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Abstract

In the last few years, the level of autonomy of mini- and micro-Unmanned Aerial

Vehicles (UAVs) has increased thanks to the miniaturization of flight control sys-

tems and payloads, and the availability of computationally affordable algorithms

for autonomous Guidance Navigation and Control (GNC). However, despite the

technological evolution, operations conducted by a single micro-UAV still present

limits in terms of performance, coverage and reliability.

The scope of this thesis is to overcome single-UAV limits by developing new

distributed GNC architectures and technologies where the cooperative nature of

a UAV formation is exploited to obtain navigation information. Moreover, this

thesis aims at increasing UAVs autonomy by developing a take-off and landing

technique which permits to complete fully autonomous operations, also taking

into account regulations and the required level of safety. Indeed, in addition to

the typical performance limitations of micro-UAVs, this thesis takes into account

also those applications where a multi-vehicle architecture can improve coverage

and reliability, and allow real time data fusion. Furthermore, considering the low

cost of micro-UAV systems with consumer grade avionics, having several UAVs

can be more cost effective than equipping a single vehicle with high performance

equipment.

Among several research challenges to be addressed in order to design and

operate a distributed system of vehicles working together for real time appli-

cations, this thesis focuses on the following topics regarding cooperation and

autonomy:

Improvement of UAV navigation performance This research topic aims

at improving the navigation performance of an UAV flying cooperatively

with one or more UAVs, considering that the only integration of low cost



inertial measurement units (IMUs), Global Navigation Satellite Systems

(GNSS) and magnetometers allows real time stabilization and flight control

but may not be suitable for applications requiring fine sensor pointing.

The focus is set on outdoor environments and it is assumed that all ve-

hicles of the formation are flying under nominal Global Positioning Sys-

tem (GPS) coverage, hence, the main navigation improvement is in terms

of attitude estimation. In particular, the key concept is to exploit Differ-

ential GPS (DGPS) among vehicles and vision-based tracking to build

a virtual additional navigation sensor whose information is then inte-

grated within a sensor fusion algorithm based on an Extended Kalman

Filter (EKF). Both numerical simulations and flight results show the po-

tential of sub-degree angular accuracy. In particular, proper formation

geometries, and even relatively small baselines, allow achieving a heading

uncertainty that can approach 0.1◦, which represents a very important re-

sult taking into account typical performance levels of IMUs onboard small

UAVs.

UAV navigation in GPS challenging environments This research topic

aims at developing algorithms for improving navigation performance of

UAVs flying in GPS-challenging environments (e.g. natural or urban

canyons, or mixed outdoor-indoor settings), where GPS measurements

can be unavailable and/or unreliable. These algorithms exploit aiding

measurements from one or more cooperative UAVs flying under nominal

GPS coverage and are based on the concepts of relative sensing and in-

formation sharing. The developed sensor fusion architecture is based on

a tightly coupled EKF that integrates measurements from onboard iner-

tial sensors and magnetometers, the available GPS pseudoranges, position

information from cooperative UAVs, and line-of-sight information derived

by visual sensors. In addition, if available, measurements coming from a



monocular pose estimation algorithm can be integrated within the devel-

oped EKF in order to counteract the position error drift. Results show

that aiding measurements from a single cooperative UAV do not allow

eliminating position error drift. However, combining this approach with

a standalone visual-SLAM, integrating valid pseudoranges in the tightly

coupled filtering structure, or exploiting ad hoc commanded motion of

the cooperative vehicle under GPS coverage drastically reduces the posi-

tion error drift keeping meter-level positioning accuracy also in absence of

reliable GPS observables.

Autonomous take-off and landing This research activity, conducted during

a 6 month Academic Guest period at ETH Zürich, focuses on increasing re-

liability, versatility and flight time of UAVs, by developing an autonomous

take-off and landing technique. Often, the landing phase is the most criti-

cal as it involves performing delicate maneuvers; e.g., landing on a station

for recharging or on a ground carrier for transportation. These procedures

are subject to constraints on time and space and must be robust to changes

in environmental conditions. These problems are addressed in this thesis,

where a guidance approach, based on the intrinsic Tau guidance theory, is

integrated within the end-to-end software developed at ETH Zürich. This

method has been validated both in simulations and through real plat-

form experiments by using rotary-wing UAVs to land on static platforms.

Results show that this method achieves smooth landings within 10 cm

accuracy, with easily adjustable trajectory parameters.
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Chapter 1

Introduction

In the last few years, miniaturization of Flight Control Units (FCUs) and pay-

loads, and the availability of computationally affordable algorithms for auton-

omous GNC, have contributed to an increasing interest in the development of

Unmanned Aerial Systems (UAS) [1, 2].

To give some numbers on the growth of the UAS market, in 2010, the Federal

Aviation Administration (FAA) estimated that 15,000 unmanned units would

have been employed by 2020 [3]. Surprisingly, with the introduction of the

rule for small UAV registration, up to now more than 750,000 UAVs have been

registered [4], demonstrating again the great interest behind this technology.

In general, there exist different UAS categories which can be classified on

the basis of operational characteristics and their capabilities [5]. One of the

adopted classification metric is the Maximum Take-Off Weight (MTOW), where

all systems weighing less than 5 kg are defined as micro-UAVs, whereas all UAS

with a weight up to 30 kg are labelled as Small- or Mini-UAVs [5]. Other

classification metrics are: the operational altitude; the maximum range; and the

level of autonomy [5].

Nowadays, Small- and micro-UAVs are widely used in military applications

and are playing a significant role in civil scenarios where great investments have
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been performed by international companies in order to adopt these systems for

commercial purposes such as small packet delivery, mixed indoor–outdoor oper-

ations, surveillance, relay of wireless data communications, support in the man-

agement of hazard and disasters, and monitoring of power lines and pipelines.

Indeed, such platforms have very peculiar capabilities, in fact they can work as

long as they get the necessary power, they do not suffer from fatigue and illness,

are typically smaller than a manned aircraft used in the same role, and usually

cheaper in first cost [6].

In some applications, UAVs are remotely piloted and their motion is bounded

to remain always within the pilot (certified) Visual Line-of-Sight (VLOS). Hence,

the pilot is always in control of the vehicle and limited autonomous capabilities

are required to the UAV. As a natural evolution, in the last years a great ef-

fort was generated by international companies and research centers to develop

fully autonomous UAVs. In this case, UAVs usually fly Beyond Visual Line-of-

Sight (BVLOS) and the path to be followed is decided a priori, hence a high

level of autonomy is required in order to react to unexpected events such as

possible collisions or changes in meteorological conditions.

In [7] ten different levels of autonomy are considered, each of which depends

on the required level of decision making, situational awareness and operational

capability demanded to the UAV. In general, a system is considered fully auton-

omous when, given mission goals, it is capable to accomplish them also facing

unforeseen events [1]. Furthermore, the system must monitor its health status

and take actions in case of failures. As a consequence, it is clear that UAS au-

tonomy and operational safety are strictly connected to the following functions

• Guidance Navigation and Control (GNC)

• Situational awareness and decision making capability

A definition of GNC systems can be found in [8]. In particular guidance nav-
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igation and control represent the processes of driving a UAV to achieve assigned

mission goals (guidance) by manipulating the inputs to the UAV dynamical

system to obtain a desired effect on its output (control), and monitoring its

movement from one place to another (navigation). For long range and autono-

mous operations it is usually necessary to rely on high-performance navigation

systems, where the integration of IMUs and GPSs [9] is usually augmented with

active or passive Electro-Optical (EO) sensors (e.g. RGB-D, cameras [10] and

Light Detection and Ranging (LIDAR)) and/or radars [11, 12].

A further important step to obtain autonomous systems is the situational

awareness and decision making capability of an UAV that must be able to detect

and identify failures, possible collisions and losses in communication link and

react to them. Collision avoidance is one of the most important requirements for

the introduction of UAVs into the civil airspace, this is the capability of a UAV

to detect static (e.g. ground, buildings) or moving (other vehicles) obstacles

and avoid them during the flight. In the last decade many researchers have

tackled this problem [13, 14, 15]. In more detail, collision avoidance can be

divided in cooperative and non-cooperative. In the first case, obstacles positions

are transmitted or known a priori and the avoidance maneuver is performed

accordingly, in the second case, obstacles positions are unknown and the collision

is avoided thanks to sensing systems usually based on active (lidars, radars)

and/or passive (cameras) sensors.

All these elements represent research gaps that must be further addressed.

1.1 Why cooperation?

In spite of a fast technological evolution, operations based on a single micro-

UAS still present limits in terms of performance, coverage and reliability. In

fact, there are various applications where real time coverage of large areas is
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required, which can not be achieved by a single-UAV due to the limited onboard

power and payload, as well as the limited flight altitude. Moreover, focusing our

attention on UAV navigation, this is typically obtained by integrating low cost

avionics and GNSS receivers. This results in position accuracies of the order of

5-10 meters and attitude accuracies of approximately 1-5 degrees [16]. Indeed,

even larger errors may arise for the heading angle, due to the common adoption

of magnetometers and the consequent effects of magnetic uncertainties, sensors

errors, interference phenomena generated by compact installation of electronic

components on board micro-UAVs, and possible environmental disturbances.

In addition, GNSS are highly vulnerable to unintentional (e.g. multipath) and

deliberate (e.g. RF interferences, jamming) disruptions making these systems

particularly unreliable. As a consequence, the accuracy level reachable through-

out the integration of IMU and GNSS measurements suffices for real time sta-

bilization and control, but it is not suitable for applications that require pre-

cise positioning and fine sensor pointing, such as direct georeferencing [16] and

LIDAR-based 3D mapping [17], where there is a direct link between navigation

performance and point cloud reconstruction accuracy. Furthermore, accurate

estimates of position and attitude may also play a key role in photogrammetric

processing, potentially limiting the need of Ground Control Points (GCPs) for

given reconstruction accuracy requirements, helping tie points matching, and

reducing the computational time for bundle adjustment [18].

Also, all applications that require precision guidance or multi-vehicle data

fusion usually pose more stringent navigation requirements.

As regards positioning, assuming the availability of GPS coverage, a better

accuracy up to centimeter level can be obtained exploiting carrier phase dif-

ferential GPS between dual frequency antennas/receivers located on-board the

aircraft and at known locations on ground. Off-the-shelf systems and solutions

are nowadays available and recent developments have significantly increased the
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level of miniaturization while also reducing the price of this technology. Single

frequency carrier phase differential GPS [19] can also be used for accurate po-

sitioning, accepting some performance reduction with respect to dual frequency

architectures [20] (e.g., longer convergence times and larger error on average).

On the other hand, achieving a very accurate attitude solution, with sub-degree

errors on all the angles, still presents challenges.

Most of these limits can be overcome by swarms of UAVs that fly and behave

in a coordinated, nature-inspired way [2-5]. In fact, these swarms can represent

revolutionary tools in fields such as response to natural disasters and homeland

security, as in all those civil applications that require fast deployment and the

capability to provide accurate sensor information in near real time.

In addition to offering the possibility of the above mentioned applications,

where real time coverage of large areas is required, two or more UAVs working

together can allow to improve the navigation performance of one or more of

them, either in GPS-challenging environments or under nominal GPS coverage.

In the following, the thesis objectives will be focused on identifying and

developing new cooperative navigation methods.
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Chapter 2

Thesis Objectives

The scope of this thesis is to overcome single-UAV limits by developing new dis-

tributed GNC architectures where the cooperative nature of a UAV formation

is exploited to obtain navigation information, and innovative strategies for au-

tonomous flight with particular reference to landing. Indeed, in addition to the

typical performance limitations of micro-UAVs, this thesis takes into account

also those applications where a multi-vehicle architecture can improve cover-

age and reliability, and allow real time data fusion. Furthermore, as it will be

clarified in the following, considering the low cost of micro-UAV systems with

consumer grade avionics, having several UAVs can be more cost effective than

equipping a single vehicle with high performance equipment.

Among several research challenges to be addressed in order to design and

operate a distributed system of vehicles working together for real time applica-

tions, this thesis will focus on the following topics regarding cooperation and

autonomy

Improvement of UAV navigation performance In this chapter, performance

improvement mainly refers to the achievable navigation accuracy, assum-

ing that the only integration of low cost IMUs, GNSS and magnetometers

allows real time stabilization and flight control but may not be suitable for

6



applications requiring fine sensor pointing. This topic of research is dis-

cussed in chapter 3, where the focus is set on outdoor environments and

it is assumed that all vehicles of the formation are flying under nominal

GPS coverage, hence, the main navigation improvement is in terms of atti-

tude estimation. In particular, the key concept is to exploit DGPS among

vehicles and vision-based tracking to build a virtual additional navigation

sensor whose information are then integrated within a sensor fusion algo-

rithm based on an EKF. The proposed method resembles multi-antenna

attitude estimation architectures. However, while the latter ones exploit

carrier phase processing and short baselines (known by calibration) be-

tween antennas rigidly mounted on the vehicle, the proposed approach

can exploit any differential GPS strategy using antennas embarked on dif-

ferent vehicles, where the exact geometry among them is unknown, but

the line of sight between antennas can be estimated by vision sensors.

The developed concepts and processing architectures are described in chap-

ter 3, where performance assessment is carried out on the basis of both

numerical simulations and flight tests. In the latter ones, navigation es-

timates derived from the proposed method are compared with those pro-

vided by the onboard navigation filter of a customized quadrotor. More-

over, a validation strategy is performed showing the potential of the devel-

oped approach, mainly deriving from the possibility to exploit magnetic-

and inertial-independent accurate attitude information.

UAV navigation in GPS challenging environments This topic of research

presented in chapter 4 aims at developing algorithms for improving navi-

gation performance of UAVs flying in GPS-challenging environments (e.g.

natural or urban canyons, or mixed outdoor-indoor settings), where GPS

measurements can be unavailable and/or unreliable. These algorithms ex-

ploit aiding measurements from one or more cooperative UAVs flying under
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nominal GPS coverage and are based on the concepts of: relative sensing;

and information sharing. The developed sensor fusion architecture is based

on a tightly coupled EKF that integrates measurements from onboard in-

ertial sensors and magnetometers, the available GPS pseudoranges, po-

sition information from cooperative UAVs, and line-of-sight information

derived by visual sensors. In addition, if available, measurements com-

ing from a monocular pose estimation algorithm can be integrated within

the developed EKF in order to counteract the position error drift. Per-

formance analysis is conducted on the basis of numerical simulations and

real platform experiments showing the potential of exploiting multi-UAV

navigation approaches to operate UAVs in GPS-challenging environments.

Autonomous take-off and landing This research activity, conducted during

a 6 month Academic Guest period at ETH Zürich, focuses on increasing re-

liability, versatility and flight time of UAVs, by developing an autonomous

take-off and landing technique. Often, the landing phase is the most criti-

cal as it involves performing delicate maneuvers; e.g., landing on a station

for recharging or on a ground carrier for transportation. These procedures

are subject to constraints on time and space and must be robust to changes

in environmental conditions. These problems are addressed in chapter 5

where a guidance approach based on the intrinsic tau guidance theory is

integrated within the end-to-end software developed at ETH Zürich. This

method has been validated both in simulations and through real plat-

form experiments by using rotary-wing UAVs to land on static platforms.

Results show that this method achieves smooth landings within 10 cm

accuracy, with easily adjustable trajectory parameters.
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Chapter 3

Improvement of UAV Navigation

performance

In this chapter, the scientific results relevant to the first research topic are pre-

sented. It is worth noting that all the work was conducted in strong collaboration

with co-authors and supervisors.

As already mentioned, the idea behind this research topic is to improve

UAV navigation performance by adopting a formation of UAVs (multi-UAV

approach) and exploiting the spatial diversity of measurements obtained by these

cooperating aircraft.

This work has followed several improvements starting from [21] where the

concept of integrating GNSS (in particular, GPS) and vision-based measure-

ments to provide inertial- and magnetic-independent attitude information (which

can be defined as DGPS/Vision processing) was presented. In particular, [11]

discussed direct attitude estimation based on three cooperating vehicles, while

in [12] the focus was set on integrating the attitude information within a navi-

gation algorithm based on a loosely coupled EKF. Then, [22] presented a tight

integration scheme to combine GNSS and vision-based information. In these

papers, code-based differential GPS (DGPS) was used as GNSS information
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source. DGPS provides a reliable solution based on kinematic processing, with

meter-level accuracy. As it will be clarified in the following, baselines of the or-

der of 100 meters are needed to convert the meter-level relative positioning error

into sub-degree angular uncertainty [11] in order to achieve a sub-degree accu-

racy also in attitude estimation. As a natural evolution, in [23, 24] the DGPS

processing has been substituted by a Carrier-phase DGPS (CDGPS) solution as

GNSS information source within the considered multi-UAV architecture (in the

following CDGPS/Vision). From the performance point of view, the potential

availability of cm-level baseline estimation accuracy gives CDGPS/Vision the

possibility to provide a significant improvement of attitude estimation accuracy

for large baseline, or a significant reduction of the baseline requirements needed

to achieve a given attitude accuracy level.

