113 research outputs found

    Simultaneous Localization and Mapping (SLAM) for Autonomous Driving: Concept and Analysis

    Get PDF
    The Simultaneous Localization and Mapping (SLAM) technique has achieved astonishing progress over the last few decades and has generated considerable interest in the autonomous driving community. With its conceptual roots in navigation and mapping, SLAM outperforms some traditional positioning and localization techniques since it can support more reliable and robust localization, planning, and controlling to meet some key criteria for autonomous driving. In this study the authors first give an overview of the different SLAM implementation approaches and then discuss the applications of SLAM for autonomous driving with respect to different driving scenarios, vehicle system components and the characteristics of the SLAM approaches. The authors then discuss some challenging issues and current solutions when applying SLAM for autonomous driving. Some quantitative quality analysis means to evaluate the characteristics and performance of SLAM systems and to monitor the risk in SLAM estimation are reviewed. In addition, this study describes a real-world road test to demonstrate a multi-sensor-based modernized SLAM procedure for autonomous driving. The numerical results show that a high-precision 3D point cloud map can be generated by the SLAM procedure with the integration of Lidar and GNSS/INS. Online four–five cm accuracy localization solution can be achieved based on this pre-generated map and online Lidar scan matching with a tightly fused inertial system

    Benefits from a multi-receiver architecture for GNSS precise positioning

    Get PDF
    Precise positioning with a stand-alone GPS receiver or using differential corrections is known to be strongly degraded in an urban or sub-urban environment due to frequent signal masking, strong multipath effect, frequent cycle slips on carrier phase, etc. The objective of this Ph.D. thesis is to explore the possibility of achieving precise positioning with a low-cost architecture using multiple installed low-cost single-frequency receivers with known geometry whose one of them is RTK positioned w.r.t an external reference receiver. This setup is thought to enable vehicle attitude determination and RTK performance amelioration. In this thesis, we firstly proposed a method that includes an array of receivers with known geometry to enhance the performance of the RTK in different environments. Taking advantage of the attitude information and the known geometry of the installed array of receivers, the improvement of some internal steps of RTK w.r.t an external reference receiver can be achieved. The navigation module to be implemented in this work is an Extended Kalman Filter (EKF). The performance of a proposed two-receiver navigation architecture is then studied to quantify the improvements brought by the measurement redundancy. This concept is firstly tested on a simulator in order to validate the proposed algorithm and to give a reference result of our multi-receiver system’s performance. The pseudorange measurements and carrier phase measurements mathematical models are implemented in a realistic simulator. Different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array, the satellite constellation geometry, and the amplitude of the noise measurement, in order to determine the influence of the use of an array of receivers. The simulation results show that our multi-receiver RTK system w.r.t an external reference receiver is more robust to noise and degraded satellite geometry, in terms of ambiguity fixing rate, and gets a better position accuracy under the same conditions when compared with the single receiver system. Additionally, our method achieves a relatively accurate estimation of the attitude of the vehicle which provides additional information beyond the positioning. In order to optimize our processing, the correlation of the measurement errors affecting observations taken by our array of receivers has been determined. Then, the performance of our real-time single frequency cycle-slip detection and repair algorithm has been assessed. These two investigations yielded important information so as to tune our Kalman Filter. The results obtained from the simulation made us eager to use actual data to verify and improve our multi-receiver RTK and attitude system. Tests based on real data collected around Toulouse, France, are used to test the performance of the whole methodology, where different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array as well as the environmental conditions (open sky, suburban, and constrained urban environments). The thesis also tried to take advantage of a dual GNSS constellation, GPS and Galileo, to further strengthen the position solution and the reliable use of carrier phase measurements. The results show that our multi-receiver RTK system is more robust to degraded GNSS environments. Our experiments correlate favorably with our previous simulation results and further support the idea of using an array of receivers with known geometry to improve the RTK performance

    Trajectory determination and analysis in sports by satellite and inertial navigation

