evel Forall Expressions

et us start with the mapping of two-level forall expressions (o illustrate how the
basic mapping rule for a one-level forall expression can be extended to a multi-level forall
expression.

Consider an example of a two-level forall expression, shown in Figure 8.4, which is
known as the (two-dimensional) model problem in PDE applications. (This example is also
used in Chapter 4, we include a copy here for the readers convenience.) This code block
takes a two-dimensional input array A and constructs another two-dimensional array X. |t
can be considered as a one-level forall expression the body of which consists of another
forall cxpression. As indicated at the end of Chapter 7.1, the mapping rule for onc-level
forall expressions can be applied to such a two-level nested forall expression, simply by

recursively applying the mapping rule to its body. For example, Figure 8.5 shows the result

foralliin [0,m+1]
construct
il i = 0 then Afi]
clseif i = m+ 1 then Afi)
clse
forall jin [0O,n+1]
construct
if j = 0 then Afij]
ifj = n+1 then Afij]
clse
(Alig-1] + Alij+1]
+ Ali-14] + Ali+ 1j])/4
endif
endall
endif
endall

Figure 8.4. The model problem: version 1
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Figure 8.6. 'I'he data flow graph for mapping A[ij]

of mapping the expression in Figure 8.4, using the mapping rule under the mapping
condition that the result array is to be generated in major normal order. Note how the
nested structure of the forall expression is reflected in the result graph. The subgraph
inside the inner dashed line box corresponds to the inner forall expression It constructs a
scquence of m one-dimensional arrays: row 1 through row m of the result array X.

Now let us study how the two-dimensional array selection operations in the body are
handled in the mapping. As stated earlier, an array selection operation in the form Alfij] is
equivalent to A[i][j] where Ali] can itsell be considered an array, i.e., the ith row of A. The
mapping rule for a one-dimensional array selection operation can be extended directly to
the two-dimensional case. Figure 8.6 shows the result of recursive application of the basic
mapping rule in section 6.5 to A[i,j}: two SEL actors in series correspond to the selection
opcrations by index i and j respectively. One can easily understand the above result by
considering A[i][j] as SELECT(SELECT(A,i),j). Thus, the mapping rule associated with

binary operators can be recursively applied to derive the graph shown in Figure 8.6.
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It is interesting to note the dilTerent representations of the result array at diflerent
stages in the graph. At the output port of the inner MM actor, the array is represented by a
sequence of (m+2) x (n+2) clement values carried by tokens on the arc directed to the
inner AGEN at successive moments, ‘That is, the array is completely fattened and
generated in major normal order. The rule of the inner AGEN is to "pack” the sequence
of clements values into m+ 2 onc-dimensional arrays, each corresponding to one row ol the
array X. ‘Thus, at the output port of the outer MM, the array is represented as a sequence
of (m+2) tokens, cach carrying a one-dimensional array value on the arc directed to the
input ol" the outer AGEN. Similarly, the outer AGEN will assecmble the m+2
onc-dimensional array values into the result array represented by one token carrying a

- two-dimensional array value X on the arc from its output port.
8.3 Optimization of Two-level Primitive Forall Expressions

The data flow graph derived from the basic mapping rule for a twe-level forall
expression may contain certain array actors. The overhead may be even more significant
than in the one-level case, because it often involves nested AGENs and SEL actors which
must be able to generate and transmit sequences of array values, and store them in memory
when nccessary. As before, the goal of optimization is to remove the AGENSs and the SEL
actors and replace them with ordinary graph actors. Thus, the result data flow graph may
show much improved performance in terms of pipelining. The optimization procedure to

be presented is based on the one-level case developed in Scction 8.2.

8.2." Consistent Array Selection Orders

In this section, we extend the concept of the selection order of an array selection
operation — the order in which the elements of the array are used — to the

multi-dimensional case.

Let us consider an array selection operation A[i+b,,j+b,] in a two-level primitive
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forall i in JO.m+1)
construct

forall j in JO.n+1]
Alit b j+b,]
endall

endall

Figure 8.7. An array slection operation in a two-level primitive forall expression

m+1

IGEN 0 n+l

IGEN

Figure 8.8. The selection order of an array sclection operation
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forall expression as shown in Figure 8.7, ‘The data flow graph is gencrated by the basic
mapping rule as shown in Figure 8.8, where Afi + byJ+b,lis mapped into two SEL. actors
in scrics. ‘The selection order of A[i+b|J + hZ] is the same as the pipelined generation
order of its index vector (i+byj+D,), which is represented by a sequence of pairs of tokens
on the two arcs labeled i'y". "This order — the selection order of Ali+bl, j+b2] — is the
same as the generation order of index vector (i.j), represented by the sequence of pairs of
tokens on the two arcs labeled i,j (see argument at the end of Section 8.1).

An important condition of optimization of A[i+bl, j+b2] is that its sclection order
should match the generation order of A, This also implies that if more than one selection
opcraﬁon of A exists, they all should have the same sclection order. If this requirement is
met, we say the array A has a consistent selection order in the code block (or its graph); or
cquivalently, we say the code block (or its graph) has a consistent sclection order with
respect to A,

Thus, if the body in the above example contains only array sclection operations in the
form of A[i+ b.j+ bz], the forall expression has a consistent sclection order with respect to
array A. This condition is very important to the application of the optimization procedure
to be developed next. Thercfore, it is included in the optimization procedure as a key
attribute associated with a forall block.

As a remark, there are cases where a code block may not have a consistent selection
order with respect to its input arrays. For example, in Figurc 8.7, if the body of the inner
forall expression contains both A[li+b;, j+b,] and A[j+b;, i+b,], then the forall

expression does not have a consistent order with respect to A.

8.3.2 An Example

Let us briefly study optimization of the data flow graph of the two-level forall
example derived from the basic mapping rule as illustrated in Figure 8.5. There are 14 SEL

actors which can be divided into two groups. The first group, called level-! SEL actors,
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consists of cight SEL actors on the left (labeled 1-8); the second group, called level-2 SEL
actors, consists of 6 SEL. actors on the right (labeled 9-14). The sclection indices of the
level-1 and level-2 SEL actors correspond to the indices of the level-1 and level-2 forall
expressions, c.g., i and j, respectively.

Now consider the optimization of the SEL actors. Note that the forall expression has
a consistent sclection order with respect to A, We assume that array A is generated in
major normal order. Furthermore, we assume that X is also to be consumed in major
normal order. The optimization includes the removal of SEL actors, as well as AGENS.
The principle of optimization is the same as that for the one-level case outlined in the last
chapter. Since the sclection order of all array selection operations of the input array A is
the same as its gcnc.ralion order, cach SEL. actor can be replaced by an ordinary graph actor
such as a properly controlled T-gate actor. The key is that the sequence of clement values
of A uscd in the computation must be passed in order, while the unused clements should
be discarded without causing jams.

As before, we need Lo derive the set of selection index ranges (for all SEL actors) and
the corresponding control value sequences (boolean pipelines). In the example under
discussion, the set of ranges are compile-time computable, using the same principles found
in (7.2.1) to (7.2.5). The table in Figure 8.9 lists thesc parameters for the eight level-1 SEL
actors. Note that cach value in the sclection range sclects one row of the array. Therefore,
d = n+2 control valucs are needed to select or discard values in one flattened row. The
selection ranges and control scquences of the six level-2 SEL actors are listed in Figure
8.10. They are similar to thosc found in a one-dimensional array.

Therefore, an optimization similar to that for the one-level case can be performed.
The result graph of the optimization for our current example is shown in Figure 8.11. All
AGEN and SEL actors have disappeared from the result graph. Note the FIFO sizes for
the level-1 SEL actors. Recall that the FIFOs are introduced together with certain T-gates

to hold skewed values and prevent jams. A skew of 1 of index i results in one row of
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Figure 8.9. The selection index ranges and control sequences -- level-1 SEL actors

. excessive array element values, which should be held by the FIFO. Thus the size of a

FIFO associated with a level-1 SEL actor is in the unit of d = n-2. For example, if we usc

Ali+1] as a reference, the skew of i for Afi-1] and A[i] are 2 and 1 respectively. Hence

FIFOs of size 4d and 2d are introduccd respectively.

procedure, we will be able to derive the simple result graph in Figure 8.11.

In the next scction, we present the extended optimization procedure. Using this
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Figure 8.10. 'T'he selection index ranges and control sequence -- level-2 SEL actors

8.3.3 Optimization OF Array Selection Operations with Compile-time Computable

Scelection Index Ranges

Let us consider an input array A to a forall code block which has a consistent
sclection order with respect to A. Without loss of generality, A is assumed to have the same
index ranges as the index range of the code block. In this section, we look at the case in
which the sclection index range for each array selection operation A[i+bl, j+b2] is
compilc-time computable.

Assume the code block to be handled is the two-level forall expression shown in
Figure 8.12. The top level structure of the body expression consists of a range-partitioning
conditional expression with respect to the index i. It is similar to that in Figure 7.8 (see
Chapter 7), except that each exp, (s = 1..k) may now consist of a one-level forall

expression. All the subrange limits should be known at compile-time in order to compute
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Figure 8.11. Result of Removing Array Actors in Figure 8.5

the selection index subranges for all level-1 SEL actors. A similar condition is needed for
the level-2 forall expressions. Thus, this case is a two-level version of the case-1 forall

expressions introduced in Chapter 7.

Case-1 (two-level): A two-level primitive forall expression where the
range-partitioning expression is in its standard form (see Figure 8.12).