For the sake of clarity, since the developed navigation algorithms can work

with any DGPS solution, in the following the definition "DGPS/Vision" will be

adopted, and only when necessary we will refer to the CDGPS/Vision method.

This chapter is organized as follows: related work is presented in section 3.1;

in section 3.2 the DGPS/Vision logical architecture is described by introducing

the assumptions, challenges and strategies in order to exploit DGPS/Vision

measurements for navigation purposes; the adopted algorithms are presented in

detail in section 3.3; in section 3.4 the potential of the developed DGPS/Vision

concept is analyzed; finally testing and validation strategy and experimental

results are presented in section 3.5 and section 3.6

3.1 Related Work

Related work mainly concerns two areas of investigation and technical develop-

ment, i.e., accurate attitude estimation for small and micro UAVs, and cooper-

ative navigation in UAV swarms.

10



Concerning the improvement of attitude estimation performance for small

UAVs, several authors propose algorithmic developments aimed at better atti-

tude estimation accuracy for mini- and micro-UAVs [25, 26]. While the proposed

solutions bring an improvement with respect to standard estimation techniques,

experimental analyses point out that processing alone cannot overcome limita-

tions of low performance sensors.

A more direct approach for accurate attitude estimation consists in exploit-

ing high performance avionics. Miniaturized tactical grade IMUs (e.g., [27, 28])

are commercially available and are compatible with installation on mini and

(most of) micro UAVs, though not at reduced cost. They are usually based on

high performance Micro Electro-Mechanical Systems (MEMS) technology, while

some Fiber Optic Gyro (FOG) solutions are also available, though limited to

mini UAVs because of larger mass and size budgets. In general, when gyro-

scope accuracy allows measuring Earth rotation rate, this eliminates the need

of magnetometers to estimate heading. These sensors enable accurate attitude

determination, with roll and pitch errors usually smaller than heading one.

A popular solution for very accurate heading consists in embarking dual

GNSS antenna architectures [29, 16] and then relying on carrier phase differ-

ential GNSS processing between the antennas (whose installation geometry is

fixed and known by calibration). In practical terms, a baseline larger than 1

meter is needed to attain a heading estimation accuracy better than 0.5 degrees

[16]. Challenges related to heading estimation by dual antenna architectures

include geometric constraints and measurement availability issues. In fact, a

baseline of 1 meter or larger may be hard to achieve on most micro UAVs, se-

lected antennas need to have geodetic grade accuracy due to the necessity of a

precise definition of their phase centers, and vibration issues may result from

using lightweight mounting structures. Furthermore, high accurate estimation

is achievable only when integer ambiguity is solved, which depends on GNSS
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constellation configuration and operating environment.

Vision-inertial odometry can also be used for accurate attitude estimation

within a given time interval, if initial conditions are accurately known [30, 31, 32].

Implementation challenges for UAVs in outdoor environments involve flight in

variable illumination conditions and at relatively high altitude.

UAV swarming currently represents a wide and very active area of research

[33], with many efforts on formation control, optimal swarm deployment [34],

cooperative planning [35], and cooperative navigation. Regarding the latter,

most of the research is focused on cooperative localization and/or simultaneous

localization and mapping (SLAM) in GPS-denied environments [36, 37].

As stated above, the proposed framework exploits multi-vehicle cooperation

to address a different problem, i.e., improving navigation performance when

flying under nominal GNSS coverage.

3.2 Cooperative Navigation Architecture

In this work cooperation is exploited to improve the navigation performance of

formation flying UAVs in outdoor environments. In particular, let us assume

that a formation of at least two UAVs is flying cooperatively. The following

definitions are used throughout this chapter to distinguish between two types of

platforms

Chief Vehicle whose absolute navigation performance is to be improved. This

is equipped with standard navigation equipments such as MEMS iner-

tial/magnetic sensors and a GPS antenna/receiver, and with a vision sys-

tem (single or multiple cameras).

Deputy Vehicle whose objective is to provide aiding measurements to the chief.

The main requirements for deputy vehicle(s) are to embark GPS anten-

nas/receivers, and to fly in formation with the chief.
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Focusing the attention on GPS (though the discussion is general to all satel-

lite navigation systems), the main idea is to improve the absolute navigation

performance of the chief by exploiting DGPS with deputies and relative sensing

by vision. In particular, while the conceived data fusion architecture enables

position, velocity and attitude estimation, the focus is set on exploiting coop-

eration and spatial diversity of the formation for accurate and robust attitude

estimation. Indeed, due to the mathematical structure of the adopted EKF (sub-

section 3.3.4), improving attitude estimation accuracy indirectly brings benefits

to position and velocity performance. It is worth noting that, throughout the

paper, attitude is parameterized by three successive rotations 321 (heading,

pitch, and roll) from the North East Down (NED) reference frame to the Body

Reference Frame (BRF).

3.2.1 Assumptions and Requirements

The main assumptions is that all vehicles fly under nominal GPS coverage, that

is in outdoor environments that are not subjected to intentional or unintentional

jamming. Then, it is assumed that positioning accuracy is the same for all the

vehicles. This underlines again that the main interest of this work is relevant

to accurate attitude estimation. Indeed, the concept can be extended to scenar-

ios with different positioning accuracies, and, in that case, DGPS can directly

improve chief absolute positioning accuracy.

In the proposed concept, formation control is basically aimed at keeping the

deputies within the Field of View (FOV) of chief vision system, in order to

enable vision-based line of sight estimation. Formation control can also be used

to optimize attitude measurement covariance, as it will be made clear in what

follows. In all cases, tight formation control is not necessary, and the geometries

required for cooperative navigation can be obtained by conventional guidance

approaches.
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Figure 3.1: Conceptual view of the cooperative navigation scenario in the case of

single deputy UAV.

It is worth noting that the distinction between chief and deputy is only func-

tional to the objective of the proposed algorithm, that is improving navigation

performance for the chief. Indeed, if GPS observables are exchanged among the

vehicles, and if each vehicle is able to track at least another UAV by one or more

onboard cameras, each vehicle can exploit cooperation to improve its absolute

navigation performance (i.e., each vehicle can be a chief exploiting information

from other deputies). A conceptual view of the operation scenario is shown in

Figure 3.1.
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3.2.2 Communications and synchronization issues

The proposed cooperative navigation technique can be used either in real time

or in post processing phase. In the former case, proper communication links

have to be foreseen among vehicles.

The need of inter-vehicle communications, and in general of accurate data

synchronization (compensating for communication delays in real time applica-

tions), might appear as a challenge for the proposed cooperative attitude esti-

mation strategy.

However, the availability of GPS measurements allows accurate and simple

synchronization, with residual uncertainties of the order of a very few millisec-

onds, at most. In fact, all GPS data are time-referenced by GPS receivers, with

latencies that are of the order of 1 millisecond. Triggering image acquisitions on

the basis of the GPS receiver output enables accurate image timing, also thanks

to the high frame rate of latest generation of CMOS/CCD sensors.

As concerns communication delays in real time applications, since the data

are time-referenced through the GPS time, the synchronization accuracy is the

same whether the processing is performed on-line or in post processing phase.

The only difference is that in the first case it is necessary to compensate com-

munication latencies by adopting a method like the negative time measurement

update [38] which is an assessed approach for multi-sensor navigation systems

integrating vision-based information.

3.2.3 Processing strategies

The key idea to estimate attitude of a chief UAV is to exploit a number of deputy

UAVs acting simultaneously as flying antennas and as visual features. DGPS

processing provides chief-to-deputies baselines (and thus, the corresponding unit

vectors) directly in a stabilized NED reference frame, while vision processing
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gives unit vectors in the chief BRF. DGPS and vision-based information can be

used in the navigation filter in different ways, such as:

1. directly integrating line-of-sight information in NED and BRF within the

estimation process (which works for any number of deputies);

2. using the Three-axis Attitude Determination (TRIAD) algorithm [39] to

provide an attitude measurement which is then integrated in the navigation

filter (which works for two deputies);

3. using the Quaternion Estimation (QUEST) algorithm [40] to provide an

attitude measurement which is then integrated in the navigation filter

(which works for more than two deputies).

In this chapter, both the loosely coupled approach based on the TRIAD al-

gorithm, and the tight integration of line-of-sight information within a purposely

customized navigation algorithm based on EKF are presented. As anticipated

above, this choice has the significant advantage of requiring (at a minimum)

only a single deputy UAV to be tracked. A single line-of-sight does not enable

straightforward attitude estimation since, as it is intuitive, it does not give any

information along its direction. However, depending on the chief-to-deputy ge-

ometry, it provides useful information on the attitude error vector. The data

fusion algorithm exploits this information and provides its output at high fre-

quency while optimally combining the input data. Moreover, it gives a robust

navigation solution in spite of temporary GPS/vision/communication dropouts.

Detailed mathematical derivation is given in Section 3.3.

3.3 Algorithm Formulation

Figure 3.2 shows the DGPS/Vision logical architecture where the main process-

ing steps performed on-board the chief vehicle are highlighted (grey blocks).
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In the considered architecture, deputy vehicles only need GPS receivers

whose output is GPS observables, while the chief vehicle, besides being equipped

with a GPS receiver, an IMU and a three-axis magnetometer, is equipped with

camera(s) in order to detect and track deputy vehicles.

The core of the algorithm is the multi-sensor fusion which integrates mea-

surements coming from inertial sensors, magnetometers and the on-board GPS

receiver with measurements derived by the vision-based tracking and the DGPS,

that is chief-deputy LOS in Camera Reference Frame (CRF) and chief-deputy

unit vectors in NED respectively. In this section, the DGPS/Vision mathemat-

ical formulation and relative integration within the sensor fusion algorithm are

presented. In what follows, italic type is used for scalar quantities, italic type

with a single underline is used for (generic) vectors, and italic type with double

underline is used for matrixes. The symbol "tilde" is used to mean estimated

quantity (e.g., R̃), while the symbol "hat" is used for unit vectors (e.g., r̂ ).

Apices are used to individuate the reference axes along which vector compo-

nents are evaluated (e.g., rNED ). The symbol Rn

b
individuates the rotation

matrix from reference "b" to reference "n".

3.3.1 Vision-based tracking

The vision-based tracking algorithm provides the chief-deputy LOS in the chief

BRF. In general, the problem to address is a classical airborne tracking one, for

which different solutions are available [41]. However, the considered framework

differs from non cooperative visual tracking scenarios such as the ones assumed

in sense and avoid [42, 43], since target distance and physical configuration are

accurately known. Moreover, regardless of what happened in previous frames,

the target detection algorithm can be cued by GPS data and currently estimated

chief attitude (Figure 3.2), so that a relatively small search window is always

individuated, which can improve target detection reliability and significantly
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Figure 3.2: Logical architecture of the cooperative navigation algorithm.
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reduce processing time. Various techniques include mean-shift color tracking

approach [44] or a spatial patch tracking approach such as the Kanade-Lucas-

Tomasi (KLT) feature tracker [45, 46].

In the experiments presented in this thesis, once the first frame is acquired by

the camera system available on board the chief UAV, the first step of the target

detection strategy is to choose the template to be searched in the image. This is

done exploiting the range information about the target provided by the relative

positioning block, taking into account that a database of template images of

the deputy UAVs has been collected experimentally. In this respect, it is worth

recalling that the focus has been here set on medium/large UAV-UAV distances,

thus the templates shall occupy a limited number of pixels in the image, e.g.,

ranging from a few tens of pixels to a few pixels.

Once the template is chosen, the Normalized Cross Correlation (NCC) ap-

proach is adopted to identify the position of the target UAV in the image plane.

However, as already mentioned, the NCC coefficient (γ) is computed over a lim-

ited portion of the image in order to limit the computational load and reduce

the risk of false alarms. This region of the image plane can be defined by pre-

dicting the position of the deputy based on the absolute attitude information of

the chief UAV (provided by the on board navigation system) and on the relative

positional data (obtained from the differential GPS block).

Once the deputy is detected, a new template, centered at the estimated

target position, is extracted from the current frame, and the tracking step can

be started. The proposed tracking approach is obtained by combining template

matching and morphological filtering [47] which are carried out sequentially

over a limited image region. Specifically, the tracking search area is defined by

predicting the position of the deputy in the current frame based on the target

LOS estimated at the previous frame (provided by either detection or tracking

algorithms) as well as the variation of the attitude of the chief UAV from the
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previous frame (provided by the on board navigation system).

The vision-based tracking algorithm provides the pixel coordinates (ui,vi) of

the i-th deputy within images acquired by the chief camera(s). The normalized

pixel coordinates (uni , vni ) of the i-th deputy are then obtained by applying

the intrinsic camera model [48] which takes into account the focal length, the

principal point coordinates, the radial and tangential distortion coefficients, and

the skew coefficient. Consequently Azimuth and Elevation and the chief to i-th

deputy unit vectors in CRF are computed as follows

Azi,CRF = tan−1(uni ) (3.1)

Eli,CRF = tan−1(−vni cos(Azi,CRF )) (3.2)

r̂CRFi =


r̂CRFi,1

r̂CRFi,2

r̂CRFi,3

 =


cos(Eli,CRF ) cos(Azi,CRF )

cos(Eli,CRF ) sin(Azi,CRF )

− sin(Eli,CRF )

 (3.3)

where rCRFi is the unit vector of components (r̂CRFi,1 r̂CRFi,2 r̂CRFi,3
) in CRF (whose

axes are defined considering the sequence boresight-right-down).

The unit vectors in BRF, are obtained by performing the following transfor-

mation

r̂BRFi = Rb

c
r̂CRFi (3.4)

where Rb

c
is the known rotation matrix from CRF to BRF and r̂BRFi is the

unit vector in BRF.

It is worth noting that, vision-based tracking performance for given chief/deputy

platforms basically depends on the range to deputies, on environmental condi-

tions (impacting deputy appearance, contrast and background homogeneity),
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and on camera(s) parameters, such as quantum efficiency and Instantaneous

Field of View (IFOV). Moreover, camera FOV limits the maximum reachable

angular separation between deputies.

In order to increase the detection range performance for a given sensor, the

IFOV can be reduced increasing optics focal length, and thus reducing the over-

all FOV and the possibility to detect widely separated deputies. The trade-off

between coverage and detection range can be tackled by installing higher reso-

lution sensors and/or multiple camera systems.

3.3.2 Differential GPS

As far as the differential GPS is concerned, this can be implemented in different

ways [49, 9]. In more detail, two possible solutions can be adopted: Code-based

Differential-GPS; and carrier phased DGPS.

A lower accuracy can be obtained even with single frequency carrier phase

differential processing, provided that the integer ambiguity is solved.

As far as the code-based DGPS, this provides a lower accuracy in estimat-

ing the relative position but requires hardware that is affordable for commercial

micro-UAVs, less observables to be exchanged between different vehicles (ba-

sically only pseudoranges from common satellites in view) and much lighter

processing.

During this research activity, both code-based and carrier-phased DGPS have

been investigated adopting single frequency GPS receivers.

3.3.2.1 Code-based DGPS

As already mentioned, this solution requires low-cost GPS receivers and a light

processing.

A basic estimate of code-based DGPS relative positioning accuracy can be

obtained multiplying typical Diluition of Precision (DOP) values by the average
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User Equivalent Range Error (UERE) accuracy in DGPS operating scenarios.

Indeed, this is a conservative approach since pseudorange measurements cor-

relation is increased in differential architectures. This computation leads to a

typical 1-sigma accuracy of the order of 0.99 m (horizontal) and 1.86 m (vertical)

[50, 49].

The solution adopted in this activity is a Double Difference (DD) code-

based DGPS [49], which offers significant advantages due to the cancellation

of receivers and satellites clock biases, as well as most of the ionospheric and

tropospheric propagation delays.