    Get PDF
    This research presents methods for performance analysis in sports through the integration of Global Positioning System (GPS) measurements with Inertial Navigation System (INS). The described approach focuses on strapdown inertial navigation using Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU). A simple inertial error model is proposed and its relevance is proven by comparison to reference data. The concept is then extended to a setup employing several MEMS-IMUs in parallel. The performance of the system is validated with experiments in skiing and motorcycling. The position accuracy achieved with the integrated system varies from decimeter level with dual-frequency differential GPS (DGPS) to 0.7 m for low-cost, single-frequency DGPS. Unlike the position, the velocity accuracy (0.2 m/s) and orientation accuracy (1 – 2 deg) are almost insensitive to the choice of the receiver hardware. The orientation performance, however, is improved by 30 – 50% when integrating four MEMS-IMUs in skew-redundant configuration. Later part of this research introduces a methodology for trajectory comparison. It is shown that trajectories based on dual-frequency GPS positions can be directly modeled and compared using cubic spline smoothing, while those derived from single-frequency DGPS require additional filtering and matching

    Avaliação e mitigação do efeito do multicaminho no posicionamento GNSS via smartphones

    Get PDF
    Orientadora: Prof.ª. Dr.ª. Claudia Pereira KruegerCoorientadores: Prof. Dr. Paulo Sergio de Oliveira Junior e Prof. Dr. Juan Francisco Reinoso GordoTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências da Terra, Programa de Pós-Graduação em Ciências Geodésicas. Defesa : Curitiba, 13/06/2023Inclui referênciasResumo: As informações provenientes do Sistema Global de Navegação por Satélite (GNSS) são amplamente utilizados nas atividades de engenharia, na investigação científica e nos diversos serviços baseados na localização (SBL), como a geolocalização, a navegação, a saúde, os transportes, os jogos de realidade aumentada, entre outros. O GNSS tem se popularizado nas últimas décadas em razão de dispositivos como smartphones, que constituem mais de 90% dos dispositivos equipados com um sensor GNSS. Atualmente, é possível obter informações GNSS brutas coletadas por sensores GNSS em smartphones compatíveis com o sistema operacional Android Nougat e superiores, como as mensagens que possibilitam o cálculo das pseudodistâncias, informações Doppler e observações da fase da onda portadora. A partir de determinadas técnicas de posicionamento, o GNSS pode fornecer coordenadas geodésicas de acurácia milimétrica, principalmente, após o pós-processamento dos dados e o ajustamento das observações. No entanto, é importante destacar que a qualidade do posicionamento está diretamente ligada a determinadas interferências, como multicaminho. Nos smartphones esse fenômeno é ainda mais acentuado devido à baixa qualidade da antena GNSS. Entre as ferramentas utilizadas para mitigar esse efeito, pode-se utilizar antenas modernas e materiais atenuadores. Nessa pesquisa foram avaliadas mais de 280 horas de dados coletados via o smartphone Xiaomi Mi 8, o qual possui um sensor GNSS de dupla frequência. Pela primeira vez a terceira versão do Atenuador do Efeito do Multicaminho (AEM) desenvolvido pelo Laboratório de Geodésia Espacial e Hidrografia (LAGEH), AEM-LAGEH 3, foi avaliado em aplicações móveis e, um protótipo denominado AEM-LAGEH Smart foi desenvolvido com design específico voltado ao uso com smartphones. Os resultados dessa pesquisa indicam que há alta correlação, de aproximadamente 93%, entre a acurácia posicional planimétrica e planialtimétrica e o multicaminho influente na onda portadora L1. Além disso, ambos os materiais atenuadores demonstraram ser efetivos na minimização deste efeito na onda portadora L1. Ainda, os resultados demonstram que a supressão do efeito do multicaminho na onda portadora L5 foi superior a L1 entre 73% e 83%. Por fim, além da relação smartphone-multicaminho, essa pesquisa apresenta indicações e cuidados necessários para obtenção de coordenadas geodésicas mais acuradas via smartphones.Abstract: The information from the Global Navigation Satellite System (GNSS) is widely used in engineering activities, scientific research, and various Location-Based Services (LBS), such as geolocation, navigation, healthcare, transportation, augmented reality games, among others. GNSS has become popular in recent decades due to devices such as smartphones, which constitute over 90% of devices equipped with a GNSS sensor. Currently, it is possible to obtain raw GNSS information collected by GNSS sensors on smartphones compatible with the Android Nougat operating system and above, such as messages that enable the calculation of pseudoranges, Doppler information, and carrier phase observables. Through certain positioning techniques, GNSS can provide geodetic coordinates with millimeter-level accuracy, especially after data post-processing and observation adjustment. However, it is important to note that the quality of positioning is directly linked to certain interferences, such as multipath. In smartphones, this phenomenon is even more pronounced due to the low quality of the GNSS antenna. Among the tools used to mitigate this effect, modern antennas and attenuating materials can be employed. In this research, over 280 hours of data collected via the Xiaomi Mi 8 smartphone, which has a dual-frequency GNSS sensor, were evaluated. For the first time, the third version of the Multipath Effect Attenuator (AEM) developed by the Laboratory of Space Geodesy and Hydrography (LAGEH), AEM-LAGEH 3, was evaluated in mobile applications, and a prototype called AEM-LAGEH Smart was developed with a specific design for use with smartphones. The results of this research indicate a high correlation, around 93%, between horizontal (2D) and spatial (3D) position quality and the multipath effect on the L1 carrier phase. In addition, both attenuating materials proved to be effective in minimizing this effect on the L1 carrier phase. Additionally, the results demonstrate that the suppression of the multipath effect on the L5 carrier phase was superior to the L1, ranging from 73% to 83%. Finally, in addition to the smartphone-multipath relationship, this research presents indications and necessary precautions for obtaining more accurate geodetic coordinates via smartphones