Without loss of generality, it is assumed to have only one input array: A. The

‘1'
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forall i in [Lh)

construct
il'l,(::i(::h|lhcncxp|
clseilly <= i<= h, then cxp,

clseifl, | <= i<= hy., thenexp, |
else
exp,
endif
endall

Figure 8.12. Standard case 1 form

bounds of all subranges are compile-time constant. In addition, the range
expy - exp, docs not contain any conditional expressions whose predicate
expression depends on i and has A accessed in any of its subexpressions. 1f
an exp, (s = 1..k) consists of a one-level forall expression, it must be in

one-level case-1 form.

Now lct us consider how to cxtend the optimization procedure to the two-level case-1
forall expression. Recall that an array selection operation A[i+bl. j+b2] is translated by
the basic mapping rule into a scries of two SEL actors as shown in Figure 8.6. As before,
the SEL actors are replaced by T-gates controlled by proper control value sequences. The
key is to compute the selection ranges of i and j for A[i+b, j+b,]. This can be performed
by using the same equations (7.2.1) - (7.2.5). When constructing the control value
sequences, cach value of i in its selection range corresponds to one row of A. Thus when
performing the cntimization for a level-1 SEL actor, both the control sequence and the size
of the FIFO should be weighted by d, where d is the size of one row of A (i.e.,d = I-h+1),

as shown in Figure 8.13 and Figure 8.14. The handling of level-2 SEL actors is the same as
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Figure 8.13. Optimization of a Level-1 SEL actor

that described for one-dimensional cases, except that the selection range for j + b2 should
be computed in terms of its corresponding level-2 forall expressions.

~ Thus, thé optimization procedure for a one-level primitive forall expression can be
extended to a two-level primitive forall expression. Such extension is straightforward and
is shown in Figure 8.15.

Let us apply this optimization procedure to the forall expression in Figure 8.5. After
step 2, the graph is transformed into the form shown in Figure 8.16, where all array actors
are removed and replaced by T-gate actors. The selection index range and control value
sequences for each level-1 and level-2 SEL actor in the graph (listed in Figure 8.9 and
. Figure 8.9) are computed by Step 2. Step 3 adjusts the size of the FIFOs, as shown in‘the

result graph in Figure 8.17. Step 5 replaces the control link from MB to MM by a proper
“encoding control value sequence and removes MB, as shown in Figure 8.18. Step 6

eliminates IGEN. The final result is shown in Figure 8.19. This graph is the same as the
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Figure 8.14. Skews in the optimization with weighted buffer size

graph in Figure 8.11.!
As in the one-level cases, there are situations in which a two-lcvel forall expression is

not initially in the standard form of Case 1, but can be transformed into that form. We
assume such transformation is done before the optimization procedure is performed.

When the selection index range is not compile-time computable, the optimization

1. When no confusion may occur, we omit some arrows in Figure 8.16 - Figure 8.19 for simplicity.
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Procedure OPMAP

Inputs: a data Now graph G derived by the application of the basic mapping rule to a two-level primitive
forall expression 14 in case-1 standard form,

Ouipurs: a data flow graph G* with array operations in G optimized

Conditions: (1) G is mapped under the condition that the result array is to be generated in major normal
order, (2) cach input array has a major normal generation order, (3) all array selection
operations of A have a consistent selection order, and it is the same as the generation order.

Method: Assume E is written in the form as Figure 8.12. Remove AGEN in G properly. f.ct S be the sct
of input arrays in E. For cach A in S, compute the sclection index ranges for all its array
selection operations.  Replace the corresponding array actors in G with properly controlled

T-gate actors.
The Algorithm:

Step 0: Replace all (Ievel-1, level-2) AGEN subgraphs as shown in Figure 7.12.

Step 1: If'S = @ then go to step S.

Step 2: Let A € S. FFor cach array sclection operation on A compute the values p.q.r according to
(7.2.1) to (7.2.5). Vind the level-1 SEL actors and their index calculation subgraph for cach
Ali+ bll. and replace them by a ‘I-gate actor controlled by C: prdpadprd yith corresponding
p.q.r as illustrated by Figure (a) and (b), where d = (h-14-1). Also find the level-2 SEL actors
and their index calculation subgraphs for cach A[j+b,], and replace them by a 'I-gate actor
controlled by C: FPIYET with corresponding p.q.r as illustrated by Figure (a) and (b) (where i
is replaced by j).

Step 3: For cach arm of the range-partitioning conditional cxpression, perform the buffer size
adjustment on all level-1 ‘I-gates introduced in Step 3 as shown in Figure 8.14, where d =
(h-141). Perform a similar transformation for all level-2 'T-gates but note thatd = 1.

Step 4: S:= S-{A}, goto Step 1.

Step 5: For cach range-partitioning cxpression of the forall expressions in both levels, remove the arc
connccting MB to the control input of MM, and provide an cncoding value scquence as
shown in Figure 7.11. (Note that the sequence for level-1 forall should be weighted by d.)
Remove MB if it is not uscd.

Step 6: Remove IGEN, if it is not used.

Step 7: Stop.
Figure 8.15. The optimization procedure for two-level case-1 forall expressions
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Figure 8.16. A two-level forall optimization example -- after Step 2
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Figure 8.17. Continued from Figure 8.16 -- after step 3
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procedure is not directly applicable. However, it is olten possible to introduce extra code
Lo generate the control value sequences at runtime, just as discussed for the onc-level case

in Section 7.2.3.
8.4 Multi-level Forall Expressions

The mapping of a multi-level forall expression can be performed using the same
principle as that for a 2-level forall expression. That is, the graph of a k-level forall
expression can be recursively constructed from that of a (k-1) level forall expression, etc.
Therefore, the mapping of a multi-level forall cxpression is based on the mapping rule of a
one-level forall expression. As for the two-dimensional case, the mapping rule for an array
‘sclection operation of a multi-dimensional array A[il, iz,...ik] can be derived by extending
that for a oné-dimcnsional array.

The optimization procedure for a multi-level forall expression can also be constructed
by applying the principles discussed for handling a 2-level forall expression (which in turn
is based on the optimization proccdure of one-level forall expressions). Note that the
concept of consistency of selection orders with respect to a multi-dimensional array can be
directly extended from that for a two-dimensional array. Again, we are most intercested in

cases where the sclection index ranges are compile-time computable. We omit the details

of such extensions.
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9. 'The Mapping Scheme for For-construct Expressions

In this chapter, we present the mapping scheme for another important array creation
construct in PIPVAL — the for-construct cxpression, One important aspect is o illustrate
how our basic mapping rule of the for-construct expressions is derived from simplification
of the more general mapping algorithm for iteration expressions [19]. In fuct, we have
already scen the pipelined mapping scheme of forall expressions treated as a special case of
the for-construct expressions. In mapping for-construct expressions, we need to properly

introduce and handle feedback paths in the result data flow graph,
9.1 The Basic Mapping Rule

Recall that a PIPVAL for-construct expression can be considered as a special case of
a Val for-iter expression. Let us consider the one-level for-construct cxpression shown

below where the body expression is denoted by f.

forifrom1ton

T from array_cmpty
construct

rG, T,A)
endlor

Here we assume f denotes an expression with one input array A. As stated in Chapter 4,

the above expression is equivalent to the following Val for-iter expression

for i =1,

T = array_empty
do

ifi>nthenT
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else
iter
T = "I[i: [Qi,T,A)),
i=i+l1
enditer
endif
endfor

Thus, the basic mapping rule for a for-construct expression can be developed based on that
for a for-iter expression outlined in Scction 6.7. Our concern is how 1o use the features of
for-construct cxpressions to simplify the construction of the corresponding data Now
graphs.

[.ct us study the data flow graph derived after applying the basic mapping rule to the
above for-iter expression, as shown in Figure 9.1. Compared with the graph in Figure 6.15,
we can see that the graph inside the dotted-lined box corresponds to the graph of
Ml[[itcrbody]l. The sct | of reiteration ports (sce Section 6.7) of the iterbody consists of the
poits 11,12 for i and T — the indcx value name and the temporary array name being
constructed. The iter? output is derived from a index limit check of i (i< n). The result
output port R of the iterbody is the port of the result array X. At the beginning, the loop
names i and T are initialized to 1 and array_empty respectively. Each time through an
iteration, the value computed by fis "appended” to the array T at the index value i by the
array append actor. After n iterations, the test i < n will return an F value. The iteration
will be terminated and return T as the result array X.

A very useful feature of the graph is that we can partition it into three different parts,
and restructure the graph as shown in Figure 9.2. The role df the first part — enclosed in
the dotted-line box IGEN — is: (1) to generate the sequence of index values 1...n for i (port
1); (2) to provide the boolean value sequence T"F as the iter? output io control when to
terminate the iteration (at its output port 2). The role of the second part — enclosed in the

dotted-line box AGEN — is to pack the sequence of element values computed by finto a
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Figure 9.1. The data flow grapn of a for-construct expression

result array. The element valucs and their corresponding indices arc taken from input
ports 3 and 2 respectively. Under the control valuc iter? from the input port 1, the
‘sequence of element values is assembled into the internal array T at each iteration and the

array value is delivered at R when the iteration terminates. The major role of the third part
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Figure 9.2. The Functions of IGEN and AGEN subgraphs

is to compute fand generate a sequence of element values..

In AGEN, an append actor is used which corresponds to the VAL array append
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operation [4]. In the data flow graph of AGEN associated with a for-construct expression,
such append operations always start with an empty array array_empty (denoted by A in the
graph), whose bounds are known at the start of array construction. Furthermore, the
pattern in which cach clement is to be "appended” to the array is regular — the array is
filled up at conscecutive indices in the index range, one element for cach index value. For
our present discussion, we assume the array_empty constant operated on by such a series of
append opcerations will always be performed correctly. The impact of regularity on
cfficicnt implementation of array operations on the target machine will be addressed in
Chapter il.