To derive the chief-deputy unit vector in the NED reference frame, it is

assumed that the chief and the i-th deputy are in view of the same n satellites

and consequently their pseudorange measurements are available which allow

to calculate single and DD observables. In particular, considering two GPS

satellites, one of which named pivot, DD observables are obtained as follows

PRps
ci = (PRs

i − PR
p
i )− (PRs

c − PRp
c) (3.5)

where the superscript p refers to the pivot GPS satellite, which is chosen

to be the one with the highest elevation, s refers to the generic satellite (s =

1, ...., n−1), the subscripts c and i represent the chief and the i-th deputy vehicle

GPS receiver respectively, PRs
i stands for the pseudorange estimated by the i-th

receiver with respect to the s-th satellite, and a similar interpretation holds for

the other estimated pseudoranges.

The DD observation model is a non linear function of the baseline ∆rECEFi

between the chief and i-th deputy in the Earth Centered Earth Fixed (ECEF)

reference frame as shown in the following equation
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PRps
ci = ρpsci + νpsci =

‖Rs − (rc + ∆rECEFi )‖ − ‖Rs − rc‖ − ‖Rp − (rc + ∆rECEFi )‖+ ‖Rp − rc‖+ νpsci

(3.6)

where ρpsci represents the DD between the true pseudoranges, rc is the chief

ECEF position, Rp and Rs are the pivot and s-th satellites ECEF positions

and νpsci are the non-common mode pseudorange errors. The problem of finding

∆rECEFi is solved applying a recursive least square estimation method based

on the linearization of the DD observation model [49]. The i-th baseline vector

∆rNEDi in the NED reference frame, with origin in the chief center of mass is

then given by:

∆rNEDi = Rn

e
∆rECEFi (3.7)

where Rn

e
is the rotation matrix from the ECEF to the navigation frame

NED that depends on the chief longitude λ and geodetic latitude µ

Rn

e
=


− sinµ cosλ − sinµ sinλ cosµ

− sinλ cosλ 0

− cosµ cosλ − cosµ sinλ − sinµ

 (3.8)

Having the chief-deputy baseline vector ∆rNEDi it is straightforward to com-

pute the corresponding unit vector r̂NEDi in NED.

3.3.2.2 Carrier phase DGPS

CDGPS techniques are widely used in both terrestrial, airborne and space ap-

plication to improve the performance of baseline determination, and precise

positioning goals.

Well-assessed techniques, e.g. Real-Time Kinematic (RTK) [51, 52] and

EKF-based approaches, are available for dual frequency receivers, leading to

23



cm-scale accuracy for static terrestrial users up to hundreds km baselines. In

space applications, very precise relative positioning, in the order of 10 cm has

been demonstrated for formation flying satellites application, [53] characterized

by baselines longer than 200 km. Concerning single-frequency users, less as-

sessed results are available [54] with cm-scale accuracy demonstrated on static

receivers only.

The possibility to exploit CDGPS information on board mini/micro UAVs

derives from the large availability of commercial single frequency receivers pro-

viding carrier phase information [19]. Indeed, even dual frequency receivers tai-

lored for small UAS are increasingly available at relatively low cost [20]. From

the performance point of view, the potential availability of cm-level baseline

estimation accuracy gives CDGPS/Vision the possibility to provide a great im-

provement of attitude estimation accuracy for large baseline, or a significant

reduction of the baseline required to achieve sub-degree accuracy.

Achieving this potential requires considering several issues, such as:

• GNSS-related: processing time, accuracy, continuity, availability and in-

tegrity of the differential solution;

• non GNSS-related: error sources whose impact cannot be neglected if a

cm-level solution is desired, such as residual data synchronization errors,

lever arm effects, and camera angular resolution.

Also in this case, to derive chief-deputy unit vector in the NED reference

frame, it is assumed that the chief and the i-th deputy are in view of the same n

satellites and consequently their pseudorange and Carrier Phase (CP) measure-

ments are available wich allow to calculate single and DD observables.

In particular, CP and pseudorange observation equations can be written

neglecting both ionospheric and tropospheric DD delays [55] as

PRps
ci = ρpsci + νpsci (3.9)
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Lpsci = ρpsci + λ1n
ps
ci + εpsci (3.10)

where PR and L are the pseudo-range and carrier-phase DD measurements

respectively, estimated assuming that p is the pivot satellite and (s = 1, ...., n−1)

is the index of any other satellite in view by the chief-deputy couple. Hence,

n is the number of common satellites in the chief and the deputy UAVs FOV.

Again, ν and ε are the measurement thermal noises for PR and CP respectively.

npsci is the double difference ambiguity that multiplies the L1 wavelength λ1.

The unknown in (Equation 3.9) and (Equation 3.10) are the baseline and the

double difference ambiguities.

One of the advantages of double difference measurements is related to the

properties of the ambiguities nature. The ambiguities are constant as long as

tracking is not lost or a cycle slip occurs, so data over multiple time epochs can

be used to estimate them. Moreover, ambiguities are integer numbers, hence

equation (Equation 3.10), can be exactly compensated for the effect of the am-

biguity, at least in principle.

A common solution [53] for solving equations (Equation 3.9) and (Equa-

tion 3.10) is processing the DD measurements by an EKF. A traditional limi-

tation of standard EKF implementations is that the estimated elements of the

state vector are real numbers. Therefore, the filter is only able to obtain a real

estimate of the Integer Ambiguities (IA). Such estimates are typically referred

to as float ambiguities. The result is that the float ambiguities estimated by

the filter are real and not integer numbers generating an error in baseline es-

timation via equations (Equation 3.9) and (Equation 3.10). The error can be

significantly reduced replacing the float ambiguities with the corresponding inte-

ger ones. This can be accomplished by an integer least square method, e.g. the

least square ambiguity decorrelation adjustment (LAMBDA) [56]. In the fol-

lowing, the EKF for baseline estimation and its integration with the LAMBDA
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estimator is presented. The latter poses several challenges, besides the improved

complexity of the filter. Indeed, integer ambiguities estimated with LAMBDA

must be validated before being used, since an error in integer ambiguity fixing

can result in filter divergence.

CDGPS - EKF Structure The EKF used for CDGPS baseline estimation, is

an evolution of the one introduced by [57]. The filter, which flow chart is

depicted in Figure 3.3, uses the DD GPS measurements presented in Equa-

tion 3.9 and Equation 3.10 in the correction step. Thus, the measurement

vector y includes the n− 1 pseudoranges and CP measurements, whereas

the filter state vector x includes the unknown of equations Equation 3.9

and Equation 3.10, and is composed by 6 + (n − 1) components, i.e. the

baseline ∆rECEFi , its derivative ∆ṙECEFi and the n−1 float ambiguities a.

Hence, x and y can be written as

x =



∆rECEFi

∆ṙECEFi

ap1ci
...

a
p(n−1)
ci


, y =



PRp1
ci

...

PR
p(n−1)
ci

Lp1ci
...

L
p(n−1)
ci


(3.11)

No dynamics is provided for the baseline except its derivative propagates

as a random walk, that is ∆r̈ECEFi = wacc, where wacc is the white noise

on the baseline acceleration. Whilst, the ambiguities are assumed to be

constant characterized by unknown initial value. The measurement matrix

H used to estimate the EKF gain that connects the measurements to the

state vector, is evaluated performing linearization of Equation 3.9 and

Equation 3.10 around the available baseline estimate.
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Figure 3.3: CDGPS EKF flow chart.

The accuracy of the baseline estimated by the EKF depends on CP residu-

als and the satellites-receivers geometry. The CP residuals are obtained by

substituting EKF estimates in Equation 3.10 and quantifying the level of

uncertainty of filter state vector components. The CP residuals ∆Lpsci are

mapped into the baseline error thanks to the DOP coefficients extracted

from the H matrix [58].

CDGPS - EKF Integration with LAMBDA The EKF presented in the pre-

vious section estimates the ambiguities as real numbers generating residual

errors in the baseline estimation. In order to reduce the baseline error, the
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integer nature of DD ambiguities must be exploited. The costs to pay for

baseline accuracy improvement are

• a more complex filter to be implemented, able to integrate LAMBDA

into the EKF;

• a significant loss of robustness against wrong integer estimates, that

easily leads to filter divergence.

The scheme in Figure 3.4 integrates the EKF in Figure 3.3 with the

LAMBDA estimator, which returns the integer ambiguities starting from

the float estimated by the EKF. The integer ambiguities estimated by

LAMBDA are validated and used to correct the current state vector.

The central step in this algorithm is the integer ambiguities validation

step, which is in charge of avoiding the wrong integer ambiguities to be

fixed. When dual-frequency GPS receivers are adopted, standard RTK

techniques can be used to perform robust integer ambiguities validation.

When single frequency receivers are adopted, no standard solution exists

to deal with the problem of integer validation especially in the case of

moving receivers.

The use of integer ambiguity tests is a standard solution in dual-frequency

receivers. Tests can be classified as

• Global approaches: if all the IA are simultaneously validated (a list

of the most common Global validation tests can be found in [59]).

These “vector” validation tests operate on the whole vector of IA,

and do not discriminate between IA within the vector, that is, if only

one IA within the vector is deemed erroneous, the whole IA vector

does not pass the test. On the other hand, when not all the IA are

correctly fixed, there is the possibility that a subset of the IA vector
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is instead correct.

• Partial approaches: are concerned with discriminating between the

single IA, i.e. separating the correct from the incorrect ones. The

partial integer validation allows therefore to fix the correct IA before

all the ambiguities in the vector become correct, easing the filter

estimation, and, as a consequence, this approach should be preferred

with respect to the Global one. Most of the partial tests available in

literature allow correctly estimating the ambiguity for dual frequency

receivers [60, 61].

The LAMBDA 3.0 software [62] includes the possibility to operate with

partial estimation, i.e. Partial Ambiguity Resolution (PAR) with single

frequency receivers.

3.3.3 TRIAD algorithm

As already mentioned, the focus of this work has been set on both loosely coupled

approach based on the TRIAD algorithm and tight integration of line-of-sight

information within a customized EKF. In particular, when the loosely cou-

pled approach is adopted, two deputies are required in order to obtain a direct

inertial- and magnetic-independent attitude information.

As far as the TRIAD algorithm is concerned, this is an analytical method to

determine the rotation matrix between two reference frames. In particular, given

two nonparallel reference unit vectors V̂1 and V̂2 in a primary reference frame

and two corresponding observation unit vectors Ŵ1 and Ŵ2 represented with

respect to a secondary frame, TRIAD starts defining two orthonormal triads of

vectors [r̂1, r̂2, r̂3] and [ô1, ô2, ô3] given by

r̂1 = V̂1, r̂2 =
V̂1 × V̂2
|V̂1 × V̂2|

, r̂3 = r̂1 × r̂2 (3.12)
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Figure 3.4: CDGPS EKF+LAMBDA flow chart.
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Figure 3.5: DGPS/Vision logical scheme.

ô1 = Ŵ1, ô2 =
Ŵ1 × Ŵ2

|Ŵ1 × Ŵ2|
, ô3 = ô1 × ô2 (3.13)

and determines the unique orthogonal matrix R which converts from the

primary to the secondary reference frame as follows

R = M
obs
MT

ref
(3.14)

where M
obs

= [ô1, ô2, ô3] and M ref
= [r̂1, r̂2, r̂3] are 3 x 3 matrices.

As shown in Figure 3.5, the two vector pairs needed by the DGPS/Vision

method to compute the attitude matrix are the chief-to-deputies BRF and NED

unit vectors which are computed as explained in the previous sections. In partic-

ular, once the attitude is estimated by TRIAD, the estimate can be included as

an additional measurement in a classical EKF-based aided navigation algorithm

[9].
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Figure 3.6: Extended Kalman Filter flow chart.

3.3.4 Extended Kalman Filter (EKF)

The core of the algorithm is the multi-sensor fusion approach which is based

on augmenting a standard EKF for GPS/Inertial Navigation System (INS) in-

tegration (presented in [9]) with additional update measurements based on the

proposed cooperative navigation concept.

The flow chart of the implemented filter is shown in Figure 3.6, where ini-

tialization, time propagation, and measurement update are highlighted.

In the following the filter structure and the two considered approaches (that

is, loosely coupled and tightly coupled) are presented.

3.3.4.1 State vector

The state error vector δx comprises 9 components: the absolute position error

vector δp expressed in geodetic coordinates (latitude error δφ, longitude error

δψ, altitude error δh), the INS velocity error vector expressed in NED δv (North

δvn, East δve, Down δvd), and the INS attitude error vector expressed in NED

ρ (North εn, East εe, Down εd).
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The state vector is thus

δx =


δp

δv

ρ

 ,
δp = [δφ δψ δh]T

δv = [δvn δve δvd]
T

ρ = [εn εe εd]
T

(3.15)

Within the EKF initialization phase, the nine initial conditions for the error

state vector components and the associated covariance matrix are specified as

δx̂0 = 0 (3.16)

P
0

= E[δx0δx
T
0 ] (3.17)

Initial covariance basically depends on the assumed accuracy for the onboard

sensors, while the error state vector is re-initialized to zero after each measure-

ment update.

3.3.4.2 System propagation

During the propagation phase, accelerometers and gyroscopes outputs are inte-

grated through standard non linear INS mechanization equations expressed in

the navigation frame [63]. This provides the reference trajectory and attitude

used to define the linearized model for the navigation error
δṗ

δv̇

ρ̇

 = F


δp

δv

ρ

+


0
3x3

0
3x3

−Rn

b
0
3x3

0
3x3

−Rn

b


 δf b
δωbib

 (3.18)

where 0
3x3

is the 3 x 3 null matrix, Rn

b
is the rotation matrix from the BRF

to the NED reference frame, δf b is the error vector of specific forces measured

by the accelerometers and δωbib is the error vector of angular rate measurements.

The 9 x 9 continuous time system dynamic matrix F is reported in Appendix

A.
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The error state covariance matrix P
k
(at time tk) is propagated according to

the following discrete-time equation

P−
k+1

= Φ
k
P
k
ΦT

k
+Q

dk
(3.19)

where Φ
k
is the 9 x 9 discrete-time transition matrix that is given by Φ

k
= eFτ

with τ being the sampling time, and Q
dk

is the discrete-time process noise co-

variance matrix which models inertial errors and thus depends on the embarked

gyroscopes and accelerometers.

3.3.4.3 Measurement update (Loosely Coupled)

In the loosely coupled approach, the measurement update phase takes place

when GPS measurements and/or attitude estimates from the TRIAD algorithm

are available. As already mentioned, this means that at least two deputies are

required in order to derive the chief’s attitude.

As regards DGPS/Vision, attitude estimates derived from TRIAD can be

directly used in

Rb

n
= R̂

b

n
(I − [ρ×]) (3.20)

Equation 3.20 represents the transformation from the predicted attitude ma-

trix (R̂
b

n
) to the attitude matrix computed using the TRIAD method (Rb

n
), ac-

curate to first order, where the skew-symmetric matrix [ρ×] is expressed as

[ρ×] =


0 −εDGPS/V ision,d εDGPS/V ision,e

εDGPS/V ision,d 0 −εDGPS/V ision,n
−εDGPS/V ision,e εDGPS/V ision,n 0

 (3.21)

Thus, when all the information sources are available, the measurement resid-

ual vector, representing the difference between the actual measurements (GPS

pseudoranges, DGPS/Vision attitude, magnetometer-based heading) and the

measurements predicted on the basis of the propagated state vector, can be
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written as

δy =



δPR1

· · ·

δPRn

εDGPS/V ision,n

εDGPS/V ision,e

εDGPS/V ision,d

εmag,d


(3.22)

where δPRs is the pseudorange measurement residual for the s-th satellite

computed as the difference between the measured range for the s-th satellite and

a pivot satellite, minus the predicted difference (n measurements are available if

n + 1 satellites are in view), εDGPS/V ision,n, εDGPS/V ision,e and εDGPS/V ision,d are

the attitude measurement residuals relevant to DGPS/Vision, and εmag,d is the

observation residual relevant to magnetic heading measurement.

As a consequence the linearized observation model at time tk is

δy = H
k
δx (3.23)

where

H
k

=


H
n

0
n×3

0
n×3

0
3×3

0
3×3

I
3

0 0
[
0 0 1

]
 (3.24)

0 is a 1 × 3 null elements vector, 0
n×3

is a n × 3 null matrix, I
3
is a 3 × 3

identity matrix and

H
n

=


h1R

e

n
D

· · ·

hnR
e

n
D

 (3.25)

is an n × 3 matrix, where hs is the difference between the two line-of-sight

vectors in the ECEF reference frame, one from the s-th GPS satellite to the

vehicle and the other from the pivot satellite to the vehicle, Re

n
is the rotation
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matrix from the navigation frame to ECEF, and D is the matrix converting

polar coordinates to linear coordinates within the navigation frame.