    Cooperation and Autonomy for UAV Swarms

    Get PDF
    In the last few years, the level of autonomy of mini- and micro-Unmanned Aerial Vehicles (UAVs) has increased thanks to the miniaturization of flight control systems and payloads, and the availability of computationally affordable algorithms for autonomous Guidance Navigation and Control (GNC). However, despite the technological evolution, operations conducted by a single micro-UAV still present limits in terms of performance, coverage and reliability. The scope of this thesis is to overcome single-UAV limits by developing new distributed GNC architectures and technologies where the cooperative nature of a UAV formation is exploited to obtain navigation information. Moreover, this thesis aims at increasing UAVs autonomy by developing a take-off and landing technique which permits to complete fully autonomous operations, also taking into account regulations and the required level of safety. Indeed, in addition to the typical performance limitations of micro-UAVs, this thesis takes into account also those applications where a multi-vehicle architecture can improve coverage and reliability, and allow real time data fusion. Furthermore, considering the low cost of micro-UAV systems with consumer grade avionics, having several UAVs can be more cost effective than equipping a single vehicle with high performance equipment. Among several research challenges to be addressed in order to design and operate a distributed system of vehicles working together for real time applications, this thesis focuses on the following topics regarding cooperation and autonomy: Improvement of UAV navigation performance: This research topic aims at improving the navigation performance of an UAV flying cooperatively with one or more UAVs, considering that the only integration of low cost inertial measurement units (IMUs), Global Navigation Satellite Systems (GNSS) and magnetometers allows real time stabilization and flight control but may not be suitable for applications requiring fine sensor pointing. The focus is set on outdoor environments and it is assumed that all vehicles of the formation are flying under nominal Global Positioning System (GPS) coverage, hence, the main navigation improvement is in terms of attitude estimation. In particular, the key concept is to exploit Differential GPS (DGPS) among vehicles and vision-based tracking to build a virtual additional navigation sensor whose information is then integrated within a sensor fusion algorithm based on an Extended Kalman Filter (EKF). Both numerical simulations and flight results show the potential of sub-degree angular accuracy. In particular, proper formation geometries, and even relatively small baselines, allow achieving a heading uncertainty that can approach 0.1°, which represents a very important result taking into account typical performance levels of IMUs onboard small UAVs. UAV navigation in GPS challenging environments: This research topic aims at developing algorithms for improving navigation performance of UAVs flying in GPS-challenging environments (e.g. natural or urban canyons, or mixed outdoor-indoor settings), where GPS measurements can be unavailable and/or unreliable. These algorithms exploit aiding measurements from one or more cooperative UAVs flying under nominal GPS coverage and are based on the concepts of relative sensing and information sharing. The developed sensor fusion architecture is based on a tightly coupled EKF that integrates measurements from onboard inertial sensors and magnetometers, the available GPS pseudoranges, position information from cooperative UAVs, and line-of-sight information derived by visual sensors. In addition, if available, measurements coming from a monocular pose estimation algorithm can be integrated within the developed EKF in order to counteract the position error drift. Results show that aiding measurements from a single cooperative UAV do not allow eliminating position error drift. However, combining this approach with a standalone visual-SLAM, integrating valid pseudoranges in the tightly coupled filtering structure, or exploiting ad hoc commanded motion of the cooperative vehicle under GPS coverage drastically reduces the position error drift keeping meter-level positioning accuracy also in absence of reliable GPS observables. Autonomous take-off and landing: This research activity, conducted during a 6 month Academic Guest period at ETH Zürich, focuses on increasing reliability, versatility and flight time of UAVs, by developing an autonomous take-off and landing technique. Often, the landing phase is the most critical as it involves performing delicate maneuvers; e.g., landing on a station for recharging or on a ground carrier for transportation. These procedures are subject to constraints on time and space and must be robust to changes in environmental conditions. These problems are addressed in this thesis, where a guidance approach, based on the intrinsic Tau guidance theory, is integrated within the end-to-end software developed at ETH Zürich. This method has been validated both in simulations and through real platform experiments by using rotary-wing UAVs to land on static platforms. Results show that this method achieves smooth landings within 10 cm accuracy, with easily adjustable trajectory parameters