We can observe that the graph for any for-construct cxpression can be so partitioned,
-we introduce two named subgraphs IGEN, AGEN to denote the corresponding parts. In
fact, we have also seen how these named subgraphs are used conveniently in the
construction of the data flow graphs (or forall expressions. A discussion of implementation
issucs of these subgraphs is included in Chapter 11,

The simple structure of the result graph motivates the development of the following
basic mapping rule for the for-construct cxpressions. A result graph is cxplicitly
con&ruclcd from the subgraphs IGEN, AGEN and the graph of the body cxpression, the
latter is derived by recursive application of the set of basic mapping rules to the body.

Thus the need of a separate mapping rule for the iterbody (such as M, outlined in Chapter

.........................

‘This mapping rule is presented in Figure 9.3. The corresponding SDFGL graph is shown
in Figure 9.4. Note that the feedback path is introduced in the result graph by using the |
output port of AGEN to reiterate the array to the body expression.

Figure 9.5 shows the result of the application of the basic mapping rule to the
first-order linear recurrence in Figure 9.6. Here we use the same convention of simplified

notation introduced for forall expressions (see Section 7.1). Note the role of the feedback

link from the I output port of AGEN.
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M{[for id from cxp, to exp,
I' from array_cmpty
construct exp endfor]

def
A = IN(M[lexp]) - {'Iid}
I. = IN(M[[exp, )
H = IN(M[lexp, )
B=AULUH

conditions
the result array is to be generated in the major normal order

i.c., [ <h(wherel = vul(cxp,). h = vul(cxpz))

renarks
#1.= #H = L exp, and exp, are of type integer.

input ports: (a € B)a
output ports: 1
links: (i € {l...S})ai. e /\)ﬁa. Bl

components:

(aEA)IS-gate inputs: a, — l,a—2
outputs: 1 — B,

M[exp, ]| inputs: (a€l)a— a
output: 1 = a,

M[exp,] inputs: (a€H)a — a
output: 1 = a,

IGEN inputs: a; — 1, ay — 2
outputs: 1 = a2 — a,

Mlexp] inputs: (a€A)B, — a2, a;— 1. B — |
output: 1 — ag

AGEN inputsia, — L ay—2,a;—3
output: R = 1.1 — B,

Figure 9.3. The basic mapping rule for for-construct expressions
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Figure 9.4. The SDFGL graph from the mapping of a for-construct expression

The above basic mapping rule can also be recursively applied to a multi-level
for-construct expression, as it is in the case of the forall expressions. Figure 9.8 shows the
result graph for the mapping of the two-level for-construct expression illustrated in Figure

9.7 (it is the same as the example in Section 4.3, here we include a copy for the reader’s
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Figure 9.5. The data Mlow graph from mapping a first-order lincar recurrence

" convenience). Note the similarities between this graph and the graph in Figure 8.5 A major
difference is the two feedback links introduced from the two AGEN subgraphs to the body
of the graph. As before, for simplicity we omit the T-gate and IS actors for both the input

arrays A,B and the two internal arrays.
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for ifromlton
I' from array_cmpty
construct
ili = | then 13fi]
clse
AliJ*1Ti-1] + BYi)
endif

endfor

Figure 9.6. A first-order lincar recurrence

9.2 The Optimization Procedures

As with primitive forall expressions, the array operations in the data flow graphs of a
primitive for-construct expression generated by the basic mapping rule may be removed
and replaced by ordinary graph actors. Such optimization can be performed only if the
generation orders of the input arrays match the selection orders of the corresponding array
_selection operations, and the gencration order of the result array matches the order in
which it will be used by the succeeding code blocks. The difference is that the data
dependency defined by a for-construct expression usually demands a certain generation
order of the result array as well as the selection order of the input arrays. Thercfore, we do
not have the flexibility of choosing the order as we do for forall expressions. In this thesis,
we are only interested in the case where the result array is gencrated in one of the major
orders.

The principles of the optimization procedures for the primitive for-construct
expressions are similar to that of forall expressions. As before, the key is to compute the

selection index ranges of array selection operations and their corresponding SEL actors. In
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ur =
for ifromO0tom+1
11 from array_cmpty
construct
ili = 0 then Ufi)
elseil i = m+ 1 then U[i]

¢lse
for jfromOton+1
12 from array_cmply
construct
ifj = 0 then U[ij]
elsej = n+1 then U[ij}
¢lse
(Uli+ Lj] + Ulij+1]
+ Tlfi-1§] + 12ij+ 1p*1/74
endif
cndfor
endif
endfor

Figure 9.7. An example of a two-level for-construct expression

~ our discussion, we are mainly interested in the situation where these sclection index ranges
are compile-time computable. In particular, we are interested in the primitive for-construct
expressions, which are in a similar form as the case-1 forall expressions. We will not repeat
the definition of such for-construct expressions, which can be easily deduced from its forall
counterparts.

As anticipated, the optimization procedure for a case-1 for-construct expression is
very similar to that of a case-1 forall expression. The major difference is the need to handle
the feedback paths introduced for the internal arrays. This need has the following two
impacts. First, the optimization of array operations should include not only the input

arrays generated by other program blocks, but also the internal arrays which are reiterated



- 190 -

v
() 1
— IGEN | — — — — — — — — — — — — —
l f
¥
—{ mn
=

S 0)x

- T e e e e e e e e et e o e e e e e e o

Figure 9.8. The mapping of a two-level for-construct expression
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to be used inside the body, This is casy to handle because the index range of an internal
array is the same as that of a result array, and hence is the same as that of the corresponding
for-construct expression, Morcover, it is compile-time computable for a case-1 expression,
‘The generation order of any internal array is the same as that ol the result array. Since we
arc only interested in the situation where the selection orders of all selection operations for
an internal array are the same as the gencration order of the corresponding internal array,
the sclection operations for any internal array can be handled just like the sclection
opcerations of other input arrays.

Another impact is in the optimization of AGEN subgraphs. Remember that when an
AGEN is removed, the array is "Mattened” and becomes a scquence of clement values
carricd by tokens on onc arc which is then branched into the output are (from output port
R) and the arc for the feedback link (from the output port 1). In order to hold the sequence

of element values of the result array, certain FIFOs should be introduced on both the

2 3 a
1 1 2
2 3
. B | * B I
—> 1 AGEN I — I11FO
R.
Y
A R . ) B R
FIFO denotes a FIFO with bounded size
6)) (b)

Figure 9.9. Optimization of AGEN in a for-construct expression
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output arc and the feedback arc. ‘The former will be discussed in Chapter 11, ‘The latter is
only visible inside the code block under consideration. ‘The problem of introducing FIFOs
of a precise size into a cyclic graph for baluncing purposes is still open as addressed in
Chapter 3. Noncetheless, the maximum size of the FIFO holding the clement values of the
internal array on the feedback link is the same as the size of the corresponding result array
-- a compile-time constant, Thus, we can introduce a FIFO of bounded size on the
feedback link, The implementation of such FIFOs or. the target machine will be discussed
in Chapter 18.

The optimization procedure for case-1 primitive for-construct cxpression is very
similar to the corresponding optimization procedurc of the forall expressions presented in

the last two chapters. We will not discuss the procedure in detail, but merely point out that

. mdex i _ sclection control
SEL. cxpression indexrange range p q r value sequence
n+1)d
! i [0.0] [0.0] 0 | 1 |met| cronde ™D
d md d
2 i [l.m] 1 m ! C2:FT F
d 2
3 il oo | o | m| 2| c3:a"F
: [L.m]
d md d
2d. md
6 i+1 2. m+1]] 2 m 0 C6:F 'l
d d
7 i (L] Clm L | o™
m+1)d d
8 i [m+1, m+1] [m+!, m+1}|m+1| 1 0 C8:I(~‘ d‘

Figure 9.10. The selection index ranges and control sequences -- level-1 SEL actors
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index . selection control
SEL | oxpression | indexrange range p | q ¢ | value sequence
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Figure 9.11. The selection index ranges and control sequences -- level-2 SEL actors

the only change is in step 0, which should now be performed according to Figure 9.9. The
selection operations of the internal array can be treated just as that of other input arrays.

An example in the next section illustrates such changes.
- 9.3 An Example of Optimization

Let us study the optimization process of the data flow graph in Figure 9.8. An
optimization procedure will compute the sclection index ranges and control sequences for
the level-1 and level-2 SEL actors in the graph, as shown in the two tables of Figure 9.10
and Figure 9.11. Both the AGEN subgraphs and the SEL actors can be removed by a
optimization procedure as shown in Figure 9.12. After further optimization steps, the MB
and IGEN subgraphs are removed. The result is shown in Figure 9.13. It is interesting to
note how the above optimization process is similar to that for the forall expression in

Figure 8.4 (sce also Figure 8.16 to Figure 8.19).
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10. A Survey of Related Optimization Techniques

Chapters 4-9 complete our presentation ol the basic pipelined code mapping schemes
for PIPVAL. cxpressions, including the two important classes of array construction
expressions — primitive forall expressions and primitive for-construct expressions. ‘These
basic mapping rules and optimization procedures provide a basis upon which other
transformations and optimization techniques may be incorporated and applied.