The number of components of the measurement residual vector given in

Equation 3.22 is properly reduced at time instants when measurements from

a subset of sensors are available (for example, pseudoranges only) or it is re-

duced to accommodate only attitude measurements coming from DGPS/Vision,

when the DGPS/Vision heading accuracy excludes the need of integrating mag-

netometer data.

When measurements are available, the navigation state is corrected according

to

δxcorr = K
k
δy (3.26)

where the Kalman gain K
k
is given by

K
k

= P−
k
HT

k
(H

k
P−
k
HT

k
+R

k
)−1 (3.27)

and the measurement noise covariance matrix R
k
is

R
k

=


R
GPS

0
n×3

0
3×n RDGPS/V ision

k

01×n

[
0 0 σ2

εmag,d

]
 (3.28)

where 0 are null matrices which dimensions are reported in the subscripts,

σ2
εmag,d

is the variance relevant to magnetic heading measurement, R
GPS

is the n×

nGPS measurement covariance matrix andRDGPS/V ision

k
is the 3×3 DGPS/Vision

attitude measurement covariance matrix at time tk.

In particular, RGPS is given by

RGPS =


2 1 1 · · · 1

1 2 1 · · · 1
...

...
... . . . ...

1 1 1 · 2

σ
2
PR (3.29)
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where σ2
PR is the variance of the measurement noise for the pseudorange

measurements, and RDGPS/V ision

k
is

RDGPS/V ision

k
=


σ2
k,εDGPS,V ision,n

0 0

0 σ2
k,εDGPS,V ision,e

0

0 0 σ2
k,εDGPS,V ision,d

 (3.30)

where σ2
k,εDGPS,V ision,n

, σ2
k,εDGPS,V ision,e

and σ2
k,εDGPS,V ision,d

are the variances rel-

evant to the DGPS/Vision attitude measurements (at time tk).

As shown above, R
k
depends on magnetometers and pseudorange uncertain-

ties, which can be assumed to be constant during the flight, and on TRIAD

attitude estimation errors which need to be updated on the basis of the forma-

tion geometry.

In our case, the "classical" TRIAD covariance matrix, whose analytical ex-

pression is reported in [64], cannot be used, due to the fact that the derivation is

based on the assumption that line of sight errors have an axially symmetric dis-

tribution around the respective unit vector. In fact, as shown in [49] the DGPS

line-of-sight error in NED does not have an axially symmetric distribution, due

to the difference in GPS performance between the horizontal plane and the ver-

tical direction. Consequently, the solution adopted to obtain TRIAD attitude

estimation uncertainties, has been to build up look up tables based on numerical

simulations carried out for different formation geometries [11]. To this end, for

a given chief attitude and formation geometry, DGPS and optical measurements

are simulated by random extractions, and the resulting attitude measurement

error is analyzed with statistical tools.

3.3.4.4 Measurement update (Tightly Coupled)

In this section, the focus is only set on the tight integration of DGPS/Vision

measurements within the EKF.
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Considering the generic i-th deputy, the vision-based tracking algorithm pro-

vides chief to deputy unit vectors in BRF (r̂BRFi ), while the DGPS provides chief

to i-th deputy unit vectors in NED (r̂NEDi ). They are related through the equa-

tion

r̂BRFi = Rb

n
r̂NEDi (3.31)

where Rb

n
is the current (true) attitude matrix. To first order, Rb

n
is related

to the estimated attitude matrix (R̃
b

n
) by

R̃
b

n
= Rb

n
(I + [ρ×]) (3.32)

where I is the identity matrix and [ρ×] is reported in Equation 3.21.

From Equation 3.31 and Equation 3.32 it is thus possible to write

r̂BRFi = R̃
b

n
(I − [ρ×])r̂NEDi (3.33)

Considering that for a generic vector u

ρ× u = [ρ×]u = −[u×]ρ (3.34)

exchanging the order of the vector cross product terms in Equation 3.33, the

following is obtained

r̂BRFi − R̃b

n
r̂NEDi = R̃

b

n
[r̂NEDi ×]ρ = H

DGPS/V ision,i
ρ (3.35)

which can be re-written as

δzDGPS/V ision,i = H
DGPS/V ision,i

ρ (3.36)

where the residual (δzDGPS/V ision,i) is

δzDGPS/V ision,i = r̂BRFi − R̃b

n
r̂NEDi (3.37)

and the measurement matrix is given by

H
DGPS/V ision,i

= R̃
b

n
[r̂NEDi ×] (3.38)
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As far as the covariance matrix R
DGPS/V ision,i

is concerned, assuming uncor-

related DGPS and electro-optical errors, this can be estimated as

R
DGPS/V ision,i

= R
DGPS,i

+R
V ision,i

(3.39)

R
V ision,i

is obtained by first writing the unit vector covariance matrix in the

Camera Reference Frame

R
V ision,i,CRF

=


σ2
xV ision,CRF,i

σxyV ision,CRF,i σxzV ision,CRF,i

σxyV ision,CRF,i σ2
yV ision,CRF,i

σyzV ision,CRF,i

σxzV ision,CRF,i σyzV ision,CRF,i σ2
zV ision,CRF,i

 (3.40)

with

σ2
xV ision,CRF,i

=

(
∂r̂CRFx,i (AzCRF,i, ElCRF,i)

∂AzCRF

)2

σ2
AzCRF

+ · · ·(
∂r̂CRFx,i (AzCRF,i, ElCRF,i)

∂ElCRF

)2

σ2
ElCRF

σxyV ision,CRF,i =

(
∂r̂CRFx,i (AzCRF,i, ElCRF,i)

∂AzCRF

)
· · ·(

∂r̂CRFy,i (AzCRF,i, ElCRF,i)

∂AzCRF

)
σ2
AzCRF

+ · · ·(
δr̂CRFx,i (AzCRF,i, ElCRF,i)

∂ElCRF

)
· · ·(

∂r̂CRFy,i (AzCRF,i, ElCRF,i)

∂ElCRF

)
σ2
ElCRF

(3.41)

and so on for the other entries, and then propagating uncertainties through

Equation 3.4 as follows

R
V ision,i

= Rb

c
R
V ision,i,CRF

(Rb

c
)T (3.42)

where Rb

c
is the (known) rotation matrix from camera to body reference

frame. In the above relations, σAzCRF and σElCRF can be assumed equal to

camera IFOV.
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As concerns R
DGPS,i

, the starting point for the derivation is given by the

assumed uncertainties on the baseline NED components. As an example, typical

horizontal and vertical accuracy for a given DGPS processing approach can be

considered, or current satellites number and dilution of precision conditions can

be exploited to have a more refined estimate. Code-based or carrier-phase based

DGPS will of course provide different uncertainty values.

Let us call σN,i, σE,i, σD,i the baseline components uncertainties, and let us

assume them uncorrelated.

Considering the chief-to-(i-th) deputy DGPS baseline in NED ∆rNEDi =

Rn

e
∆rECEFi whose components are (xn,i, xe,i, xd,i) the chief-to-deputy unit vector

components are given by

r̂NEDi =



xn,i√
x2n,i + x2e,i + x2d,i

xe,i√
x2n,i + x2e,i + x2d,i

xd,i√
x2n,i + x2e,i + x2d,i


(3.43)

DGPS unit vector uncertainties in NED are thus given by

R
DGPS,i,NED

= J


σ2
N,i 0 0

0 σ2
E,i 0

0 0 σ2
D,i

 JT (3.44)

where

J =


∂r̂NEDx (∆rNEDi )

∂xn

∂r̂NEDx (∆rNEDi )

∂xe

∂r̂NEDx (∆rNEDi )

∂xd
∂r̂NEDy (∆rNEDi )

∂xn

∂r̂NEDy (∆rNEDi )

∂xe

∂r̂NEDy (∆rNEDi )

∂xd
∂r̂NEDz (∆rNEDi )

∂xn

∂r̂NEDz (∆rNEDi )

∂xe

∂r̂NEDz (∆rNEDi )

∂xd

 (3.45)
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And to rotate it in BRF we have to use the estimated attitude matrix as

follows

R
DGPS,i

= R̃
b

n
R
DGPS,i,NED

(R̃
b

n
)T (3.46)

Considering the full residual measurement vector for the EKF δz, when all

measurements (pseudoranges, DGPS/Vision, and magnetometers) are available

and used, it is given by

δz =



δPR1

· · ·

δPRn

δzDGPS/V ision,1,1

δzDGPS/V ision,2,2

δzDGPS/V ision,3,3

· · ·

δzDGPS/V ision,nd,1

δzDGPS/V ision,nd,1

δzDGPS/V ision,nd,1

εmag,d



= H
k
δx (3.47)

where:

- nd: DGPS/Vision vector residuals are available, being nd the number of

deputies in view;

- εmag,d is the scalar measurement residual relevant to magnetic heading

measurement;

- H
k
is the measurement matrix given by

H
k

=


H
n

0
n×3

0
n×3

0
3nd×3

0
3nd×3

H
DGPS/V ision

0 0
[
0 0 1

]
 (3.48)
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in which 0 is a 1× 3 null elements vector, 0
n×3

is the n× 3 null matrix, I
3

is a 3× 3 identity matrix, H
n
is given by Equation 3.25 and

H
DGPS/V ision

=


H
DGPS/V ision,1

· · ·

H
DGPS/V ision,nd

 =


R̃
b

n
[r̂NED1 ×]

· · ·

R̃
b

n
[r̂NEDnd ×]


3nd×3

(3.49)

The full measurement covariance matrix is given by

R
k

=


RGPS

n×n 0
n×3nd

0n×1

0
3nd×n RDGPS/V ision

3nd×3nd
03nd×1

01×n 01×3nd σ2
εmag,d

 (3.50)

with

RDGPS/V ision

3nd×3nd
=


R
DGPS/V ision,1

0

· · ·

0 R
DGPS/V ision,nd

 (3.51)

Measurement update phase is carried out using standard Kalman filtering

equations, i.e., when measurements are available, the navigation state and the

error state covariance matrix P+
k are corrected according to

δxupdate = K
k
δz (3.52)

and

P+

k
= (I −K

k
H
k
)P−

k
(3.53)

where the Kalman gain K
k
is given by Equation 3.27.

Also in this case, as in the loosely coupled approach, magnetic measurements

are used in the update phase only if the current value of the (9,9) entry of the

error state covariance matrix is above a threshold.

42



3.4 DGPS/Vision potential and trade-offs

The key concept of the considered architecture is to complement a navigation

filter that integrates single vehicle-based measurements with additional infor-

mation provided by the distributed nature of the formation. This permits to

overcome onboard inertial sensors shortcomings thanks to the availability of

magnetic- and inertial-independent attitude information. In fact, while DGPS

processing is used to estimate the baseline vectors between the chief and the

deputies in a stabilized NED reference frame, vision-based processing allows

camera(s) embarked on the chief to detect and track deputies, thus providing

LOS information in CRF.

If we assume that the rotation matrix between CRF and BRF is known with

negligible uncertainty, it can be used to convert LOS information from CRF

into BRF. This can happen both for strapdown (constant rotation matrix) and

gimbaled installation (variable rotation matrix) provided that accurate off-line

alignment is carried out, and gimbal rotation angles are accurately estimated.

As already mentioned, knowledge of chief-to-deputies unit vectors in both

NED and BRF contains attitude information whose uncertainty depends on

DGPS and vision accuracy, and on the actual formation geometry.

Basic trade-offs and performance bounds for DGPS/Vision processing can be

understood by a straightforward analytical approach, if we assume a simplified

geometry. Let us consider a horizontal 2-vehicle formation with the deputy

separated from the chief by a given baseline L along North direction. Let us

also assume that chief attitude angles (heading, pitch and roll) are all null. Being

the chief-to-deputy LOS along the roll axis, it only provides information related

to heading and pitch angles. At a first level of approximation, if the baseline is

large enough, angular uncertainties of differential GPS estimates are given by

43



σDGPS,angle,hor ∼= 2 arctan

(
σDGPS,lin,hor

2L
√

2

)
(3.54)

σDGPS,angle,vert ∼= 2 arctan
(σDGPS,lin,vert

2L

)
(3.55)

assuming that the DGPS error distribution is the same in all horizontal

directions. By simply considering the camera geometric resolution, and assuming

a square detector, the camera IFOV at a distance L covers an area LIFOV x

LIFOV on the scene where LIFOV is given by

LIFOV ∼= 2L tan

(
IFOV

2

)
(3.56)

This parameter influences the dimensions of the target that can be reli-

ably tracked. Then, heading and pitch uncertainty can be estimated combining

DGPS and vision uncertainties in horizontal and vertical dimensions:

σheading ∼=
√
σ2
DGPS,angle,hor + IFOV 2 (3.57)

σpitch ∼=
√
σ2
DGPS,angle,vert + IFOV 2 (3.58)

Using typical differential GPS uncertainties (1 m horizontal and 2 m vertical

error for code-based DGPS, 0.02 and 0.04 m for CDGPS) and realistic camera

IFOVs (from 0.02◦ to 0.1◦), we get the results shown in Figure 3.7.

These diagrams show that a baseline of the order of 100 m is needed for

sub-degree attitude estimation when using DGPS, with the potential of very

fine accuracy increasing the baseline or adopting CDGPS.

The LIFOV diagram shows that these baselines are compatible with typical

angular resolutions and vehicle dimensions encountered in small UAVs. When

DGPS/CDGPS errors tend to vanish, it is the camera IFOV that bounds the

attitude error from below.
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Figure 3.7: Basic trade-offs and performance limits for DGPS/Vision based attitude

estimation.
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3.5 Testing and Validation Strategy

Within this research activity, several experimental tests have been performed

during which data have been gathered from different sensors and platforms in

order to evaluate the performance of the developed DGPS/Vision concepts.

3.5.1 Experimental Setup

Tests have been conducted with two different experimental setups in which

1. two fixed ground antennas have been used as surrogate deputy vehicles;

2. a multirotor vehicle has played the role of flying deputy, while two fixed

ground antennas have been adopted as surrogate deputy vehicle and Ground

Control Point (GCP).

During all these tests the chief vehicle has been a Pelican from Ascending

Technologies (Figure 3.8). In particular, the Pelican quadrotor, besides being

equipped with a controller, a set of onboard sensors (Table 3.1) and an onboard

computer (AscTec Mastermind, Ascending Technologies), has been customized

with a miniaturized 752× 480 electro optical sensor (BlueFox MLC200wC, Ma-

trix Vision) and an additional uBlox GPS Receiver (LEA 6T, uBlox) which

provides raw measurements that are used in the DGPS processing.

The additional GPS receiver and the optical sensor have been connected to

the Mastermind computer via a Universal Serial Bus (USB) link, while other

raw and calibrated/processed sensor data are gathered via the Universal Asyn-

chronous Receiver-Transmitter (UART) connection between Mastermind and

autopilot.

The acquisition software that runs on the Mastermind has been coded in

C/C++ and gathers all the necessary data with an accurate time-tag based

on GPS time and the Central Processing Unit (CPU) clock. In particular, IMU
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Figure 3.8: Chief vehicle (Customized Ascending Technologies Pelican).

data are acquired with the aid of the Asctec Communication Interface (ACI) at a

frequency of 100 Hz while images and GPS raw data are gathered simultaneously

at a frequency of 1 Hz.

As regards deputies, tests have been conducted by using two ground stations

equipped with an AV59 antenna (Trimble) and BD960 receiver (Trimble) (Fig-

ure 3.9) which acted as surrogate deputies, and a computer which is used to save

all GPS raw data as it is done on the chief vehicle. BD960 is a dual frequency

Table 3.1: Pelican Navigation Sensors.

Component Model

Gyroscopes Analog Devices ADXRS610

Accelerometer Memsic R9500

Barometer NXP MPXA6115A

Compass Honeywell HMC5843

PS Receiver uBlox LEA-6S

47



receiver, however only L1 signals have been taken into account.

The hardware architecture for the first set of tests is shown in Figure 3.10.

The second set of tests has been conducted in an outdoor area, in which a

customized version of the 3DR X8+ multirotor has been used as flying deputy

(Figure 3.11). The X8+ has been equipped with an auxiliary GPS system (the

same installed on the chief vehicle) and an Odroid XU4 embedded CPU for data

processing and storage. In addition, the two ground antennas/receivers have

been used as fixed deputies and/or GCP. As a consequence, in addition to the

hardware architecture shown in Figure 3.10, a flying deputy is introduced into

the experimental setup (Figure 3.12)

3.5.2 Flight Tests

The first set of tests has been carried out in an outdoor area that allows baselines

among chief and deputies of the order of 100 meters. As noted above, this

is necessary to reduce the DGPS angular error and, thus, improve attitude

determination accuracy.