    Accurate navigation applied to landing maneuvers on mobile platforms for unmanned aerial vehicles

    Get PDF
    Drones are quickly developing worldwide and in Europe in particular. They represent the future of a high percentage of operations that are currently carried out by manned aviation or satellites. Compared to fixed-wing UAVs, rotary wing UAVs have as advantages the hovering, agile maneuvering and vertical take-off and landing capabilities, so that they are currently the most used aerial robotic platforms. In operations from ships and boats, the final approach and the landing maneuver are the phases of the operation that involves a higher risk and where it is required a higher level of precision in the position and velocity estimation, along with a high level of robustness in the operation. In the framework of the EC-SAFEMOBIL and the REAL projects, this thesis is devoted to the development of a guidance and navigation system that allows completing an autonomous mission from the take-off to the landing phase of a rotary-wing UAV (RUAV). More specifically, this thesis is focused on the development of new strategies and algorithms that provide sufficiently accurate motion estimation during the autonomous landing on mobile platforms without using the GNSS constellations. In one hand, for the phases of the flights where it is not required a centimetric accuracy solution, here it is proposed a new navigation approach that extends the current estimation techniques by using the EGNOS integrity information in the sensor fusion filter. This approach allows improving the accuracy of the estimation solution and the safety of the overall system, and also helps the remote pilot to have a more complete awareness of the operation status while flying the UAV In the other hand, for those flight phases where the accuracy is a critical factor in the safety of the operation, this thesis presents a precise navigation system that allows rotary-wing UAVs to approach and land safely on moving platforms, without using GNSS at any stage of the landing maneuver, and with a centimeter-level accuracy and high level of robustness. This system implements a novel concept where the relative position and velocity between the aerial vehicle and the landing platform can be calculated from a radio-beacon system installed in both the UAV and the landing platform or through the angles of a cable that physically connects the UAV and the landing platform. The use of a cable also incorporates several extra benefits, like increasing the precision in the control of the UAV altitude. It also facilitates to center the UAV right on top of the expected landing position and increases the stability of the UAV just after contacting the landing platform. The proposed guidance and navigation systems have been implemented in an unmanned rotorcraft and a large number of tests have been carried out under different conditions for measuring the accuracy and the robustness of the proposed solution. Results showed that the developed system allows landing with centimeter accuracy by using only local sensors and that the UAV is able to follow a mobile landing platform in multiple trajectories at different velocities