As we said carlier, the performance of the innermost level is critical, because it
usually constitutes the most computationally intensive part of the program. When the
innermost expression is a primitive forall expression, the basic mapping scheme described
arlier can be applied directly to gencrate fully pipelined data flow graphs for the
innermost  expression,  If the innermost level consists of a primitive for-construct
expression, the degree of pipelining that can be achicved (by the direct application of the
basic mapping scheme) is often limited by the data dependencies implied by the itcration.
In this chapter we survey a few other transformation techniques which, combined with the
basic scheme, allow such inncrmost expressions to be mapped more efficiently in terms of
pipelining.

As with conventional language translators, these transformation techniques are
usually known as "optimization” techniques, although the word "improvement” may be
more appropriate. Our survey concentrates on how these techniques can be combined with
our basic pipelined code mapping schemes to improve the performance of the result
graphs. Such improvements are often achieved through compromise among different
objectives. Use of a particular optimization tcchnique depends on both the nature of the
innermost loop and its surrounding expressions in the code block to be mapped and the
rclation between this code block and other code blocks. No universal scheme exists which
is suitable for every situation. Therefore, our discussion will be closely coupled with
examples which may illustrate trade-tradeoffs frequently encountered in real applications.

In Section 10.1 we consider the case where the innermost expression computes linear
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recurrences. In Scetion 10.2, we briefly outline how our work relates to loop-unfolding and
array-interleaving  techniques; in scction 103, we present technigques which  exploit

parallclism embedded in outer level expressions (usually forall expressions).
10.1 Using Companion Pipclines in Solving Lincar Recurrences

Lincar recurrences share with arithmetic expressions a role of central importance in
scientific numerical computations. Such recurrences are fundamental to the solution of
lincar cquations by Gaussian-climination; to all matrix manipulations which nced an inner
product of vectors; and to the solution of differential cquations [54,67). The solving of
recurrences may create bottlenecks in a parallel computer because of the sequential
constraints implicd in the recursive definition, Therefore, it is very important to find fast
and cfTicient solutions to lincar recurrences for parallel computers.

The technique surveyed in this scction is based on the usc of a companion finction to
transform a lincar rccurrence so that a companion pipeline is introduced in the result data
flow graph to achieve maximum pipelining. The concept of companion function and the
general oplimlization technique bascd on companion functions arc described in
[61,62,63,64]. The application of companion pipelines, for maximum pipelining of data
flow graphs is studicd in [43,46]. In this survey we assume the readers arc familiar with the
basic idcas, and our goal is to show how such optimization can be combined with the basic

pipelined code mapping schemes. We use first-order and sccond-order linear recurrences

as examples in our discussion.
10.1.1 Mapping Of First-order Linear Recurrences

A first-order lincar recurrcnce is described by the following equations:

X, = b,
X; = aX, + bi, i=2.n (10.1)



- 198 -

M a

\d
(3]

Figure 10.1. The data Mow graph of a first-order lincar recurrence

It can also be spccified by the following for-construct cxpression

X =
for ifromlton
T from array_empty
construct
let x1 = B[1]
in
if i = 1thenxl1
else
A[iT*T[i-1] + B[i]
endif
endlet
endlor
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Applying the basic mapping rule and optimization procedure o the code block produces
the result data low graph shown in Figure 10.1. There are 4 'T-gate actors numbered 1-4.
The upper 'T-gate actor (labeled 1) seleets B[1] for the initial value X[1]. "The ‘T-gate actor
(labeled 2) sclects the first n-1 values of X for feedback. 'The lower two T-gate actors
(labeled 3.,4) sclect the value sequences A[2)...A[n] and B[2]...B[n] respectively. We note
that MM will sclect the initial value x; from its input port 1 as its first output X[1]. The
remaining n-1 outputs x[2]...x[n] are sclected by MM from input port 2.

The loop in Figure 10.1 has a length of four (from a through nodes 2,5,6,7 back to
a).! Thus, the loop has the capacity o process two clements (c.g., x, and Xi-l) of the result
array concurrently when run at the maximally pipcelined rate. However, the recurrence
-constraint ol (10.1) prevents x, and Xi 1 from being processed concurrently.

A solution based on the use of a companion function is to relax the constraint
imposed by the recurrence, i.c., perform a transformation which removes the dependence

of x, on x;_;. Equation (10.1) can casily be rewritten as
— oD (1 .
Xi -_— ‘l] Xl_2+bi ] _— 3..." (10.2)

where X, = bl, Xy = "2b1 +b2, and

al’ = aa, | (10.3)
b{’ = ab,| + b; (10.4)

The corresponding for-construct expression is shown in Figure 10.2.
Figure 10.3 shows the result graph derived by applying the basic mapping rules and
optimization procedures to Figure 10.2. Compared with Figure 10.1, the main loop

remains the same except that the first two values of x are now selected from the first two

1. Here we assume MM counts as one node.
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for ifromlton
T from array_cmpty
construct
let x1 = B[1],
x2 = AR2)*x1 + B[2].
AP = AliJ*Ali-1],
BP = A[i]*Bli-1]-+ B[i]
in
ifi = 1thenxl
elseifi = 2 then x2
else
AP*ITi-1] + BP
endif
endlet
endfor

Figure 16.2. A first-order linear recurrence with backup

ports (1,2) of MM, which arc provided by subgraph INIT for computing initial values.
Another subgraph COMP denotes the so-called companion pipeline [43], which computcs
al, b" in (10.4). The structurc of COMP and INIT are shown in Figure 10.4,

The companion pipeline can be generated automatically by the basic mapping
scheme as long as an adcquate source level transformation of the program block is
performed. Thus we have illustrated how the transformation technique of introducing
companion pipeline can be combined with the basic code mapping scheme to
systematically gencrate efficient data flow graphs.

The reader may find it uscful to study the first few steps of the exccution as shown in
Figure 10.5 (a) ~ (c). Here for simplicity, we show only the tokens carrying element values

of the result array and the corresponding feedback values. In the configuration of Figure
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Figure 10.3. A maximally pipelined data flow graph for a FLR

10.5 (c), two alternate set of nodes (node 2,4) are fired, processing X3, X, at the same time.
The loop will continuously run in this maximally pipelined fashion, generating the element

values of the result array.
10.1.2 A second-order linear recurrence

Consider the fibonacci recurrence as a simple example of a second-order linear

recurrence.

X; = 1
Xy = 1
X=X+ X, i=34,.n (10.5)

Figure 10.7 shows a corresponding for-construct expression which computes (10.5). By

directly applying the basic mapping rules and optimization procedure to (10.5), we derive



Figure 10.4. The compainion pipeline in Figure 10.3

the data flow graph in Figure 10.6. Note how the two terms x[i-1], x[i-2] of the recurrences

are handled naturally by our mapping scheme.

We observe that the loop consisting of node 2-5 has a length of five, and hence has

the capacity to process more than two elements of the array at the same time. In order to
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Figure 10.5. Pipelined execution of FLR -- the first few steps
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\ 4

Figure 10.6. A data flow graph for the fibonacci recurrence

for ifrom]ton
1 from array_cmpty

construct
let xl =1,
x2 =1
in
ifi = 1thenxl
elseifi = 2 then x2
else
Ii-1] + '1Ti-2]
endif
endlet
cndfor

Figure 10.7. A for-construct expression for (10.5)

achieve maximum pipelining, the recurrence constraints of (10.5) should be relaxed by the

following transformation:

xl=1
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Xy =1
Xy = X + X,
X, = 2, + X, i =4,5,..n (10.0)

Figurc 10.8 shows a for-construct cxpression which computes the transformed fibonacci
recurrence according to (10.6). Obviously, it is a primitive for-construct cxpression. Figure
10.9 shows the data flow graph derived by the application of the basic mapping rules and
optimization procedures to (10.6). Two FIFOs of total size 3 are placed on the path leading
X;.3 to the ADD actor: the FIFO of size 2 is for the skewing introduced by the optimization
procedure, and the FIFO of size 1is for the balancing purposcs.

It is casy to sce that the loop in Figure 10.9 can compute the recurrence in a

maximally pipclined fashion. Figure 10.10 (a) - (¢) illustrates the first few steps of the

for ifromlton
T from array_cmpty

construct
et x1 =1,
x2 =1,
x3 = xi+x2
in
ifi = 1 thenxl
clscif i = 2 then x2
elscif i = 3 then x3
else
2¥1Ti-2] + 17i-3]
endif
endlet
endfor

Figure 10.8. The fibonacci recurrence after transformation
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Figure 10.9. The data flow graph for the transformed fibonacci recurrence

computation. Note that the loop in Figure 10.10 (c) can concurrently compute x[4] and x[5]

respectively, keeping the loop running at its maximally pipelined rate.
10.1.3 A Discussion

" In a large numerical computation program, a lincar recurrence may be only part of
the whole program. Therefore some input vectors, such as a,,b;, may be arrays generated
by some preceding code blocks in a maximally pipelined fashion. The result of the
recurrence itself may become an input vector for some succeeding computation which may
also consume the values in a pipelined fashion. In such cases it may be very inefficient, in
terms of space and time, to wait for entire input vectors to be computed before starting the
parallel evaluation of the recurrence, as required by the cyclic_reduction method for solving
linear recurrences [54,87]. In contrast, our scheme evaluates the recurrence in a pipelined
fashion, consuming the input and producing the output concurrently. This not only saves
the space that would be needed to hold the intermediate result values, but also eliminates
substantial data rearrangement overhead. It sustains a relatively constant parallelism

during program execution. Furthermore, the machine code size is much smaller and
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Figure 10.10. Pipelined execution of the transformed fibonacci recurrence
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henee more cfficient in terms of memory usage.

Finally, note how our mapping scheme handles feedback array references such as
Mi-1], ‘1i-2).... where T is the internal name of the array being produced. Our optimization
" procedure removes these array operations just as it does for any other array sclection
operations.