These tests have been designed to compare DGPS/Vision estimates with

heading measurements based on the onboard magnetometers and the output of

the real time data fusion algorithm running on Pelican autopilot, based on a filter

which combines accelerometers, gyroscopes and magnetometers. In particular,

among the flights that have been conducted, two tests have been chosen as

representative of attitude dynamics and varying formation geometry, as follows

Test 1 an almost constant horizontal formation geometry (Figure 3.13) has

been kept, with a baseline between the two deputies of the order of 40

meters, and the chief at a distance slightly larger than 100 meters from the

two ground antennas (Figure 3.14). A number of attitude maneuvers has

been commanded, including four 360◦ heading rotations and 1 Hz heading
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Figure 3.9: Ground antennas/receivers used as deputy vehicles.
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Figure 3.10: Hardware Architecture (first experiments).
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Figure 3.11: Customized X8+ multirotor (flying deputy).

Figure 3.12: Additional Hardware (Test 3).
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Chief vehicle GPS fix

Deputy 1

Deputy 2

Figure 3.13: Formation geometry Test 1.

oscillation with about 30◦ amplitude. This test has been selected to point

out the different levels of robustness of onboard fusion and DGPS/Vision

with respect to flight dynamics history.

Test 2 the chief vehicle has been commanded to fly along a path of about 200

meters (Figure 3.15), thus generating a significant change of formation

geometry in NED coordinates. The two ground antennas have been posi-

tioned in order to provide a baseline of about 100 meters with respect to the

chief vehicle at the starting and end point of the flight path (Figure 3.16).

This test has been selected to point out the effects on the onboard fil-

ter and on DGPS/Vision estimates of both flight dynamics history and

magnetic effects.

The second set of tests has been performed in an outdoor area where the two

ground antennas, the X8+, and the Pelican have been involved. During these

tests, both DGPS strategies (namely CDGPS and code-based DGPS) have been
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Figure 3.14: Chief-deputies baselines Test 1.
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Figure 3.15: Formation geometry Test 2.
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Figure 3.16: Chief-deputies baselines Test 2.

adopted, and the estimated attitude has been compared with the one given by

the Pelican navigation filter.

Among different tests, one has been considered in order to show the potential

of the developed approach in terms of accuracy and capability to provide drift-

free estimates, as follows

Test 3 an almost horizontal formation geometry (Figure 3.17) has been kept

during a flight of about 500 seconds, during which the Pelican was com-

manded to perform heading rotation maneuvers with different rates. In

fact, several fast 360◦ heading rotations have been commanded while most

of the flight was characterized by slow heading rotations in order to keep

the deputies within the chief camera FOV. Baselines variation is shown in

Figure 3.18, where the maximum baseline length between the chief (Peli-

can) and the flying deputy (X8+) is of about 130 meters, while, the maxi-

mum baseline lengths of the fixed deputy and the GCP with respect to the

pelican are both of about 160 meters. During this test, the flying deputy
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Figure 3.17: Formation geometry Test 3.

vehicle (X8+) and the fixed deputy (ground antenna) are exploited to

obtain attitude information, whereas the second ground antenna is used

as GCP in order to have a benchmark to evaluate the accuracy of the

proposed approach.

3.5.3 Pointing/Attitude Accuracy Evaluation Strategy

Given the sub-degree attitude determination accuracy obtained by the DGPS/Vision

method for the baselines experimented during flight tests, in particular for the

heading angle, it is nontrivial to find a reference measurement that provides

a ground truth of better accuracy level. In fact, this level of accuracy can be

reached installing a tactical grade IMU on board the Pelican, or a dual antenna

navigation system [16, 65], or using very accurately geoferenced ground control

points.

Besides the high cost, dual antenna navigation systems have a significant
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Figure 3.18: Chief-deputies baselines Test 3.

limit related to the necessity to install the two antennas with a sufficiently large

baseline (1 meter or more), which is hard to obtain onboard the Pelican. Also

tactical grade IMUs represent a non-optimal solution due to the high cost and

weight.

To this end, two similar strategies have been adopted in order to evaluate

the DGPS/Vision attitude accuracy.

• In Test 1, the position of a GCP which is visible in the acquired images

(Figure 3.19) has been identified on an open source 1:1000 georeferenced

map [66] (planar error of the order of 25 to 50 cm). The idea is to compute

azimuth and elevation in the navigation frame of the identifiable GCP, to

be used as reference measurements to evaluate the pointing accuracy.

• In Test 3, a ground-based GPS antenna has been used as GCP (Fig-

ure 3.20) for pointing accuracy evaluation, which can then be related to

attitude determination performance.
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The logical scheme of the pointing accuracy, when the GPS antenna is used as

GCP, is reported in Figure 3.21 where the main processing steps are highlighted.

The main difference between the two validation strategies is the adopted ap-

proach for the evaluation of the (attitude independent) reference measurements,

that is, the ECEF relative position vector ∆rECEF between the Pelican and the

GCP.

In fact, in the first approach, this vector is evaluated as the difference between

the Pelican and the georeferenced GCP positions (Figure 3.22)

∆rECEF =


xECEFGCP − xECEFPelican

yECEFGCP − yECEFPelican

zECEFGCP − zECEFPelican

 =


∆x

∆y

∆z

 (3.59)

where xECEFGCP , yECEFGCP and zECEFGCP are the ECEF coordinates of the GCP

(provided by the map) and xECEFPelican, yECEFPelican, zECEFPelican are the Pelican ECEF coor-

dinates given by the on-board GPS receiver.In the second approach, this vector

is computed by DGPS processing (Figure 3.21).

This vector in ECEF (∆rECEF ) is then converted in NED (∆rNED) following

Equation 3.7 from which it is straightforward to calculate the reference Azimuth

(AzRef ) and Elevation (ElRef ) in NED which are used as attitude independent

measurements.

For what concerns the attitude dependent measurements, this is obtained

starting from the Pelican-to-GCP LOS in BRF (r̂BRF ) which is obtained by de-

tecting on each image the GCP (Figure 3.19, Figure 3.20) and applying Equa-

tion 3.4.

r̂BRF is then transformed in two unit vectors, one, r̂NED,DGPS/V ision applying

the rotation matrix Rn,DGPS/V ision

b
computed by exploiting DGPS/Vision infor-

mation, and the other one, r̂NED,Pelican applying the Rn,Pelican

b
computed by the

Pelican navigation filter as follows
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r̂NED,DGPS/V ision = Rn,DGPS/V ision

b
r̂BRF

r̂NED,Pelican = Rn,Pelican

b
r̂BRF

(3.60)

Also in this case, from these two attitude dependent unit vectors it is straight-

forward to obtain azimuth (AzDGPS/V ision, AzPelican) and elevation (ElDGPS/V ision,

ElPelican) angles.

Consequently, azimuth and elevation errors are given by

∆AzDGPS/V ision = AzDGPS/V ision − AzRef
∆AzPelican = AzPelican − AzRef

(3.61)

∆ElDGPS/V ision = ElDGPS/V ision − ElRef
∆ElPelican = ElPelican − ElRef

(3.62)

Two important factors for effective application of the proposed accuracy eval-

uation strategy regard the uncertainty of the reference measurements (AzRef ,

ElRef ), and the relation between the attitude measurement uncertainties and the

computed azimuth and elevation angles (AzDGPS/V ision; AzPelican, ElDGPS/V ision;

ElPelican).

As regards the first point, the accuracy of the reference measurements de-

pends on the adopted strategy. In fact

1. The georeferenced map has a planar sub-metric accuracy, while the error

on Pelican positioning depends on horizontal accuracy of standalone GPS.

Due to the large distance from the GCP (about 600 m), the linear un-

certainty of the baseline is converted into a relatively small angular error.

For the sake of concreteness, if one assumes 6 meters of horizontal rela-

tive positioning error, the worst case uncertainty on the reference azimuth

measurement (i.e., error vector normal to the Pelican-GCP line of sight)

is given by

σAzRef = tan−1

(
6

600

)
≈ 0.01rad = 0.57◦ (3.63)
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As mentioned above, the focus of these tests is mainly on heading perfor-

mance, as a consequence only the processing strategy and results concern-

ing azimuth in NED are relevant.

2. The baseline estimation error, due to DGPS, is of the order of 1 and 2

meters (code-based DGPS), or 0.05 and 0.2 meter (CDGPS) in horizontal

and vertical directions respectively. Due to the large distance from the

GCP (about 100 meters), the linear uncertainty of the baseline is converted

into a small angular error. For the sake of concreteness, uncertainties on

the reference azimuth and elevation measurements (at 100 meters) are

given by

σAzRef = tan−1

(
1

100

)
≈ 0.01rad = 0.57◦

σElRef = tan−1

(
2

100

)
≈ 0.02rad = 1.14◦

(3.64)

If a code-based solution is applied, or

σAzRef = tan−1

(
0.05

100

)
≈ 0.03◦

σElRef = tan−1

(
0.2

100

)
≈ 0.11◦

(3.65)

with a CDGPS solution.

As concerns the relation between azimuth and heading, it is intuitive that for

quasi-horizontal baseline and for small roll and pitch angles (as it indeed happens

in the considered flight tests), azimuth accuracy depends primarily on heading

measurement performance, with very little effect produced by the other errors.

The same applies to the elevation which mainly depends on pitch measurement

performance if the angle between the roll axis and the direction to the GCP

is small. This can be demonstrated analytically by deriving a first order error

budget.

In particular, starting from the equations of the computed azimuth and ele-

vation as a function of unit vectors in NED it is possible, both for DGPS/Vision
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Figure 3.19: Example of image acquired from the chief vehicle showing the observa-

tion geometry during Test 1 and 2.

Figure 3.20: Example of image acquired from the chief vehicle showing the observa-

tion geometry during Test 3.
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Figure 3.21: Pointing accuracy logical scheme.

Figure 3.22: Attitude independent measurement from georeferenced GCP.
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and Pelican navigation filter, to express the azimuth and elevation uncertainties

as

σ2
Az
∼=
(
∂Az

∂ψ

)2

σ2
ψ +

(
∂Az

∂θ

)2

σ2
θ +

(
∂Az

∂φ

)2

σ2
φ + · · ·(

∂Az

∂AzCRF

)2

σ2
AzCRF

+

(
∂Az

∂ElCRF

)2

σ2
ElCRF

(3.66)

σ2
El
∼=
(
∂El

∂ψ

)2

σ2
ψ +

(
∂El

∂θ

)2

σ2
θ +

(
∂El

∂φ

)2

σ2
φ + · · ·(

∂El

∂AzCRF

)2

σ2
AzCRF

+

(
∂El

∂ElCRF

)2

σ2
ElCRF

(3.67)

where ψ, θ and φ are heading, pitch, and roll, respectively, while AzCRF

and ElCRF are the GCP azimuth and elevation angles computed in the camera

reference frame.

The squared derivatives can be computed analytically. and they measure

the sensitivity of azimuth and elevation uncertainties on the input errors, and

depend themselves on ψ, θ, φ, AzCRF and ElCRF .

For the sake of concreteness, in view of the analyzed experiments, assum-

ing CRF coincident with BRF, null chief attitude angles, AzCRF = −20◦, and

ElCRF = −5◦, values of the computed derivatives are sown in Table 3.2.

This table shows that the main contributions to azimuth pointing error are

the uncertainties on ψ and AzCRF .

Even degree-level errors on roll and pitch have a limited contribution, since

they are strongly attenuated. On the other hand, since uncertainties in AzCRF

and ElCRF are related to the camera IFOV and thus of the order of 0.05◦ in the

considered case, the final uncertainty on azimuth pointing is given by a small

amplification of the heading one.

Similarly, Table 3.2, shows that the main contributions to elevation pointing

error are the uncertainties on θ and ElCRF , though a larger coupling with roll

angle is present.
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Table 3.2: Pointing error derivatives.

Azimuth Error Elevation Error(
∂
∂ψ

)2
1 0(

∂
∂θ

)2
9 · 10−4 0.9(

∂
∂φ

)2
7 · 10−3 0.1(

∂
∂AzCRF

)2
1 0.5(

∂
∂ElCRF

)2
0 1.4

In conclusion, this analysis shows that, for the considered experimental con-

ditions, azimuth and elevation accuracy evaluation represents a good benchmark

to evaluate and compare heading and pitch estimation performance respectively.

3.6 Experimental Results

During the experimental tests, images acquired by the (forward-looking) camera

and GPS data have been gathered on-board the chief at 1Hz frequency and IMU

data at about 100Hz, in addition, GPS measurements from the ground antennas

have been acquired at 5Hz, while, when involved in the testing strategy, GPS

data have been stored on-board the flying deputy at 1Hz.

Performance analysis is thus based on off-line processing, and GPS time is

used for accurate data synchronization, avoiding the need of a communication

link among flying and ground systems.

Indeed, when considering real time implementation of the developed data

fusion algorithm, communication delays can occur. However, due to the short

range LOS communication architecture, and the small amount of data to be

shared (only GPS observables from the deputies), it is expected that these de-

lays will be short, and real time communication can be effectively achieved by
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technologies available onboard small and even micro-UAVs. In addition, tak-

ing into account the typical dynamics of small and Micro-UAVs, this problem

can be overcome by adopting a negative-time measurement update approach in

which, when the delayed measurement arrives (with an accurate time stamp),

state and covariance updates are calculated at the measurement time and prop-

agated to the current time [67, 68]. This requires accurate data time tagging,

and to keep in memory a sliding window where navigation data are stored. The

considered time window dimensions correspond to the largest possible latencies.

This processing can be considered compatible with the computational resources

currently available onboard small UAVs.

In the following, experimental data are analyzed to highlight the performance

of the novel DGPS/Vision algorithm and the consequent advantage of relying

on magnetic- and inertial-independent accurate attitude information.

3.6.1 Differential GPS

To assess the performance of the differential-GPS strategies described in subsec-

tion 3.3.2, baselines are estimated in static and dynamic conditions.

Considering the CDGPS solution, carrier phase residuals are used as index

for evaluating the performance of the filter described in subsubsection 3.3.2.2.

The static configuration is assessed using data coming out from the two

ground antennas. Results are depicted in Figure 3.23 which shows (with different

colors) the CP residuals for each available couple of GPS satellites, where both

strategies (EKF and EKF+LAMBDA) showed in subsubsection 3.3.2.2 are used.

When static receivers are used, the strategy that fixes the ambiguities (

LAMBDA) shows an advantage in baseline estimation. The ambiguities that

are correctly estimated show a sudden drop of the corresponding CP residuals

(see red and purple lines in Figure 3.23). It is important to note that not all

the ambiguities are fixed: this is the case of yellow and green lines that do
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not show any jump. This means that the relevant ambiguities are not fixed in

the processed time span. Indeed, the ambiguity thresholds have been carefully

selected to avoid false ambiguities fixing, while guaranteeing that a reasonably

large set of ambiguities is fixed and thus improving the performance in baseline

estimation with respect to the simple EKF filter.

CP residuals of baseline estimation for two flying receivers are shown in

Figure 3.24, in this case data from Pelican and X8+ GPS receivers are used to

compare the filters performance. Comparing the two plots in Figure 3.24, it is

possible to highlight that no improvement is provided by combining the EKF

with LAMBDA. During the experiment, the receivers experienced a significant

amount of cycle slips (both on Pelican and on X8+). Recurring slips (one each 4

seconds on average) cancel out the advantage of the combined EKF + LAMBDA

filter because (1) the high slip rate makes the correct ambiguities estimation and

fixing harder and (2) even if ambiguities are fixed they are rapidly discarded

because of the occurrence of a new slip.

As a consequence, the EKF-only algorithm depicted in Figure 3.3 has been

preferred due to the lower computational burden.

The baseline norm of the receiver couples estimated with CDGPS technique

is shown in Figure 3.25 and it is compared with the DGPS processing presented

in subsubsection 3.3.2.1. As expected, even if CDGPS and DGPS solutions are

in general in good agreement, CDGPS is much smoother than DGPS one. The

results suggest, as shown in Figure 3.25 and Figure 3.26 that using the CDGPS,

the accuracy in estimating the baseline is an order of magnitude better than the

DGPS one.

65



Figure 3.23: CP residuals of EKF and EKF+LAMBDA filters (static receivers).
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Figure 3.24: CP residuals of EKF and EKF+LAMBDA filters (dynamic receivers).
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Figure 3.25: Estimated CDGPS and DGPS Baseline Norm.
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Figure 3.26: Pelican-X8 couple baseline components in ENU.
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3.6.2 Loosely coupled approach

The EKF loosely coupled approach has been tested with experimental data

acquired during Test 1 and 2.

