2,917 research outputs found

    Energy Disaggregation for Real-Time Building Flexibility Detection

    Get PDF
    Energy is a limited resource which has to be managed wisely, taking into account both supply-demand matching and capacity constraints in the distribution grid. One aspect of the smart energy management at the building level is given by the problem of real-time detection of flexible demand available. In this paper we propose the use of energy disaggregation techniques to perform this task. Firstly, we investigate the use of existing classification methods to perform energy disaggregation. A comparison is performed between four classifiers, namely Naive Bayes, k-Nearest Neighbors, Support Vector Machine and AdaBoost. Secondly, we propose the use of Restricted Boltzmann Machine to automatically perform feature extraction. The extracted features are then used as inputs to the four classifiers and consequently shown to improve their accuracy. The efficiency of our approach is demonstrated on a real database consisting of detailed appliance-level measurements with high temporal resolution, which has been used for energy disaggregation in previous studies, namely the REDD. The results show robustness and good generalization capabilities to newly presented buildings with at least 96% accuracy.Comment: To appear in IEEE PES General Meeting, 2016, Boston, US

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS

    Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation

    Get PDF
    In this paper we evaluate several well-known and widely used machine learning algorithms for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest algorithms were evaluated across five datasets using seven different sets of statistical and electrical features. The experimental results demonstrated the importance of selecting both appropriate features and regression algorithms. Analysis on device level showed that linear devices can be disaggregated using statistical features, while for non-linear devices the use of electrical features significantly improves the disaggregation accuracy, as non-linear appliances have non-sinusoidal current draw and thus cannot be well parametrized only by their active power consumption. The best performance in terms of energy disaggregation accuracy was achieved by the Random Forest regression algorithm.Peer reviewedFinal Published versio

    Robust energy disaggregation using appliance-specific temporal contextual information

    Get PDF
    An extension of the baseline non-intrusive load monitoring approach for energy disaggregation using temporal contextual information is presented in this paper. In detail, the proposed approach uses a two-stage disaggregation methodology with appliance-specific temporal contextual information in order to capture time-varying power consumption patterns in low-frequency datasets. The proposed methodology was evaluated using datasets of different sampling frequency, number and type of appliances. When employing appliance-specific temporal contextual information, an improvement of 1.5% up to 7.3% was observed. With the two-stage disaggregation architecture and using appliance-specific temporal contextual information, the overall energy disaggregation accuracy was further improved across all evaluated datasets with the maximum observed improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total energy disaggregation accuracy improvement equal to 10.0%.Peer reviewedFinal Published versio

    Energy Disaggregation Using Elastic Matching Algorithms

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio

    Evaluation of low-complexity supervised and unsupervised NILM methods and pre-processing for detection of multistate white goods

    Get PDF
    According to recent studies by the BBC and the Scottish Fire and Rescue Service, malfunctioning appliances, especially white goods, were responsible for almost 12,000 fires in Great Britain in just over 3 years, and almost everyday in 2019. The top three “offenders” are washing machines, tumble dryers and dishwashers, hence we will focus on these, generally challenging to disaggregate, appliances in this paper. The first step towards remotely assessing safety in the house, e.g., due to appliances not being switched off or appliance malfunction, is by detecting appliance state and consumption from the NILM result generated from smart meter data. While supervised NILM methods are expected to perform best on the house they were trained on, this is not necessarily the case with transfer learning on unseen houses; unsupervised NILM may be a better option. However, unsupervised methods in general tend to be affected by the noise in the form of unknown appliances, varying power levels and signatures. We evaluate the robustness of three well-performing (based on prior studies) low-complexity NILM algorithms in order to determine appliance state and consumption: Decision Tree and KNN (supervised) and DBSCAN (unsupervised), as well as different algorithms for preprocessing to mitigate the effect of noisy data. These are tested on two datasets with different levels of noise, namely REFIT and REDD datasets, resampled to 1 min resolution

    Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

    Full text link
    Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored

    Anomaly detection in quasi-periodic energy consumption data series: a comparison of algorithms

    Get PDF
    The diffusion of domotics solutions and of smart appliances and meters enables the monitoring of energy consumption at a very fine level and the development of forecasting and diagnostic applications. Anomaly detection (AD) in energy consumption data streams helps identify data points or intervals in which the behavior of an appliance deviates from normality and may prevent energy losses and break downs. Many statistical and learning approaches have been applied to the task, but the need remains of comparing their performances with data sets of different characteristics. This paper focuses on anomaly detection on quasi-periodic energy consumption data series and contrasts 12 statistical and machine learning algorithms tested in 144 different configurations on 3 data sets containing the power consumption signals of fridges. The assessment also evaluates the impact of the length of the series used for training and of the size of the sliding window employed to detect the anomalies. The generalization ability of the top five methods is also evaluated by applying them to an appliance different from that used for training. The results show that classical machine learning methods (Isolation Forest, One-Class SVM and Local Outlier Factor) outperform the best neural methods (GRU/LSTM autoencoder and multistep methods) and generalize better when applied to detect the anomalies of an appliance different from the one used for training

    Cloud computing: survey on energy efficiency

    Get PDF
    International audienceCloud computing is today’s most emphasized Information and Communications Technology (ICT) paradigm that is directly or indirectly used by almost every online user. However, such great significance comes with the support of a great infrastructure that includes large data centers comprising thousands of server units and other supporting equipment. Their share in power consumption generates between 1.1% and 1.5% of the total electricity use worldwide and is projected to rise even more. Such alarming numbers demand rethinking the energy efficiency of such infrastructures. However, before making any changes to infrastructure, an analysis of the current status is required. In this article, we perform a comprehensive analysis of an infrastructure supporting the cloud computing paradigm with regards to energy efficiency. First, we define a systematic approach for analyzing the energy efficiency of most important data center domains, including server and network equipment, as well as cloud management systems and appliances consisting of a software utilized by end users. Second, we utilize this approach for analyzing available scientific and industrial literature on state-of-the-art practices in data centers and their equipment. Finally, we extract existing challenges and highlight future research directions
    • …
    corecore