    Robust GNSS Carrier Phase-based Position and Attitude Estimation Theory and Applications

    Get PDF
    Mención Internacional en el título de doctorNavigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: –code pseudorange, which is a measure of the time difference between the signal’s emission and reception at the satellite and receiver, respectively, scaled by the speed of light; –carrier phase pseudorange, which measures the beat of the carrier signal and the number of accumulated full carrier cycles. While code pseudoranges provides an unambiguous measure of the distance between satellites and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets, carrier phase measurements present a much higher precision, at the cost of being ambiguous by an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase observations which, in turn, lead to complicated estimation problems. This thesis deals with the estimation theory behind the provision of carrier phase-based precise navigation for vehicles traversing scenarios with harsh signal propagation conditions. Contributions to such a broad topic are made in three directions. First, the ultimate positioning performance is addressed, by proposing lower bounds on the signal processing realized at the receiver level and for the mixed real- and integer-valued problem related to carrier phase-based positioning. Second, multi-antenna configurations are considered for the computation of a vehicle’s orientation, introducing a new model for the joint position and attitude estimation problems and proposing new deterministic and recursive estimators based on Lie Theory. Finally, the framework of robust statistics is explored to propose new solutions to code- and carrier phase-based navigation, able to deal with outlying impulsive noises.La información de navegación es un elemental fundamental para el funcionamiento de sistemas de transporte inteligentes y plataformas robóticas. Entre las tecnologías existentes, los Sistemas Globales de Navegación por Satélite (GNSS) se han consolidado como la piedra angular para la navegación en exteriores, dando acceso a localización y sincronización temporal a una escala global, irrespectivamente de la condición meteorológica. GNSS es el término genérico que define una constelación de satélites que transmiten señales de radio, usadas primordinalmente para proporcionar información de distancia. Por lo tanto, la operatibilidad y funcionamiento de los futuros sistemas autónomos pende de nuestra capacidad para explotar GNSS y estimar soluciones de navegación robustas y precisas. Las señales GNSS permiten dos tipos de observaciones de alcance: –pseudorangos de código, que miden el tiempo transcurrido entre la emisión de las señales en los satélites y su acquisición en la tierra por parte de un receptor; –pseudorangos de fase de portadora, que miden la fase de la onda sinusoide que portan dichas señales y el número acumulado de ciclos completos. Los pseudorangos de código proporcionan una medida inequívoca de la distancia entre los satélites y el receptor, con una precisión de decímetros cuando no se tienen en cuenta los retrasos atmosféricos y los desfases del reloj. En contraposición, las observaciones de la portadora son super precisas, alcanzando el milímetro de exactidud, a expensas de ser ambiguas por un número entero y desconocido de ciclos. Por ende, el alcanzar la máxima precisión con GNSS queda condicionado al uso de las medidas de fase de la portadora, lo cual implica unos problemas de estimación de elevada complejidad. Esta tesis versa sobre la teoría de estimación relacionada con la provisión de navegación precisa basada en la fase de la portadora, especialmente para vehículos que transitan escenarios donde las señales no se propagan fácilmente, como es el caso de las ciudades. Para ello, primero se aborda la máxima efectividad del problema de localización, proponiendo cotas inferiores para el procesamiento de la señal en el receptor y para el problema de estimación mixto (es decir, cuando las incógnitas pertenecen al espacio de números reales y enteros). En segundo lugar, se consideran las configuraciones multiantena para el cálculo de la orientación de un vehículo, presentando un nuevo modelo para la estimación conjunta de posición y rumbo, y proponiendo estimadores deterministas y recursivos basados en la teoría de Lie. Por último, se explora el marco de la estadística robusta para proporcionar nuevas soluciones de navegación precisa, capaces de hacer frente a los ruidos atípicos.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Molina López.- Secretario: Giorgi Gabriele.- Vocal: Fabio Dovi
    corecore