As already mentioned, in order to estimate the attitude through the TRIAD

algorithm, two deputies are required. In Test 1 and 2, the role of deputies

has been played by the two ground antennas and only the code-based DGPS

solution has been adopted. In Test 1, the position of the GCP for pointing

accuracy analysis (subsection 3.5.3) has been obtained on an open source 1:1000

georeferenced map.

It is worth noting that these tests have been mainly designed to compare

heading estimates coming out from the DGPS/Vision method, the Pelican nav-

igation filter and magnetometers. This is of great importance considering chal-

lenges in estimating heading angle by using low cost MEMS inertial and magnetic

sensors, in particular due to possible magnetic disturbances.

3.6.2.1 Test 1

This dynamic test has been performed to evaluate the effects of relatively ag-

gressive heading maneuvers on both the EKF and the Pelican navigation filter.

Baselines longer than 100 meters have been kept during most of the flight

(Figure 3.14), in particular, as shown in Figure 3.27, after a very smooth flight

of almost 230 seconds, three 360◦ heading rotations have been commanded.

It is worth noting that, during the 360◦ heading rotations, the DGPS/Vision

attitude measurements are not continuously available due to the impossibility to

maintain the deputies within the camera FOV. However, the developed filtering

architecture can compensate for temporary measurement losses using inertial

measurements to propagate attitude estimates.

From a practical point of view, short DGPS/Vision outages, such as the ones

experimented during the presented test, do not impact in a significant way the
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heading estimation performance.

In the following, to get a clearer insight into the DGPS/Vision performance

and robustness, it is worthwhile to focus the attention on three flight segments

(ellipses), as indicated in Figure 3.27. In fact, while the proposed EKF, aided by

DGPS/Vision measurements which are independent from magnetic and inertial

information, does not show dependence from flight dynamics and history, the

Pelican navigation filter shows significant limits particularly at the end of the

heading rotation maneuvers.

In Figure 3.28 the low frequency rotations of the heading angle during the

first time interval does not introduce any significant disturbance and conse-

quently the Pelican navigation filter algorithm follows quite well the heading

given by the MEMS magnetometer. The first flight segment lies before the head-

ing rotation maneuvers (Figure 3.27). Within this time interval, the difference

of about 5.3◦ (Table 3.3) between heading estimates obtained via DGPS/Vision

and Pelican navigation filter is almost constant. This difference is mainly due

to magnetic biases. In addition, Figure 3.29 shows a good consistency between

magnetometer-based and Pelican navigation filter estimates (Table 3.3).

Focusing on the flight segment immediately after the three heading rotations,

it is interesting to evaluate the response of the Pelican navigation filter and the

customized EKF to abrupt maneuvers. In fact, as shown in Figure 3.29, after

the three rotations, the EKF heading estimate has a behavior similar to the one

experimented during the smooth flight phase, keeping an offset of about 7.1◦

(see Table 3.3) with respect to the magnetometer based heading. Being strongly

impacted by DGPS/Vision measurements, EKF has a very limited dependence

on the experimented dynamics. On the other hand, the Pelican navigation filter

shows a significant drift mainly due to the low weight given to magnetometer-

based measurements and to the coarse gyroscopes accuracy, leading to large error

accumulation. The difference between the Pelican navigation filter and the EKF
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Figure 3.27: Heading as a function of time (Test 1).

heading estimates reaches a maximum value of about 20◦ (Figure 3.29), while

an offset of 23◦ is also generated between the heading estimated by the Pelican

navigation filter and the one estimated using the magnetometer (Table 3.3).

Only at the end of the flight, the Pelican navigation filter slowly reduces its

offset with respect to the EKF and magnetometer based heading.

As shown in Table 3.3, only after several tens of seconds, and further ma-

neuvers (third time interval, Figure 3.30), the Pelican navigation filter solution

recovers the offset with respect to DGPS/Vision and magnetometer-based head-

ing, thus achieving a final performance level that resembles the one experimented

in the first flight segment. During all the flight test, the difference, of about 7◦

(Table 3.3), between DGPS/Vision and magnetometer-based heading does not

show significant variations. In summary, compared with classical attitude deter-

mination techniques, this test confirms the potential of DGPS/Vision to provide

small noise measurements which are completely independent from attitude dy-

namics history.

Time intervals 1 and 2 have been chosen in order to show the accuracy achiev-
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Figure 3.28: Heading angle as a function of time (Test 1 - first time interval.)
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Figure 3.29: Heading angle as a function of time (Test 1 - second time interval).
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Figure 3.30: Heading angle as a function of time (Test 1 - third time interval).

Table 3.3: Test 1 heading comparison (mean values in degrees).

Time
EKF Magnetometer

Pelican

Navigation Filter

Diff. between EKF and

Intervals Magnetometer Pelican

1 -52.9 -60.2 -58.2 7.3 5.3

2 -49.2 -56.3 -33.1 7.1 -16.1

3 -47.5 -54.7 -45.9 7.2 -1.6
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able by integrating attitude estimates, derived by DGPS/Vision measurements,

within the customized EKF.

The adopted accuracy evaluation strategy has been described in subsec-

tion 3.5.3, in particular, here the attitude independent measurement is obtained

detecting a GCP on a 1:1000 georeferenced map.

Figure 3.31 and Figure 3.32 show the computed errors in these two time

intervals for the attitude estimated by DGPS/Vision (TRIAD), EKF and Pelican

navigation filter.

Considering the first time interval (Figure 3.31), the EKF and the DGPS/Vision

show similar performance, with sub-degree azimuth errors and a standard devi-

ation over the mean azimuth error of about 0.3◦. On the contrary, the Pelican

navigation filter shows a mean azimuth error of about 4.4◦.

Considering the second time interval (Figure 3.32) after the three 360◦ head-

ing rotations, the EKF and DGPS/Vision mean error remains sub-degree while

the Pelican navigation filter one increases to about 17.6◦. These results show

that, unlike the Pelican navigation filter, the EKF errors do not show a clear

dependence on flight dynamics history, and fall within the uncertainty of the

reference azimuth measurements.

3.6.2.2 Test 2

This test has been conducted mainly to analyze the effect of the DGPS/Vision

heading estimate within the EKF, in a scenario with changing aircraft orienta-

tion within the Earth magnetic field (Figure 3.15).

During this test, a number of attitude maneuvers (e.g., yaw rate oscillations)

have also been commanded (Figure 3.33). As before, EKF and DGPS/Vision

results are compared to Pelican navigation filter output and to magnetometer-

based estimates.

As shown in section 3.4, a horizontal baseline of about 100 meters is needed
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Figure 3.31: Azimuth error as a function of time (Test 1 - first time interval).
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Figure 3.32: Azimuth error as a function of time (Test 1 - second time interval).
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to have a DGPS/Vision heading accuracy of the order of 0.4◦. This baseline has

been achieved in the initial and final phase of the dynamic test (Figure 3.16):

these two flight segments, highlighted with ellipses in Figure 3.33, are thus fo-

cused in this analysis. The heading variation between the considered time inter-

vals is of about 140◦, as a result, the GCP used for pointing accuracy analysis

was out of FOV for most of the time, hence, for this test pointing accuracy

analysis is not performed.

Heading behavior is analyzed in Figure 3.34 (first time interval) and Fig-

ure 3.35 (second time interval), which depict EKF and DGPS/Vision estimates

together with onboard navigation filter and magnetic heading.

In both flight segments, the EKF is initialized with Pelican navigation filter

output, and after a fast transient phase a difference of several degrees is gener-

ated between EKF and onboard navigation filter. The heading difference also

changes in time, which basically derives from the combined effect of gyroscopes

bias instability and magnetic uncertainties.

As regards the comparison of the two flight segments, first of all the absolute

difference between magnetic heading and onboard navigation filter shows a large

change (2.4◦ during the first flight segment and 15.5◦ during the second flight

segment), basically due to the flight history and the experimented dynamics.

More importantly, the mean difference between EKF and onboard navigation

filter also shows a significant change, in fact the absolute difference is about

4.9◦ during the first flight segment and 8.4◦ in the second flight segment. While

residual misalignment between camera and IMU would generate a constant dif-

ference, this variation is basically due to the effect of magnetometers biases and

residual uncompensated on board magnetic fields, which changes as a function

of the aircraft heading during flight.

This is also evident if EKF output is compared with magnetic heading. In

fact, in both Figure 3.34 and Figure 3.35, if we filter out the high frequency
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Figure 3.33: Heading as a function of time (Test 2).

Table 3.4: Heading comparison (mean values in degrees) Test 2.

Time
EKF Magnetometer

Pelican

Navigation Filter

Diff. between EKF and

Intervals Magnetometer Pelican

1 -32.4 -39.7 -37.3 7.3 4.9

2 109.5 116.6 101.1 -7.1 8.4

noise that characterizes magnetometer output, magnetic heading has an offset,

with respect to the EKF, which changes sign and value. In fact, in the first

flight segment the difference between the EKF and the magnetic heading is 7.3◦

while in the second flight segment the difference is −7.1◦.
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Figure 3.34: Heading as a function of time (Test 2 - first time interval).
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Figure 3.35: Heading as a function of time (Test 2 - second time interval).
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3.6.3 Tightly coupled approach

Tight integration of DGPS/Vision measurements within the EKF has been

tested on experimental data acquired during Test 3.

The basic testing strategy has consisted in changing baseline length and

formation geometry, while always keeping the flying deputy within the FOV of

the chief onboard camera. A further driver for certain flight geometries has been

the need to keep also ground antennas within the FOV for most of the flight.

GPS flight paths and position of ground antennas are shown in Figure 3.17.

Given also the focus on heading performance estimation, heading maneu-

vers have been essentially commanded to the chief, with different rates. In fact,

some fast 360◦ rotations have been commanded to verify the capability of the

proposed approach to track fast dynamics and to analyze possible drift accu-

mulation phenomena, while most of the flight has been characterized by slow

angular velocities, which are difficult to track due to the high gyroscope noise.

Furthermore, heading rotations have been also commanded to estimate magnetic

effects, though the need of keeping ground antennas within the FOV has limited

the range of variation for chief heading. In Figure 3.18 the baselines between

the chief and the ground antennas (larger than 100 meters) and the one with

the flying vehicle (varying between 70 and 130 meters) are shown.

During the test DGPS/vision measurements are available for most of the

considered time, only some isolated losses are produced by the impossibility to

detect antennas within images. In fact, as regards the flying deputy, temporary

losses are primarily due to sudden changes of illumination and/or camera shut-

ter times, whose effects are amplified by the low flight altitude and the strong

contrast between sky and ground image regions. Instead, line of sight losses

for the ground antennas are essentially due to the limited camera FOV and the

maneuvers executed during the test.

The tightly coupled EKF (subsubsection 3.3.4.4) has been run integrating 1
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LOS, derived by adopting a code-based DGPS solution, or 2 LOS in which both

code-based DGPS and CDGPS solutions have been considered. EKF results are

compared to Pelican navigation filter output and the pointing accuracy analysis

is conducted. During this test, the flying deputy vehicle (X8) and the fixed

deputy (ground antenna) are exploited to obtain attitude information, whereas

the second ground antenna is used as GCP in order to have a benchmark to

evaluate the accuracy of the proposed approach.

Starting from the code-based DGPS, the EKF integrating 1 LOS or 2 LOS

is run through the whole flight, and it is initialized with the first measurement

coming from the Pelican navigation filter. In order to increase readability, Fig-

ure 3.36 shows the heading angle during the whole flight in which the 360 degrees

heading rotations have been cut and also magnetometer based estimates are in-

cluded. In Figure 3.36 it is possible to appreciate how the Pelican navigation

filter presents a significant drift while the offset between EKF heading estimates

and the magnetometer based one remains almost constant.

In order to clarify some aspects of the proposed method, that is the indepen-

dence of DGPS/Vision measurements from magnetic and inertial information,

it is worthwhile to focus the attention on four flight segments as indicated in

Figure 3.36 (ellipses).

The first considered flight segment (Figure 3.37 (a) up) is before the 360

degrees heading rotation maneuvers. During this time interval, the onboard

navigation filter presents a drift with respect to the proposed EKF reaching a

maximum offset of about 20 degrees. This behavior is mainly due to the com-

manded slow heading rotation maneuvers and, hence, the low angular velocities

that fall within the gyroscopes noise, making it difficult for the onboard naviga-

tion filter to follow the real heading dynamics. On the other hand, the proposed

EKF, aided by DGPS/Vision measurements, does not present drift and shows

a trend similar to the magnetometer-based heading (though magnetometer so-
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lution is noisier) with an almost constant bias of about 7 degrees. The pointing

accuracy analysis (Figure 3.37 (a) bottom) clearly demonstrates the different

accuracy of the two heading estimates. 1LOS and 2LOS EKF do not show sig-

nificant differences in this phase, due to the geometry which provides a good

heading information also with a single LOS. In fact, local differences among the

two EKF are mostly due to temporary losses of the flying deputy.

The second flight segment following the 360 degrees heading rotation maneu-

vers (Figure 3.36) covers the time interval between 100 and 175 seconds. The

general behavior is similar to Figure 3.37 (a), but an increased offset is generated

between the EKF and the onboard navigation filter (up to about 60 degrees)

due to the effects of experimented dynamics, i.e., the drift accumulated during

fast rotations. As before, EKF and magnetometer-based estimates (which are

both insensitive to the flight history) present an absolute difference of about 7

degrees.

In Figure 3.37 (b) up the different behavior of the two considered EKF, in the

interval between 107 and 113 seconds, has been put in evidence. This difference

is due to the fact that, immediately after rotations, due to the illumination

conditions measurements from the fixed deputy are available a little in advance

with respect to the flying deputy. This means that in this time interval the green

line is equivalent to the case of a single line-of-sight. Again, pointing analysis (In

Figure 3.37 (b) bottom) demonstrates that sub-degree accuracy can be attained

as soon as cooperative aiding measurements are available.

In Figure 3.37 (c) (third flight segment) faster heading rotations help the

pelican navigation filter to follow the real dynamics. As a consequence, at the

end of the considered interval, the pelican navigation filter recovers some of

the offset with respect to the EKF estimates reaching a final value of about 15

degrees. In addition, if one compares EKF and magnetometer-based solutions in

the time interval that goes from about 210 seconds up to 245 seconds, where the
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maximum heading angle is reached, the offset is of about 10 degrees. This result

confirms that the origin of this difference lies in the effect of uncompensated

magnetometer biases and onboard magnetic fields, which are constant in the

body reference frame and thus generate an effect on heading estimation error

which strongly depends on quadrotor orientation within the Earth’s magnetic

field.

The fourth flight segment (Figure 3.37 (d)) is characterized by a low fre-

quency profile of the heading angle. The absolute difference between EKF and

magnetometers is again of about 7 degrees due to the Pelican heading being of

the order of the one experimented in the first part of the test. Regarding the

pelican navigation filter, due to the experienced dynamics, the offset remains

almost constant till the end of the considered time interval.

Both in the third and in the forth flight segment, pointing analysis results

do not show significant differences with respect to the considerations formulated

on the first part of the experiment.

Although formation geometries and experimental tests have been mainly

designed to optimize and analyze heading angle estimation performance, for the

sake of completeness in Figure 3.38 and Figure 3.39 pitch and roll angles as

estimated by the EKF and the on-board navigation filter are shown. Both pitch

and roll diagrams show a good similarity between different measurements.

In particular, the roll estimate from the 1 LOS EKF is very similar to the

Pelican navigation filter, as a result of the fact that the LOS to the flying deputy

is always close to the forward aircraft direction, and the baseline is not large

enough to guarantee some accuracy improvement. A difference can be detected

for the 2 LOS EKF, where the (limited) angular separation between deputies

can be exploited, though the information content is relatively limited.

As regards pitch, LOS measurements have some more impact on the EKF so-

lution, generating degree-level differences with respect to the Pelican navigation
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Figure 3.36: Heading as a function of time (Test 3).

filter.

Table 3.5 summarizes pointing accuracy results relevant to the whole flight.

In general, for the considered formation geometries, including DGPS/Vision

measurements permits reducing both azimuth and elevation root mean square

errors.

Error statistics are consistent with basic system budgets (Figure 3.37), also

considering that they actually comprise flight phases with temporary losses of

cooperative measurements. Since the baselines and the flight geometries change

during the flight, both benchmark accuracy and sensitivity coefficients tend to

change. On average during the whole flight, sub-degree accuracy in reference

azimuth, and degree-level accuracy in reference elevation, can be assumed.