Based on the above techniques, a maximally pipelined solution scheme for
tridiagonal lincar equation systems has been studied by the author and the results are

reported in [48,49,50).

10.2 Enhancing Pipelining by Loop Unfolding and Interchanging

10.2.1 Loop Unfolding

An important transformation that sometimes can be successfully applied to
optimization is the so-called loop unfolding technique. It is essentially a way to "unfold”

an iteration into multiple copics of the iteration body. Let us consider the following simple

for-construct expression

X =
for
ifrom1ton
T from array_empty
construct
let x1 = Rx0,A[1]) % x0 is constant
in
ifi = 1thenxl1
else
(TTi-1LA{iD
endifl
endlet
endfor

where f denotes the function computed by some expression. Without loss of generality, we
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assume the loop has only onc input array A, The simplest unfolding of the above

expression is shown below where the Tunction [is duplicated.

X =
for
ifromlton
T from array_cmpty
construct
let x1 = [(x0,A[1]),
x2 = (xLA[2))

in
ifi = 1then x1
elseif i = 2 then x2
else

[CTG-2LALi- 1D.ALD

endif

endlet

cidfor

Loop unfolding is a technique frequently used in compilers for conventional
computers, where the main goal is to reduce the overhead of loop control, i.c., termination
test and cxit mechanisms.

Loop unfolding can also be applied to perform optimization for data flow computers.
Figure 10.11 (a) and (b) illustrates the effects of unfolding on the above example.! The
data dependencies between different copies of f may often only appcar on a so-called
"critical path” encompassing a small part of thc computation. Therefore, the execution of a
considerable part of the data flow graph in different copies can overlap. This type of
application has been extensively studied in [6], where loop unfolding is combined with
other techniques such as array interlacing to perform code optimization.

In this thesis, we are interested in the loop unfolding technique for a different reason

1. ‘The figure is not a complete data flow graph We have omitted the initialization part and the part which
merges the clement valucs into the result array.
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Figure 10.11. Loop unfolding

i.c. to exploit parallelism in terms of efficient pipelining. Assume that the loop in the
abo:/c cxample is completely unwound as shown in Figurc 10.12, where we omit the part of
the graph which handles initial values. Since the cycle is completely removed from the
graph, the bottleneck for pipelining is removed. Note, however, that if the expression is
only evaluated once, the parallelism provided by the unfolding may not be fully utilized to
enhance pipelining. Recall that unfolding the loop does not reduce its critical length.
However, by complete unfolding of the loop, the graph becomes acyclic. Thus, it
provides the opportunity for pipelined execution of the graph by different evaluations of
the same loop, each being initiated by a separate input vector, e.g. A;, A,,...A_, as shown
in Figure 10.13. Here we consider the above completely unfolded graph as a
multi-input-multi-output pipeline, with each set of input values corresponding to one row

of a two-dimensional input array A, and each set of output values corresponding to one row
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Figure 10.12. A completely unfolded loop

of a two-dimensional result X. Since each graph of f is acyclic, the entire graph can be
maximally pipelined.

The above example shows that loop unfolding can be a very useful transformation
technique in the pipelined mapping of a for-construct expression. It can be applied
whether or not the corresponding recurrence has a companion function.

In Section 10.2.3, we present an example that illustrates how the unfolding technique

can be successfully combined with other optimization techniques.
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Figure 10.13. Maximum pipelining of a completely unfolded loop

10.2.2 Interchanging the Order of the Innermost Loop

Let us consider the following nested mixed expression :
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forall i in [1,m])
construct
for jformlton
T from array_cmpty
construct
(A, T,i)
endlor
endali

The outer expression is a forall cxpression with index range [l,m], while the inner
expression is a for-construct cxpression. The code block constructs a two-dimensional
array X with m rows where no data dependencies exist between clements of different rows.
Thercfore we can rearrange the computation such that the array is computed in a
column-by-column fashion. This can be achicved by interchanging the order of the outer

and inner expression as follows:

X =
for jlromlton
T from array_empty
construct
forall i in [1,m]
construct
(A, T,i,j)
endalil
endfor

After the transformation the forall expression becomes the innermost expression, and we

can generate a pipelined data flow graph using the basic code mapping scheme.
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10.2.3 A Matrix Multiplication Example

Matrix multiplication provides an inicrcsting example of the different ways in which
data flow graphs can be organized and structured to best exploit parallelism in terms of
pipclining. In this section we study a special case of vector multiplication and illustrate
how loop unfolding and interchange can be combined in a pipelined solution. This
requires the application of both the basic mapping scheme and some special optimization
techniques.

The matrix-vector multiplication problem can be expressed as follows:

(— ]
X | yl
- -
a, — — — dl | 1
p
| ' l |
| ‘ I |
| | x | | = | (10.7)
| | I |
| | | |
| I
L4 1 T amp"’
m
‘ B X o L Ym_J
or in matrix-vector notation:
Ax =y (10.8)

where A is an mXp matrix, and x,y, are vectors of size p and m respectively.
The matrix-vector multiplication can be computed by forming the inner product of

each row of A with the vector y, as specified by the expression below.
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Y =
forall iin[1,m]
construct
fork from1top
T from array_emply

construct
il k = 1 then A[i,k]*X[k]
else
Al k1*X[k] + 'TTk-1]
endif
endfor
endall

In this nested mixed forall expression, the body cxpression is a for-construct expression
which computes one vector-vector inner product as an clement for the result array y. Note

that the last column of Y is the result vector.!
We can intcrchange the order of the outer and inner expressions: the program after

the loop interchange transformation is shown below.

YT =
for kfromltop
T from array_empty
construct
forall i in [1,m]
construct '
il k = 1 then Afi,k]*X[k]
else
Alik]*X[k] + TIk-1,i]
endif
endall
endfor

The inner forall expression can be mapped by the basic mapping scheme. It computes the

1. For convenicnce, we usc for-construct as the inner loop expression which makes Y (so is Y'I' below)
appeared to be a two-dimensional array. In practice, a for-iter cxpression may be used and the same principle

can be applicd for its mapping.
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m ¢lements of one row of YT in parallel, where an clement Y'ITk.i] is the kth partial sum off
the inner product for the i-th row of A and the vector X. Thus, the p-th row of Y'I' is the
result vector y. After the loop interchange, the result array is transposed. ‘The inner forall
expression can still be mapped using the basic mapping scheme, as can the outer
for-construct expression. However, care should be taken that the elements of A arc used
one column at a time in pipelined fashion by the inncer forall expression. For convenience,
we can also directly use the transposed array AT for A in the interchanged program, as

illustrated below.

YT =
for kfromltop
T from array_empty
construct
forall i in [1,m]
.. construct
if k = 1 then ATTk,i1*X[k]
else
ATLk,i]*X[K] + T[k-1,i]
endif
endall
endfor

Now let us completely unfold the outer loop. This can be done according to the
principles outlined in Section 10.2.1. The result graph of the mapping is shown in Figure
10.14, with each dashed-line box being one copy of the unfo[ded body expression. For the
purpose of uniformity, the first copy also includes an addition actor with the constant zero

as one of its opcrands. Note that the entire graph is acyclic and is maximally pipelined.
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Figure 10.14. Matrix-vector muitiplication by loop interchanging and unfolding
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10.3 Multiple Pipelines

L.ct us reconsider the nested mixed expression at the beginning of Scction 10.2.2. If
the index limits of the outer forall expression are known, we can gencrate m copices of the
graphs for the body expression (the inner loop), one for each index i, and let them run in
parallel. This mapping scheme is illustrated in Figure 10.15. Each box labeled f in the
diagram denotes a graph for an innermost for-construct expression corresponding to a
particular index i, generated by the basic mapping scheme. Therefore, each box will
computc one row of the two-dimensional array x in a pipclined fashion. Using multiple
pipelines will increase the parallelism by m fold. Thus, in cases where the graph of an
innermost for-construct expression consists of a loop with a long critical length, the

multiplc pipelined solution should be favorably considered.

A
£ » X[1]
1 -
£ » X[21]
2 l
l I [
l l |
! l |
l > |
f | 4 X[“]
0 R

Figure 10.15. A mutiple pipelined mapping scheme
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To assemble x[1], x[2]....x[m] coming out of the multiple pipelines into one result
array, an cxtra subgraph may be needed. The structure and function of such a subgraph

depend on how the result array is to be expressed and usced by the succeeding code blocks.
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1. Considerations in Program Structure, Compilation and Machine Design

In this chapter we address certain issues in program structure, compilation techniques
and machine design which arc important for the efficient support of pipelining on static
data flow computers. In Scctions 10.1 and 10.2, we outline interesting and challenging
problems in program structure analysis as future rescarch topics. In Scection 10.3, we
discuss bricfly some pragmatic aspects in compiler design for data flow computers,
presenting an outline of a compiler structure in which the pipelined code mapping scheme
can be incorporated. In Scction 10.4 o 10.6, we discuss certain issucs in machine
architecture design. Of course, a comprehensive discussion of data flow computer design is
beyond the scope of this thesis. We will concentrate on a few points in the instruction set

design that directly relate to our pipelined code mapping scheme.
11.1 An Ovcerview of Program Structure Analysis

To make effective use of the pipelined code mapping scheme developed in this thesis,
a compiler needs information concerning overall program structure as well as the structure
of cach code block. A coherent code mapping stratcgy will produce a machine code
structure that will fully and cfficiently utilize the computation powcer of the machine.