Thus, differences in azimuth error can be considered as statistically signif-

icant, showing that the 2 LOS filter outperforms the 1 LOS EKF. As stated

above, this is basically due to the larger availability of at least a single aiding

LOS, more than to the additional information provided by the second LOS. The
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Figure 3.37: Heading angle as a function of time during (a) first (b) second (c) third

(d) fourth flight segments.
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Figure 3.38: Pitch as a function of time (Test 3).
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Figure 3.39: Roll as a function of time (Test 3).
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Table 3.5: Pointing Accuracy Statistics.

Azimuth Error [◦] Elevation Error [◦]

1 LOS

Mean −0.8 −0.4

Std 1 0.8

RMSE 1.2 0.9

2 LOS

Mean −0.06 −0.04

Std 0.7 0.6

RMSE 0.7 0.6

Pelican Navigation Filter

Mean −28 0.9

Std 14 0.8

RMSE 32 1.2

average performance of the Pelican navigation filter in azimuth differs by more

than an order of magnitude.

As regards elevation, again the 2 LOS filter shows the best performance in

terms of Root Mean Square Error (RMSE), followed by the 1 LOS EKF and the

Pelican navigation filter. In this case, the limited performance differences, and

the larger benchmark uncertainty, allow concluding that degree-level accuracy

is achievable by all developed architectures.

Given the higher accuracy achievable when 2 LOS are integrated within the

EKF, in the following it is also interesting to analyze the performance of the

DGPS/Vision processing when 2 LOS and the CDGPS solution are adopted.

To this end, in Figure 3.40 and Figure 3.41 a comparison between the attitude

accuracy achievable with the code-based DGPS, and CDGPS is performed.

Again, azimuth accuracy depends primarily on heading measurements per-

formance, while the elevation accuracy depends on pitch and roll performance.

From Figure 3.40 and Figure 3.41 it is clear that the higher accuracy (horizon-

tal and vertical) of the CDGPS solution increases the yaw, pitch and roll attitude
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Figure 3.40: DGPS/Vision vs. CDGPS/Vision azimuth error as a function of time

(Test 3).

accuracy. In fact, by analyzing the azimuth (heading) error, the CDGPS/Vision

presents a mean error of 0.1 degrees with a standard deviation of about 0.08

degrees (Table 3.6), far better than the one achieved by adopting a code-based

DGPS (standard deviation of about 0.7 degrees Table 3.5).

A similar result is shown for pitch and roll performance where a significant

improvement is provided by the CDGPS/Vision measurements due to the in-

creased vertical accuracy of the CDGPS solution with respect to the code-based

DGPS one. In fact, the standard deviation of the CDGPS/Vision elevation

error is 0.18 degrees (Table 3.6), while the DGPS/Vision presents a standard

deviation of 0.6 degrees (Table 3.5).

In conclusion, experimental results show that the integration of the CDGPS

solution, within the cooperative navigation approach, permits achieving high

accurate attitude estimates which can bring significant advantages to all those

applications where fine sensor pointing is required.
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Figure 3.41: DGPS/Vision vs. CDGPS/Vision elevation error as a function of time

(Test 3).

Table 3.6: Pointing Accuracy Statistics CDGPS.

Azimuth Error [◦] Elevation Error [◦]

2 LOS CDGPS/Vision

Mean 0.1 −0.05

Std 0.08 0.2

RMSE 0.2 0.2
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Chapter 4

Cooperative Navigation in

GPS-Challenging Environments

While in the previous chapter it was assumed that all UAVs of the formation

were flying under nominal GPS coverage, here, the focus is set on UAV navi-

gation in environments where it is difficult, or impossible, for GPS receivers to

track satellite signals. These environments are defined as GPS-challenging or

GPS-denied, respectively [69]. In fact, in certain cases, UAVs missions involve

operations in particular environments such as natural and urban canyons, or

mixed outdoor-indoor settings, that can determine multipath or shadowing of

the GPS satellite signal. As a consequence, the GPS receiver can be unable to

generate a position fix, since less than four pseudoranges are available [9].

The absence of a valid position fix prevents the navigation system to bound

the errors deriving from successive integration of inertial sensors measurements.

Furthermore, since small UAVs are usually equipped with low performance low

cost inertial MEMS sensors, position error drift is fast, making the system un-

reliable for many applications.

In these conditions, it is necessary to rely on a non-GPS backup or alternative

navigation system, that is, a system which combines inertial sensors information
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with those provided by an aiding sensor.

The solution adopted in this research activity is based on coupling coopera-

tive navigation and vision-based techniques. In particular, in [70], a micro-UAV

flying in GPS denied/challenged conditions is supported by (at least one) co-

operative aircraft under nominal GPS coverage, thanks to position information

broadcast and vision-based relative sensing (which avoids the need of inter-

vehicle ranging systems to be installed on all the vehicles). As it is intuitive,

while exploiting two or more cooperative UAVs allows triangulating the posi-

tion of the micro-UAV in GPS denied conditions, in general aiding measurements

from a single cooperative UAV do not allow eliminating position error drift, due

to the absence of direct information provided along the LOS. This issue can

be solved either integrating valid pseudorange measurements in the navigation

filter, or exploiting ad hoc commanded motion of the cooperative vehicle under

GPS coverage.

A second approach, proposed in [71], consists in combining within a sensor

fusion algorithm cooperative navigation with vision-inertial SLAM, in order to

compensate drawbacks of each method and effectively counteract position error

drift.

4.1 Related Work

As already mentioned, in GPS-challenging environments, additional aiding in-

formation must be provided to reduce or eliminate the navigation error drift.

Several approaches can be used to this aim [72], such as vision-aided navigation

[73, 74], positioning based on cell phone signals [75], and cooperative navigation

[76].

Over the past decade, computer vision has played an important role in both

control and navigation of UAVs [77]. Vision-aided navigation methods are usu-
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ally based on the use of a single camera (monocular) or multiple cameras (stereo).

Stereo-vision systems have been successfully applied for micro-UAVs navigation

[78, 79], but the baseline between cameras limits the possible altitude range [80].

Monocular vision also offers a good solution in terms of weight, accuracy and

cost, however, the need to solve the scale factor makes it necessary to fuse data

with other sensors [81].

In general, visual-inertial navigation and simultaneous localization and map-

ping (SLAM) represent widely investigated topics in literature [73, 74, 82]. In

spite of assessed theoretical foundations and processing strategies, issues for

implementation onboard micro-UAVs still remain involving possible localization

ambiguities, consistency of self formulated uncertainty estimates, computational

load (and thus real time capabilities) and sensitivity to illumination and environ-

mental conditions. Moreover, as a matter of fact optical/inertial measurements

cannot avoid scale drift phenomena, unless flight is constrained in a relatively

limited area, which limits mapping errors for the geolocated ground features. A

possible solution for scale drift phenomena consists in integrating range sensors

such as radar or LIDAR altimeters, which however may pose other challenges

related to available onboard budgets and the three-dimensional structure of the

mission environment [82].

A further solution is represented by positioning systems based on cell phone

signals, in which the ubiquity of cell phone towers is exploited to infer the posi-

tion of UAVs. In fact, knowledge of position coordinates of the cell phone towers

allows a traditional multi-lateration approach to determine the UAVs position

[72]. The two major advantages of this approach are that, positions of cell phone

towers are known in urban settings and that the necessary technology to extract

information from cell phone signals already exists. The main drawbacks are re-

lated to signal coverage which may be sparse in certain geographical areas and

that many technical issues concerning the multi-lateration method need more
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research and studies.

All the aforementioned techniques involve a single vehicle architecture, a dif-

ferent approach consists in exploiting cooperative navigation, taking advantage

from companion aircraft within a multi-UAV scenario. Cooperative navigation

approaches differ in terms of informations exchanged among the vehicles (i.e. in

terms of sensors adopted for generating the navigation solution and/or in terms

of the relative measurements).

Many researchers involved in cooperative systems have focused their atten-

tion on the task of Cooperative Localization (CL). This is of paramount impor-

tance in applications in which a precise formation geometry is required. In [83]

cooperative navigation in GPS-denied areas is performed acquiring overlapping

images of the scene from different UAVs in which at least one of them has GPS

coverage. Once blob features [84] have been matched among those images, it is

possible to recover UAVs relative positions and consequently the absolute po-

sition of each vehicle. A similar approach has been followed in [85] and [86] in

which overlapping views are processed in order to evaluate relative positions in

swarms.

The main drawback of all these vision-based approaches is the necessity

to detect and track natural or manmade features in a sequence of overlapping

images which require a static and textured scene in good illumination conditions.

Another cooperative navigation approach [72], requires positions broadcast

from UAVs and range measurements obtained from signal round trip timing. In

this way, the combined range and location information can help mitigate the

error growth of the low-cost IMU on board the UAVs.

This work derives from a different approach, which consists in exploiting co-

operative navigation, where a micro-UAV flying in GPS denied/challenged con-

ditions is supported by (at least one) cooperative aircraft under nominal GPS

coverage, thanks to position information broadcast and vision-based relative
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sensing (which avoids the need of inter-vehicle ranging systems to be installed

on all the vehicles). As it will be clarified in the following, this approach reduces

formation keeping requirements, with respect to the above mentioned CL tech-

niques, and permits to exploit the motion of the cooperative vehicle under GPS

coverage to increase navigation observability.

4.2 Cooperative Navigation Approaches

As stated above, in this chapter cooperation is exploited to improve UAVs au-

tonomy in GPS-challenging environments. The proposed architecture couples

cooperative navigation and vision-based techniques, and is based on the idea of

carrying out complex missions by distributing functions among different flight

platforms.

In particular, a formation of at least two cooperating UAVs is considered.

In the following, one or more UAVs are defined as "father(s)", the other(s) are

named as "son(s)".

It is assumed that

• reliable continuous position measurements are available at father(s), i.e.,

father aircraft are flying in outdoor areas and are not susceptible to GPS

signal absorption, jamming, and multipath phenomena, or, in case of tem-

porary GPS signal corruption, high accuracy avionics are embarked on

board the father in order to bound position drifts;

• son UAVs operate in GPS-challenging environments, thus they are not able

to exploit at least four valid pseudorange measurements and use them to

obtain a reliable GPS position fix.

As better detailed in the following, in some cases it will be assumed that

less than four valid pseudorange measurements are also available at son UAVs,
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in order to analyze the effect of this additional information in the considered

navigation architecture. From a practical point of view, this means that proper

strategies are adopted to avoid using unreliable measurements.

In this section two navigation architectures are presented. The first one inte-

grates only measurements coming from cooperative UAVs, while the second one

combines within a sensor fusion algorithm cooperative navigation with vision-

inertial SLAM.

4.2.1 Cooperative Navigation

The main objective of the developed architectures and algorithms is to allow

safe and reliable navigation for son UAVs by exploiting line-of-sight information

available at formation level.

A conceptual view of the considered scenario, in the case of a 2 vehicle forma-

tion, is shown in Figure 4.1. For the sake of image clarity, Figure 4.1 shows the

father UAV flying at higher altitude than the son. Indeed, the implemented con-

cept may not require this altitude difference, whose necessity basically depends

on the mission scenario and the three-dimensional structure of the environment.

Thus, the implemented concept has some differences with respect to the one

of asymmetric formations based on high flying/low flying vehicles [76], and the

difference between father and son is based only on their operating environment

in terms of GPS coverage. Also, the developed concept can be achieved by

identical, similar, or significantly different aircraft (e.g., rotary and fixed wing

aircraft).

It is clear that a fundamental prerequisite, for these cooperative navigation

architectures, is that the LOS between son and father(s) must not present any

obstruction. In fact, LOS, allows father and son UAVs to interact by means of

two basic mechanisms:

• Information sharing: it is assumed that a proper data link exists be-
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tween father and son to allow the transmission of the required information,

mainly the father GPS-based position estimate. Furthermore, when the

father vehicle is in charge of air-to-air visual tracking, the estimated son-

to-father visual LOS is also transmitted to the son. Indeed, from the

navigation point of view, this is a one-way information exchange. Instead,

communication from the son to the father has to be foreseen if cooperative

navigation is integrated with autonomous cooperative guidance;

• Relative sensing: as anticipated above, it is assumed that this is based

on machine vision. Though cameras cannot provide direct range mea-

surements, they represent an appealing solution for the problem at hand.

High resolution cameras based on CCD or CMOS detectors represent a

well assessed technology that is accessible at low cost and with very small

size, weight, and power budgets. Furthermore, within the limits of the

trade-off between angular coverage and resolution, they can work with a

rather large field of view (FOV), thus reducing or eliminating the necessity

of sensor pointing. Depending on the considered coverage and scenario,

they can also work with more than a single father/son. Finally, the angu-

lar information can be properly integrated with other information sources

and/or dynamic strategies, in order to ensure observability and thus to

fulfil navigation accuracy requirements.

In general, in the case of a temporary loss of LOS or communications/tracking,

cooperative aiding cannot be exploited. The resulting navigation error drift will

then depend on duration of outages and the performance of son avionics systems.

Given these basic principles, two different architectural solutions can be en-

visaged. In fact, the optical system aimed at relative sensing can be installed

either on board the father, or on the son UAV. Both approaches have pros and

cons.
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Figure 4.1: Conceptual view of cooperative navigation scenario in GPS-challenging

environments.
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The first approach allows tracking and navigation to be carried out sepa-

rately. In fact, the tracking task is performed by the father, within a relatively

common vision-based air-to-air target tracking problem. Conceptually, the LOS

derived in this way depends only on the current son position. On the other hand,

measurement covariance includes position and attitude/pointing uncertainty of

the father. This choice may be convenient if the father vehicle has better nav-

igation and optical sensing performance than the son, i.e., it can exploit more

accurate inertial sensors and/or optical cameras and gimbals with larger detec-

tion range and better pointing accuracy. However, some tracking issues may

arise if the son has to be tracked against a cluttered background.

A single bearing measurement obtained in this way cannot be directly ex-

ploited for son positioning, as it does not give any information along the LOS

(we are assuming that it is not possible to estimate range accurately on the basis

of son appearance in the images). Having two fathers it is possible to directly

triangulate son position. More than two fathers enable triangulation with a

least squares approach. However, an interesting approach for son positioning on

the basis of single LOS information consists in exploiting passive ranging strate-

gies [87] to make range observable. Basically, it is necessary that the father

maneuvers generating an acceleration component in the direction orthogonal to

the LOS. Once the range is considered observable (based on the estimated co-

variance of the tracking filter), the range information can be transferred, thus

effectively giving 3d position information to the son. In all cases, when the in-

formation about absolute position of the father and relative LOS is transmitted

to the son, this is used within the son navigation filter as an additional aiding

measurement.

In the second approach, both vision-based tracking and navigation compu-

tations are carried out on the son vehicle. This may imply that the son UAV

requires additional optical sensors and processing capabilities, with respect to
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the ones needed for mission execution. Miniaturization of cameras and process-

ing units can make the concept applicable even on very small UAVs, although

it is likely that the son UAV will embark (compared with the father) less per-

forming cameras installed in strapdown configuration or within less performing

gimbals. In spite of these possible hardware differences, vision-based tracking

issues can be reduced by a more favourable operating environment, when the

father flies against sky background. The LOS information derived by the son

includes both attitude and position information, as it resembles the classical

concept of vision-aided navigation, although with mobile flying features whose

absolute position is provided in broadcast, instead of being known a priori, or

triangulated exploiting own-ship motion. Having several fathers is thus equiv-

alent to exploiting several features. A key difference with classical vision-aided

navigation is that father dynamics can be exploited to the navigation advantage,

implementing a concept similar to passive ranging. This son-centered approach

to cooperative navigation requires only father position to be transmitted. Ba-

sically, besides GPS, only a data link capability is requested, which could exist

without any specialized hardware (e.g., ADS-B Out equipment could suffice for

cooperative navigation needs). Furthermore, in theory a single father can be

simultaneously exploited by several sons, and even non-cooperative UAVs with

broadcasting capability could be used as "fathers of opportunity".

In this thesis, the son-centered cooperative navigation approach has been

developed. It is also considered the case of a single father UAV, in order to min-

imize system complexity and investigate son navigation performance in the case

of single LOS aiding alone or combined with valid pseudorange measurements

and/or father maneuvers.
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4.2.2 Cooperative Navigation and vision-based SLAM

The main idea behind this approach is to allow safe autonomous navigation for

the son UAV by simultaneously exploiting standalone vision-aided localization

and vision-based cooperative navigation techniques. This permits to overcome

limitations of both techniques, reducing the position error drift.