In terms of pipelined code mapping strategy, we assume that the structure of the
source program is expressed by a program block graph (PBG). A program block graph can
be considered as a digraph where a node denotes a program block which defines a new
array from some input arrays generated by other nodes. The directed arcs, usually labeled,
denote array dependencies, i.e., an arc with label x directed from node C1 to node C2
denotes the fact that an array X defined by Cl is referenced by C2. The array X is called
the input array of C2, and the output array of C1. The structure of a code block is specified
as a PIPVAL array creation expression, and we are mainly interested in the few types of

code blocks defined in Chapter 4. There are some attributes associated with each code
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block in the PBG which are used to specify certain information regarding both the
structure of the block itscll and the nature of its input/output links. ‘This becomes very
valuable in making dccisions about the mapping strategy for cach individual block.

The major portion of this thesis is devoted to the development of the basic pipelined
mapping schemes for the code blocks. The precise notations of the PBG and the set of
attributes, arc not our major concern. We assume, that a compiler will appropriately
analyze the user program and generate a PBG together with specifications of the code
blocks.

In terms of the PBG and PIPVAL representation, a program structure analysis should

concern with the following:

1. ‘The mapping strategy of cach code block in the PBG: should it be mapped directly
by the basic pipclined mapping scheme or restructured for optimization (for
example the optimization surveyed in Chapter 10)? what optimization techniques
would be appropriate, in terms of the time/space tradcoff?

2. The suitable form of the result array produced by a codc block: should its
representation be flattened — pipelined, parallel or mixed Nattened? what is the
prefcrable generation order when pipelined?

3. The suitable form of a link between a pair of nodes in the PBG: Should it be
implemented without using array memory? Should it be implemented through
FIFOs, and if so, what is the proper size and structure of the FIFOs?

4. A projection of the computational resources nceded for code blocks and links in the

PBG.

In order to perform a program structure analysis specific information for each code
block is needed. We have already conducted extensive analysis of the relation between
code mapping schemes and the structure of a code block. Now we summarize the key

attributes associated with a code block:
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1. ‘The type of the code block: Is it a forall, a for-construct or 4 mixed code block? If
one ol the first two types, is it primitive? 110 mixed, is the innermost one primitive?

2. 'The features of a code block: including the number ol its levels and the sclection
order of cach input array; Is the body of cach level in standard case-1 form? Does
the code block have a consistent order for cach input array? If so, how docs the
order relate to the major generation order for the result array of the code block?

3. ‘The parameters of array index ranges: what are the index limits and the subrange
limits of index range-partitioning conditional expressions at cach level (if
applicable)?

4. 'The computation size of a code block in terms of the number of scalar and array
operations: How many of iterations occur in a for-iter expression? The fraction of

times cach arm of the conditional cxpression will be evaluated.

The global structure of a program is essentially embedded in the PBG. It is
important to consider whether the PBG is acyclic and whether the arrays generated by the
code blocks have compile-time computable sizes.

If the program itsclf docs not provide all the nccessary information, the compiler
should allow the user to provide information through an appropriate channel. Successful
implementation of a pipelined code mapping scheme relies heavily on available
information and program structure analysis based on such information.

In addition to the above information, knowledge about machine architecture is also
important in deriving a pipelined mapping strategy from the program structure analysis. [t

is beyond the scope of this thesis to discuss this in detail.
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11.2 Considerations in Analyzing a Certain Class of Programs

In the last section, we outlined the general objectives of program structure analysis
and indicated the information necessary to support such analysis. Recall that our pipelined
code mapping schemes are designed to work most effectively for a certain class of
programs. In this scction, the issues of program structure analysis for this class of programs
are studicd.

We start with discussion ol a class of programs with very simple structure, a class that
includes the computationally intensive parts of certain numerical application programs.
We then extend this class in several ways, and predict what impact these extensions will
have. Our goal is o list the issucs and problems which must be considered and solved in
such analysis, and o predict possible good solutions. Formulation of cffcctive solutions (o
these problems is beyond the scope ol this thesis.

We have observed that the computationally intensive part of a scicentific numerical
program Ib usually formed by onc or a few clusters of acyclic connected code blocks.
Within the same cluster, the arrays produced by all code blocks have the same dimension
and size. Such a cluster of blocks often makes up most of the body of some outer loop
[31,35]. For the purpose of this discussion, however, we concentrate on thc acyclic part of
_the PBG. This restriction considerably simplifics the problem, yct still covers the most
intercsting portion of the computation. The conclusions derived from our study can be
very useful in the analysis of the entirc PBG, with outermost loops included.

We further assume that: (1) all arrays have compile-time manifest constants as their
index limits; and (2) each code block has consistent selection orders for each of its input
arrays. The above assumptions are typically met by the kernel code of the several

benchmark numerical applications studied by the Computational Structures Group at

MIT.
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11.2.1 A Cluster consisting entirely of Primitive forall Blocks

The simplest sitwation, when all code blocks in a PBG are primitive forall

expressions, is shown in Figure 111 (a). In this cluster of 5 code blocks (labeled C1 - CS5),

cach node denotes a forall expression.,

In order to study the issues related to the gencration and selection orders for array

values, we adopt the following notation, If the result array of a code block is generated in
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Figure 11.1. An acyclic code block cluster -- example |
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major normal generation order, a " -+ " sign, enclosed by a circle, is placed inside the box of
the code block. A plain " 4" sign placed next to an input port in the box of a code block
denotes the fact the selection order of the corresponding input array is in major normal

order. A similar role is played by the "-" sign except that it denotes a major reverse order.

1. Situation |

Figure 11.1 (b) shows the use of above notation in Figure 11.1 (a), where the sclection
orders of cach input array of a code block are all consistent with the generation order of the
result array of the block. This is the first and simplest situation o be considered. 1L is casy
to see that, with the assignment of the potential generation orders indicated in the figure,
all arrays are consumed in the samce order in which they were gencerated. Thus, there is no
need Lo store the arrays in array memory. In fact, our pipelined code mapping rules and
the optimization procedures can be applicd to gencrate a data flow graph for each code
block in which all array operations are replaced by ordinary graph actors.

Since in this example all code blocks are primitive forall expressions, the entire code
consists of an acyclic data flow graph with ordinary graph actors. Thus, it can be
transformed into maximally pipclined data flow graphs. FIFOs are often needed on the

arcs linking code blocks, and their sizes can be computed using balancing techniques.

2. Situation 2

Figure 11.2 (a) illustrates a situation where the sclection orders of an input array of a
code block may be different from its generation order. In particular, this happens to both
input arrays of code block C3, while it only happens to one input array of C4. Obviously,
with the assigned generation orders, three internal arrays have to be stored in array
memory as indicated by the "//" signs on the corresponding arcs.

Some improvements can be achieved by proper adjustment of the generation order of

code blocks C3 and C4, as shown in Figure 11.2 (b). As a result, one internal array must be
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stored in the memory before it can be used.
11.2.2 Some Nodes are Primitive for-construct Expressions

Now we extend the above class of programs such that some nodes may be primitive
for-construct expressions. In this situation each for-construct cxpression demands a certain
generation order for its result array, and thus also a certain selection order for its input

arrays. Such order is usually determined by the data dependencies among the elements of
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et us consider the example of a PBG shown in Figure 11.3 (a). 1t is similar to

Figure 11.2 (@) except that C4 is a for-construct expression, specially marked by an "*",

Given a similar initial assignment of generation orders, there are three internal arrays

which must be stored in memory. However, since the gencration order off C4 is lixed, we

can only adjust C3. ‘The result is shown in Figure 11.3 (b), where two internal arrays need

(o be stored in memory.
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An ideal situation exists when the assignment of gencration orders (o the code blocks
is such that all arrays are generated and consumed in the same order.  In such a situation,
all array actors can be removed and the entire graph can run in a pipelined fashion without
usc of any array operations. However it still may not be possible to run the graph in a
maximally pipelined lashion due to the cycles introduced in the subgraphs of for-construct

expressions,
11.2.3 Remarks

The structure ol the class of source programs discussed in this section is quite simple;
henee an efficient algorithmic approach to perform the above analysis secems quite possible,
Whilc it is beyond the scope of this thesis to develop the algorithms, such work would
make an interesting topic for future rescarch,

Further extensions of this class of programs might cover the following situations: ¢
PBG with nodes which may have inconsistent sclection orders for one of its input arrays;
index limits of arrays which arc not the same for different code blocks; and an
acyclic-connected code block cluster which is enclosed by an outer loop.

Finally, it is interesting to incorporate the special optimization techniques discussed
in Chapter 10. These techniques often become important when, after the basic mapping
* scheme is applicd, there exist particular code blocks — usually with for-construct
expressions as their innermost expression — where the long critical path in their innermost

loops seriously degradcs the pipelined performance of the entire graph.

11.3 Pragmatic Aspects of Compiler Construction

A primary goal of studying the code mapping scheme is to form a basis on which an
effective program transforming compiler can be built. In this section, we briefly address
some pragmatic aspects of compiler design for data flow computers. The successful

construction of a compiler is a complicated process which involves many different
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disciplines. For our purpose, we only discuss a few issues which are important for the
implementation of the pipelined code mapping strategy developed in this thesis, We
assume that the readers are familiar with the structure of compilers for a conventional
computer. Our focus is to outline the important differences which must be made when a
data Now compiler is constructed.

In a conventional optimizing compiler for sequential machine, a great deal of
optimization cffort is spent on local optimization, such as strength reduction, common
subexpression climination, ctc. Another sort ol optimization is performed on scctions of
code, and is oflen concerned with speeding up loops. A typical loop improvement is /oop
invariant motion and code avoidance. For cxample, loop invariant movement is L0 move ¢
-computation that produces the same result cach time around the loop to a point in the
program (often before the entry of the loop) so that it is computed only once. Usually such
optimization will improve the speed of the code and reduce its size. These optimizations,
although they involve control and data flow analysis ol loops, do not address the issuc of
producing the overall machine code structure that best cxploits the parallelism in the
program.

| Most vectorizing compilers for pipclined vector processors perform sophisticated
parallelism dctection on user programs. The optimization is focused on the maximal
vectorization of each (nested) loop. As outlined in the introduction of this thesis, after the
parallelism for each loop is dctected, the vectorizing compiler faces the problem of
mapping the vector operations onto the von Neumann architecture. The intermediate
languages and machine languages reflect the sequential nature of the machine architccture,
as well as the imperative model of computing [13]. Central to an imperative model of
computing is the concept of a state, which encompasses the program counter, the stored
values of registers and storage locations, etc. Two separate pieces of code may share the
same locations (variables) and it is difficult characterize parallel execution when several

independent loci of execution can have side-effects on each other. Therefore, global
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program transformation and optimization are more difficult because the imperative model
does not lend itsell o casy and clear Tunctional characterization. We have already
mentioned the difficulty of scheduling multiple vector operations on multiple hardware
pipelines. A compiler may need other sophisticated techniques to perform optimizations
between a group of vector operations as in vector chaining and vector register allocation.
Such optimization is still "local™ since it takes little consideration of the overall data Row
and load balancing based on global program structure,

A most important feature of a data flow compiler is it emphasizes the role of overall
program structure and the strategy of global optimization of machine code structure. ‘The
data Now compiler should include a stage where global program mapping and
transformation strategy are determined. More specifically, an important section of the
compiler should be devoted to the program structure analysis and the way o implement
the pipelined code mapping strategy.

A preliminary view of a data flow compiler is shown in Figure 11.4, The front end
performs conventional functions such as syntax analysis, static semantic checking, ctc.
Besides producing an intermediate form of the source program (which should retain
cnough structure information about the source program), it also gathers the information
about the program structure necded for the analysis and strategy decision processes.

The Analyze and Map modules are the core parts for program transformation and
optimization. A discussion of what may be done by the Analyze module is outlined in the
previous two sections of this chapter. The mapping schemes defined in Chapter 5-9 form
the foundation of the Map module. The optimization techniques for further exploiting
parallelism and improving performance of pipelining (such as those discussed in Chapter
10) should also be considered and applied in the Analyze and Map modules. The goal of
these two modules is to establish a proper mapping strategy for each component (code
block) of the program. The generated machine code should run with high throughput,

while achieving balanced utilization of computational resources. The later can only be
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Figure 11.4. The Structure of a Dataflow Compiler

achieved if certain machine parameters are provided to the compiler, which we will not
explore in detail.

We should note that the structural description of the source program may not contain
all information required for carrying out the necessary analysis. The compiler should allow
an intcraction channel be established such that the user may supply some additional
information, as illustrated in Figure 11.4. Interactive techniqnles have also becn adopted to
vectorizing compilers for conventional machines [80]

Some conventional optimization techniques can also be applied in dataflow
compilers. For example, optimization techniques similar to common subexpression

elimination, constant folding, dead code avoidance, and loop invariant motion should be
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considered and implemented in the Analyze and Map modules. ‘The detailed form of such
optimization techniques and their position in the modules are beyond the scope of this
thesis.

The Analyze and Map modules will produce data flow graphs with basic structure
very much like that of the final machine code. ‘These may be processed by another phase
of the compiler — Codegen, which will perform some machine dependent oplimization

and final code generation.
11.4 Considerations in Instruction Set Design

11.4.1 Instructions for Conditionals

In the discussion of a mulli-armed conditional expression, we have introduced two
graph actors, MB and MM, which Icad 0 a cleancr representation of the corresponding
mapping rule. They become very helpful in the formulation of the mapping rules for array
construction cxpressions, the body of which often consists of such a multi-armed
conditional expression.

Lct us reconsider the data flow graph in Figure 6.10 and Figure 6.11 for the function
of MB and its internal structure (sec Scction 6.4). The core of MB is a B-gatc actor which
has one input for each test expression (except the last arm), and one boolean-valued output
for each arm as well. It also has an output for an encoded value which is to be connected to
the corresponding input of MM. The function of MM is to merge the results from the
multiple arms under the control of the encoded values from MB.

Of course, MB (mainly B-gate) and MM can be implemented by subgraphs of several
| graph actors. We propose, however, that the B-gate and MM actors are directly
implemented by graph actors which are supported by special machine instructions. It
appears that one difficulty may be the number of inputs and outputs for the two actors

depending on the number of arms. However, we are most interested in using them in the
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mapping of the range-partitioning expressions found in the body of array construction
expressions, The number of arms of such a conditional expression is a small constant (for
example less than 10) known at compile-time. ‘The machine instructions for a B-gate actor
should have the flexibility to allow a small number of operands. 1t should also include a
proper mechanism, such as some lield in the instruction representation, to allow a code
generator to set the desired numbers of operands. Since cach operand value of a B-gate
actor is of boolcan data type, it should not be difficult for an instruction to hold multiple
operands. The machine also should support the data type for the encoded values needed in
B-gate and MM actors.

Efficient implementation of the MB and MM actors may result from active rescarch
on a newly proposed static data flow architecture [37]. In the new architecture, the control
values and data values arc handled in separate processing units and no explicit T/F-gate
actors and merge actors are needed. Further discussion of architectural improvements is

beyond the scope of this thesis.
11.4.2 Control Value Sequences

In a result graph, after successfully applying optimization procedures, there are often
a considerable number of T-gate (F-gate) actors controlled by long boolean-value
' sequences. They are included to replace array SEL actors, and hence to reduce the number
of expensive memory operations. Therefore efficicnt implementation of the boolean
pipelines is important to the performance of the entire program.

A situation which is of particular interest to us is when the pattern of a boolean value
sequence is known at compile-time. This happens frequently in real applications. In such
a situation, a sequence of boolean values can be "generated” at compile-time, and be
packed such that little memory space is needed for storing them. The machine may include
a special instruction which can have a packed boolean vector as its operand and generate

the necessary control value sequence for the corresponding T-gate (F-gate). This can be
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donc locally to avoid the overhead of sending boolean values over long distances.

11.4.3 'The IGEN Instruction

The IGEN actor, a frequenty used graph actor throughout this thesis, acts as an
index generator which gencrates a sequence of index values within a specilic range. Its
function is specified by the subgraph shown in Figure 9.2 (sce Chapter 9). The subgraph
consists of a loop of four actors. We suggest that the machine instruction sct should
provide a single instruction to perform the function of the aBove IGEN subgraph. The

implementation details of such an instruction are beyond the scope of this thesis.
- 11.5 Considcerations in Machine Support of Array Opcrations

Although we are mainly focused on the class of programs where array operations can
be removed by the optimization procedures, the machine should also provide cfficient
support of array operations where they arc needed. In this section, we outlinc additional
graph transformation techniques which will assist achicving this goal and mention several

instruction set design issues.
11.5.1 Flattening of Arrays

The model of multi-dimensional arrays we use in presenting the basic mapping
schemes is the "vector of vector” model, and we have seen its advantages in presenting the
basic mapping rules. From the standpoint of machine implementation of array opcrations,
flattening multi-dimensional arrays is more convenient. An important benefit of flattening,
among others, is that no array valucs (descriptors) are stored in the array memory, hence
eliminating the associated overhead of manipulating them -- a painful job in an applicative

system.

An r-dimensional array selection operation is first mapped into a series of r SEL
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Figure 11.5. The flattening of an array -- a selection operation

actors using thc basic mapping scheme. Let us consider a mXn 2-dimensional array A.
The graph for A[ij] is shown in Figure 11.5 (a), where A[i,j] resides in the body of a 2-level
nested code block. When A is flattened in the so-called "last index varying most rapidly"
order, A[ij] becomes A[i*m+j], with A becoming a onc-dimensional array of mXn
clements. The results of flattening are shown in Figure 11.5 (b), where thc number of SEL
actors is reduced to one.

Next comes the problem of flattening the AGEN actors. Consider again a 2-level
nested array creation expressions with the index value names i, j, corresponding to the
level-1 and level-2 respectively. A direct application of the basic mapping rule will
generate two AGENSs in series as shown in Figure 11.6 (a). Recall from Chapter 9 that this
implies the use of two append actors. When the result array X is flattened, it becomes one

linear array of mXn elements. Hence, only one append actor is required, and the index
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value to the append should be adjusted as it is for the Nattening ol the selection operations,
‘I'his can be performed by combining the two AGENs, Figure 11.6 (b) shows a result of the
flattening where only one array append actor is used. Furthermore, the graph for
gencrating the result array is encapsulated as a scparate subgraph (on the right) which is
very similar to the structure of an AGEN subgraph in a Figure 9.2 (see Chapter 9). 'The
principle outlined uabove can also be ecasily cxtended to the flattening of a

multi-dimensional array.
11.5.2 Flattening And Pipelining

In this section we explore the power of array flattening by combining it with the
optimization techniques developed in this thesis.

|.et us consider a 2-dimensional primitive forall (for-construct) code block which has
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Figure 11.7. Using flattcned techniques for pipelining
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an input array A and a result array X, Assume that a structure analysis of the PBG has
determined that A and X must be stored in AM. I the code block has a considerable
number of array sclection operations we may still want to perform the optimization
procedure to remove the array selection operations. We also may want to remove the (wo
AGENs. The only change is that two additional subgraphs should be provided: one for
reading the sequence of clements of array A from the memory, and the other for
assembling the sequence of elements of the result array X and putting them in the memory.

The flattening techniques in the last scction can be extended to perform the functions
of the extra subgraphs described above. The approach is illustrated in Figure 11.7 (a) and
(b). The subgraph on the left is for accessing array A, and the subgraph on the right is for
asscmbling the clement values and storing them as the flattened result array X.

The advantage of combining the array flattening and the optimization techniqucs for
pipclining are obvious: it may reduce considerably the total number of array operations in
the graph, on top of the other benefits for both pipelining and flattening.

These input and output subgraphs for array flattcning are similar to the array
"unpacker” and "packer” in [6], but uscd for a different purpose. The target computer

shohld be able o support these operations efficiently.
- 11.5.3 Array Mcmory Management in a Target Machine

Supporting array operations in target computers always presents a tradeoff between
generality and efficiency considcrations. This is true both for conventional computers and
data flow computers. Memory mechanisms suitable for data flow computers have been
studied by researchers, and the generality/cfficiency tradeoffs have been addressed in [3],
and most recently in [6)].

For the purpose of this discussion, we are not interested in mechanisms for
supporting dynamic arrays in the general sense, i.e., arrays having dynamic bounds. In fact

we are mostly interested in static memory allocation for arrays.
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Through the program structure analysis outlined in the last chapter, the memory
usage of the arrays (in the class of programs we are intercested in) should be determined:
thus a static allocation would be a favored approach. We expect that most of the array
actors — SELs and appends — reside in standard subgraphs such as the array packers and
unpackers described carlier. Since the arrays are all fully flattened, the SEL and append
can be directly implcmcnicd by ordinary array memory indexed read/write operations.
The program should be partitioned such that each such packer/unpacker subgraph will be
accessing the array in some local AM module. Since the size of such an array is known at
compilc-iime, and remains constant during its cntire life, the AM memory modules do not
need to support the general dynamic allocation and management mechanisms.

If a nced docs occur, the locality and regularity of array operations in the
packer/unpacker subgraphs can be used to implement a memory management scheme with
certain dynamic features. For example, we can use a simplified reference count scheme to
manage the blocks of storage for arrays (as described in [6]). The key observation is that an
array is always generated by a packer subgraph and used by one or several unpacker
subgraphs known at compile-time. We use the number of unpackers as global reference
count for the array. Both the packer and the unpacker subgraphs are accessing the array in
a regular fashion and thus do not change the reference count while they are running. After
a packer is done, the array is generated and ready to be used, so the global reference count
is set accordingly. After an unpacker is done, the array A is no longer being used by the
corresponding code block, hence the reference count can be reduced by 1. Thus, instead of
adjusting the reference count each time an array reference is made (as in the conventional
reference count scheme), the global reference count is updated only when a packer or
unpacker subgraph is terminated. Of course, we may include extra data flow graphs for
each array to perform the reference counting. Each AM module should also support

- dynamic-allocations of memory blocks when an array token is generated. Since the block

size is known and remains constant, the memory management scheme should be much
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simpler than a general dynamic scheme,
‘There are also arrays which arc implemented through large FIFOs. These arrays may

also be stored in the array memory, and we discuss them in the next section.

11.6 FIFO Implemcntation

FIFOs are used extensively in the data flow graph of a code block or on links
beiween code blocks as required by balancing or array skewing. Therefore, efficient
support of FIFOs should be considered in the instruction set design for a static data flow
computer. The function of a FIFO with fixed size, known as a _fix-sized FIFO, is cquivalent
to a chain ot k identity actors. FIFOs may indeed be implementced by ID actors, but it is
quite expensive, in particular for long FIFOs. Data flow implementation of FIFOs has also
been studied and discussed carlier, for example, in [43,35].

We propose that the instruction set of a static data flow machine should provide
adequate mechanisms to directly implement the FIFO function. The instruction set may
include a dedicated FIFO instruction to support the fix-sized FIFO. For short FIFOs, the
memory space can be diiectly allocated in the program memory in the PE. If the operands
(data) are stored in a secparate mcmory, the FIFO may use the space in that memory as well.
For long FIFOs used between code blocks, we should consider employing array memory as
the primary FIFO storage space. In such cascs, a FIFO usually uses blocks of storage —
for example one or several rows of an array. Such a scheme was described in [43].

The flexible-sized FIFO is more or less like a ring buffer in the conventional
computer. As long as a size limit is known (the case we are interested in), there should be
no difficulty in implementing such a FIFO. For reasons of efficiency, both the PE and the
AM modules should provide mechanisms which can efficiently manage the FIFO storage

when executing a flexible-sized FIFO instruction. We leave the details of such mechanisms

to the designer of the target data flow computers.
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12. Conclutions
12.1 A Summary of the Thesis Work

We have developed a pipelined code mapping scheme which may produce machine
code structure such that the potential parallelism in the user programs may be effectively
cxploited by static data flow computers. Our code mapping scheme is particularly suitable
for a class of programs frequently found as the kernel of certain scientific numerical
application programs. Strong regularity of array opcrations is a major feature of such
programs.

.The functional language Val is our choice as a high level language to express user
programs. In particular, we define a subsct of Val — PIPVAL — to represent the source
“programs to be handled by the basic mapping rules. An important feature of PIPVAL is
that two array creation constructs are provided by the language to express the construction
of arrays — the forall and for-construct. Using these two constructs, array creation
operations with the desired regularity can be expressed without using Val array append
operations. Other array regularities arc also utilized by the code mapping scheme,
including the regularity in the form of array selection indexing scheme.

Pipelined code mapping schemes are developed for PIPVAL expressions. The focus
is on the mapping rules of array creation constructs, especially the primitive forall and
for-construct cxpressions. Optimization procedures are presented which can utilize the
regularity in array operations as found in these expressions and transform the data flow
graphs such that array operations may be effectively removed or replaced by ordinary
machine operations. In addition, certain related optimization techniques are discussed
which can be used together with the basic mapping scheme to improve the performance of
pipelining.

The code mapping scheme developed in the thesis is based on the power of a

_sufficiently large data flow computer which can effectivcly exploit the parallelism by means
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of the pipelined exccution of machine level data ow programs, Certain issues in the
architecture design, in particular the instruction design, which are important (o support

pipclining, arc addressed.
12.2 Suggestions for Future Rescarch Topics

We suggest the following rescarch topics which are important in extending the results
of this thesis. They include the arcas of language design issucs, mapping algorithm issucs,
and issues in compiler construction and machine design.

The generality of uscr programs which can be effectively fandled by pipelined code
mapping schemcs is one arca of substantial room for futur: rescarch interests. ‘The
optimization techniquces for array opcerations depend heavily on their regularities. In terms
of array sclection operations such as A[exp], what will be the impact if we allow exp to be a
more complicated expression than an affine function of the index values? In terms of array
construction expressions, what will be the effect if we relax the restriction that the bounds
of array must bc compile time constants? What changes should be made in the
optimization brocedurcs to handle such cases cfficiently? How about the situation when
the code block does not have a consistent selection order in terms of an input array?

In terms of compiler construction, a number of areas remain to be studied. As
indicated in Chapter 11, this includes the development of algorithms which can effectively
perform the allocz.ltion of the arrays which cannot be implemented simply by FIFO, so
array memory is needed. The solution should not only minimize the array memory storage
usage but also keep the locality as wcll as the simplicity of array accessing mechanisms.
. Although the emphasis should be placed on the kernel of the computation where regularity
usually makes the algorithm simple, the compilation scheme should also take into
consideration the complexity for other parts of the problems. For example, we may

consider the code blocks which do not belong to the several classes studied in the thesis, or

program block graphs which are not acyclic.
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As indicated in Chapter 10, there are other optimization techniques which can be
combined with the pipelined code mapping scheme to improve performance of the
resulting object code. How can they be incorporated adequately and effectively in a
"~ compiler? One suggestion is that the compiler should provide a tool for performance
estimation of the object program to be gencrated, thus a user may be prompted with some
statistics of how well the basic pipelined code mapping scheme will perform. If the result is
not satisfactory, he may direct the compiler to perform other transformations using
additional optimization techniques. Ideally, the user may also be informed of potential
bottleneck program modules. How hard is it to build such a performance analysis tool and
how accurate can the performance cstimation be? What machine and program parameters
will it need? What form of interface should exist between this tool and other parts of the
compiler? This is both an interesting and challenging task a compiler implemcntor must
face. '

Many architecture design issues should be further studied. An ideal static data flow
machine model was adopted for this thesis to provide a simplc and clean framework for
formal analysis. However, to apply the code mapping scheme successfully, we face
pragmatic and problematic issues in real data flow computers. First, parallelism of the
machine will have a strong impact on the balancing strategy for data flow programs. We
- should also consider the variation of execution time between instructions due to the fact
that they may perform different operations or due to the processing load fluctuation of the
machine and interconnection network. The author believes that the balancing and
optimization should achieve the ultimate goal of keeping the processors uscfully busy.
Therefore the above factors should certainly be considered in both the architecture design
as well as compiler implementation. Other issues in instruction set design and machine
architecture smipport, such as those that have been outlined in the previous chapter, should

be fully investigated.
While we assume that the machine should have enough parallelism to support high
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concurreney for the pipelined execution of data flow programs, no assumption is made
about how the code is to be partitioned and allocated to the processing clements. To what
extent does the locality of allocation will affect overall performance of programs? It is
difficult to cvaluate a solution strategy without understanding the nature of the
communication cost in terms of the interconnection nctwork architecture, the behavior of

the programs and the technology of the hardware modules. Much work remains to be done

in these arcas,
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