The difference with respect to the above mentioned approach is that, here

the son vehicle is equipped with a vision sensor (e.g., a nadir looking camera)

to detect and track manmade or natural features along the flight path, and to

perform visual SLAM based on these features (Figure 4.2).

Regarding cooperative navigation this consists again of two main compo-

nents: information sharing; relative sensing.

From the technological point of view, while in theory a single camera can

be used to track both ground features and the father vehicle, it is likely that a

multi-camera architecture is needed on board the son Figure 4.2.

The LOS information derived by the son includes again both attitude and

position information. Indeed, the additional information content provided by the

son-to-father LOS may appear limited compared with the number of features

typically employed in visual SLAM processing. However, a key difference with

respect to ground based features is that father absolute position is provided in

broadcast instead of being triangulated exploiting own-ship motion, and as such

it is not sensitive to error accumulation phenomena. Also, the father UAV can

be properly maneuvered to increase the son navigation state observability.

4.3 Logical Architectures and Algorithms

As regards the algorithmic architecture, a sensor fusion approach is developed

which combines inertial (INS)/magnetic (MAG) measurements, cooperative LOS

measurements and, if available, standalone vision-based estimates to improve
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Figure 4.2: Conceptual view of cooperative navigation and SLAM scenario in GPS-

challenging environments.
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Figure 4.3: Logical architecture of line-of-sight approach in GPS-Challenging envi-

ronment.

navigation accuracy and integrity.

Figure 4.3 and Figure 4.4 show the logical architectures of the two proposed

approaches. In both cases, the core of the algorithm is the navigation filter that

runs on the son vehicle.

In particular, the EKF combines inputs from the onboard inertial and mag-

netic sensors, measurements coming out from an attitude and heading reference

system (AHRS) filter, son-to-father unit vector in BRF as evaluated by vision-

based tracking, and GPS-based father position information. In addition, in

the first architecture shown in Figure 4.3, also GPS pseudorange measurements

(if available) are integrated within the EKF, while in Figure 4.4, we assume

that there is no GPS coverage and a SLAM-based monocular pose estimation is

adopted as aiding system.
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Figure 4.4: Logical architecture of line-of-sight approach + SLAM in GPS-

Challenging environment.
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In the following, for the sake of mathematical simplicity it is assumed that

the camera is installed in a strapdown configuration, and it is aligned with

the BRF. Actually, the same processing architecture can be adopted for any

strapdown installation geometry, and also for gimbaled installations (assuming

accurate real time knowledge of gimbal pointing angles).

4.3.1 Line-of-Sight Measurement Update

In this section, the focus is set only on the tight integration of LOS measurements

within the EKF, which couples the navigation system position error and the

navigation attitude errors into the measurement process [88]. More details about

the EKF can be found in subsection 3.3.4.

When the father is identified in the image by the vision-based tracking algo-

rithm, son-to-father LOS (subsection 3.3.1) is established and it is possible to

compute the azimuth and elevation measurement residuals to be integrated into

the EKF linearized observation model

δAz = Azmeasured − Azpredicted (4.1)

δEl = Elmeasured − Elpredicted (4.2)

where Azmeasured and Elmeasured are the azimuth and elevation in BRF ob-

tained by the vision-based tracking system (Figure 4.3 and Figure 4.4) and the

predicted ones are obtained from the known GPS father position (transmitted

to the son) and the predicted/propagated son position.

The predicted azimuth and elevation (Azpredicted;Elpredicted) are related to the

son-to-father relative position vector expressed in the son body reference frame

∆r̄BRF , where ∆r̄BRF is given by

∆r̄BRF = Rb

n
Rn

e
∆r̄ECEF (4.3)
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in which, the overbar represents the output of the navigation system, Rb

n

is the rotation matrix from the navigation to the body reference frame, Rn

e
is

the rotation matrix from the ECEF to the navigation frame, and the relative

position vector in ECEF reference frame is

∆r̄ECEF =


(Rn + hf ) cosφf cosψf − (Rn + h̄s) cos φ̄s cos ψ̄s

(Rn + hf ) cosφf sinψf − (Rn + h̄s) cos φ̄s sin ψ̄s

[Rn(1− e2) + hf ] sinφf − [Rn(1− e2) + h̄f ] sin φ̄s

 (4.4)

In Equation 4.4, (φf , ψf , hf ) are the father UAV geodetic position coor-

dinates which are transmitted to the son, (φ̄s, ψ̄s, h̄s) are the estimated son

UAV geodetic position coordinates, Rn is the earth normal radius and e is the

eccentricity.

From Equation 4.3 it is possible to compute the predicted azimuth and ele-

vation angles exploiting the following relations

Azpredicted = tan−1

(
∆yb

∆xb

)
(4.5)

Elpredicted = tan−1

(
−∆zb√

(∆xb)2 + (∆yb)2

)
(4.6)

where ∆xb, ∆yb and ∆zb are the ∆r̄BRF components.

It is important to underline that, as shown in Equation 4.3 and Equation 4.4,

predicted azimuth and elevation angles contain the dependency on son position

and attitude state variables.

A further customization of the EKF observation model derives from the as-

sumption that son dynamics does not foresee significant accelerations, compared

with gravity. Hence, besides exploiting magnetometers to compute vehicle head-

ing, it is possible to use accelerometers measurements to have a relatively rough

estimate of pitch and roll angles. As a consequence, the measurement vector,

representing the difference between the true measurements and the measure-
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ments estimated from the propagated state vector is

δz =



δPR1

· · ·

δPRn

δAz

δEl

εaccmag,n

εaccmag,e

εaccmag,d



(4.7)

where:

- δPRs is the pseudorange measurement residual for the s-th satellite com-

puted as the difference between the measured range for the s-th satellite

and a pivot satellite, minus the predicted difference (n measurements are

available if n+ 1 satellites are in view);

- εaccmag,n, εaccmag,e and εaccmag,d are the residuals relevant to attitude mea-

surements provided by accelerometers and magnetometers;

- δAz and δEl are the LOS measurement residuals presented in Equation 4.1

and Equation 4.2.

The measurement matrix H
k
, at the k-th time instant, is given by

H
k

=



H
n

0
n×3

0
n×3

∂Az

∂δp
0

∂Az

∂ρ
∂El

∂δp
0

∂El

∂ρ

0 0 I
3


(4.8)

in which: 0 is a 1× 3 null elements vector; 0
n×3

is the n× 3 null matrix; I
3

is a 3× 3 identity matrix; 0 is a 3× 3 null matrix; H
n
is given by Equation 3.25;
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and the partial derivatives ∂Az
∂δp

and ∂Az
∂ρ

represent, respectively, the derivatives

of the azimuth measurement with respect to the position error vector and with

respect to the attitude error vector, the same applies for the elevation partial

derivatives.

When measurements are available, the measurement update phase is car-

ried out using the standard Kalman filtering equations (Equation 3.52, Equa-

tion 3.53), leading to an estimate of the measurement error that is then sub-

tracted to vehicle position, velocity and attitude to provide the final estimate.

Concerning the filter tuning, the process noise matrix Q is obtained on the

basis of inertial sensor specifications, while the measurement noise covariance

matrix R is built on the basis of magnetometers and accelerometers performance,

pseudoranges uncertainties, and LOS measurements uncertainties.

In particular LOS Az and El uncertainties depend on the EO and the father

GPS-based performance (σ2
EO and σ2

GPS), as well as the distance from the father

L. Assuming uncorrelated measurements we have

σ2
Az = σ2

Az,EO + σ2
Az,GPS (4.9)

σ2
El = σ2

El,EO + σ2
El,GPS (4.10)

where

σAz,GPS ∼=
σGPS,hor

L
(4.11)

σEl,GPS ∼=
σGPS,ver

L
(4.12)

and hor and ver refer to the horizontal and vertical components of σ2
GPS.

Both Equation 4.11 and Equation 4.12 indicate that the azimuth and elevation

measurement uncertainties increase as the son-to-father distance decreases. In

addition, it is worth noting that Equation 4.11 contains a conservative approach

as the reported azimuth uncertainty is obtained in worst case geometries.
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4.3.2 Monocular Pose Estimation

Monocular pose estimation is the problem of determining the time variation of

position and attitude parameters of the son UAV with respect to a navigation

frame, by processing images acquired by a single camera. This task is carried out

by exploiting a customized visual SLAM approach which relies on feature-based

algorithms for localization and mapping running at different update rates.

The detailed architecture of the pose estimation block included in the naviga-

tion framework proposed in this work is shown in Figure 4.5, where the exchange

of information with the navigation filter block is also highlighted.

Specifically, the localization algorithm requires an initial pose solution, which

is provided by the prediction step of the navigation filter, in order to generate

an updated set of pose parameters. This updated pose represents an additional

measurement information for the navigation filter. Conversely, the mapping

function relies on multiple sets of pose parameters estimated by the correction

step of the navigation filter during a specific time interval. Before entering

the details of the techniques implemented for localization and mapping, it is

worth outlining that both these two functions of the proposed visual SLAM

framework, rely on the capability of correctly detecting and tracking features

from the images acquired by a monocular camera system. Several techniques

have been proposed in the open literature for extracting different kinds of image

features, such as corners [89] or more complex descriptors [90, 91], as well as

for feature tracking [46]. However, these tasks still involve significant technical

challenges for practical implementation of visual SLAM approaches, especially

for UAVs flying in outdoor environment due to the sensitiveness of visual sen-

sor from ambient light variations. As this work focuses on demonstrating the

potential advantages of estimating the navigation state of an UAV by combin-

ing cooperative and standalone vision-based information, the above-mentioned

image processing tasks are not considered in the following.
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Vision-based localization is the problem of estimating position and attitude

of the UAV with respect to a navigation frame. This task is typically tackled by

looking for correspondences between 2d features extracted from a single image

and 3d objects whose location in the navigation frame is given by a map of the

observed environment which is stored/built on board. If s = (u, v)T is a generic

image feature expressed in normalized image coordinates and q = (qN , qE, qD)T

is the corresponding 3d object in the navigation frame, they are linked by

s = K
cam

Rc

b
(Rb

n
(q − tn) + tb,cam) (4.13)

where K
cam

is the camera intrinsic calibration matrix, Rc

b
and tb,cam are

the camera mounting parameters (i.e. the rotation matrix from body to camera

reference frames and the camera position vector in the body frame, respectively),

and tn = (tN , tE, tD)T is the UAV position vector in NED. Once a number (N)

of matches is found and tentative pose solution (pt) is given, it is possible to

define the re-projection error (χ2) as the sum of squared distances between the

image points and the reprojections on the image plane of the corresponding 3d

objects (according to the transformation defined by tentative pose solution). As

the camera mounting parameters do not change during the flight in the case

of a strapdown installation, and can be estimated by carrying out pre-mission

calibration procedures, the camera and body reference frame are considered

coincident and aligned in the following, for the sake of mathematical simplicity.

Under this assumption, χ2 can be estimated by

χ2(pt) =
N∑
i=1

‖si −K
cam

Rb,t

n
(q
i
− ttn)‖2 (4.14)

Hence, the goal of the localization algorithm is to find the set of position

and attitude parameters which allows minimizing χ2. Since, the quantity on the

right-side of Equation 4.14 is a non-linear function of the pose parameters, χ2

can be minimized in a least squares sense by using a customized implementation

of the Levenberg-Marquandt (LM) algorithm [92].
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As regards the mapping step of the visual SLAM framework, it consists

in triangulating the geodetic 3d position of those 2d features which have been

tracked along a certain sequence of frames. This task is tackled by implementing

an L2 triangulation method [93] which has been proven to be applicable for UAVs

flying in extended outdoor scenario [94]. Specifically, if a feature is tracked within

a sequence ofM frames, its 3d position qm = (qmN , qmE, qmD)T can be estimated

by iteratively solving the following equation

1
λ1

(u1r31 − r11)
1
λ1

(v1r31 − r11)
...

1
λM

(uMr3M − r1M)

1
λM

(vMr3M − r1M)


q
m

=



1
λ1

(u1r31 − r11)tn1
1
λ1

(v1r31 − r11)tn1
...

1
λM

(uMr3M − r1M)tnM

1
λM

(vMr3M − r1M)tnM


(4.15)

where λi, (ui,vi) and (r1i, r2i, r3i) represent the scale factor, the normalized

feature coordinates, and the rows of the rotation matrix Rb
n for the ith frame

in the considered sequence. At the first step of the iterative process all the

scale factors are set to 1, while starting from the second step they are updated

exploiting

λupdi = r3i(qt − tni); i = 1 : M (4.16)

This process is iterated until the convergence criterion is met

M∑
i=1

|λupdi − λi|< ε (4.17)

In the equation above, ε is a convergence threshold which can be set to be

very small (e.g. 10−5 meters in this work).

As this triangulation process is similar to the concept of stereovision, it is

clear that the larger the UAV displacement during the time interval between

the first and last frame of the considered sequence in which a certain feature is

tracked, the better the accuracy level of the triangulation process.
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Figure 4.5: Detailed architecture of the pose estimation block.

4.4 Simulation Environment

The performance of the proposed autonomous navigation architecture has been

preliminary assessed by means of numerical simulations.

To this aim, a simulation environment has been developed, which realisti-

cally reproduces the absolute trajectories of two UAVs, and the measurements

provided by their on-board sensors. As regards the father vehicle, which is as-

sumed to be under nominal GPS coverage, it is necessary to simulate the GPS

position information which is broadcasted to the son.

The father GPS simulation process is summarized in Figure 4.6, where the

GPS position uncertainty in NED is modeled as a non-zero-mean random error.

Specifically, in order to take into account that GPS errors are correlated in time,

the positioning error has been modeled as a constant bias plus a Gaussian white

noise.

As regards the son vehicle, it is necessary to simulate the operation of both
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Figure 4.6: imulator of the father GPS position broadcasted to the son. The simu-

lator input and output are highlighted in blue and red, respectively.

the target-tracking and, when available the SLAM cameras. The former is

pointed towards the father and it is used to obtain its LOS in the body ref-

erence frame of the son. The simulation process is summarized in Figure 4.7,

where the LOS uncertainty is modeled as a Gaussian white noise. Specifically, a

standard deviation of 0.05◦ (which is equal to the IFOV of the simulated camera

system) has been considered for both the azimuth and elevation components of

the LOS.

As regards the SLAM camera, when the second navigation architecture (Fig-

ure 4.4) is considered, this is assumed to be mounted in nadir-looking geometry

and it is used to detect and track ground features suitable to carry out au-

tonomously localization and mapping. If the true features position in NED is

assigned in input instead of the father position in NED, the simulation process is

coincident to the one exploited to reproduce the operation of the target-tracking

camera. However, in this case, the uncertainty in the feature detection process

is modeled as a Gaussian white noise added to the feature position on the im-

age plane. The parameters which determine the model exploited for the visual

SLAM camera together with the standard deviation characterizing the noise on
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Figure 4.7: Simulator of the target-tracking camera. The simulator input and output

are highlighted in blue and red, respectively.
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Table 4.1: Model parameter of the SLAM camera.

Detection Size 2000× 2000 pixel

Pixel dimension 6 · 10−6 m

Focal length 0.006 m

IFOV 0.045◦

σPix 5 pixel

Table 4.2: Inertial Sensors Bias and Random Errors.

Sensors Bias Instability Random Walk

Gyroscopes 36◦/h 4.6◦/
√
h

Accelerometers 3 · 10−4m/s/h 0.06 m/s/
√
h

the feature position in the image (σPix) are listed in Table 4.1.

As far as the son inertial sensors are concerned, these are simulated consid-

ering orders of magnitude of biases and random errors consistent with typical

low cost MEMS sensors (Table 4.2). These measurements are then used in both

AHRS and EKF filters.

In order to conclude this overview regarding the simulation environment, it

is necessary to indicate the different update rates considered for the input to the

navigation filter, and to clarify the strategy adopted for handling the features

within the visual SLAM process. Specifically, the output of the AHRS filter

is provided at 100 Hz while both the father LOS tracking and the localization

algorithms are run at 10 Hz. As regards the mapping step, the map of the

observed environment is updated by implementing the triangulation algorithm

presented in subsection 4.3.2 every 2 seconds (at 0.5 Hz update rate). Only the

features which are tracked over this entire time interval and are not present in

the map (key features) are triangulated. Also, only three frames (the first, the
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middle and the last acquired in the triangulation time interval) are considered

in order to limit the computational cost while keeping the maximum baseline

between the homologous observation of the same features in the scene. In order

to initialize the SLAM process, a certain time interval (tINIT ), not longer than

a few seconds, is assigned at the beginning of the simulation during which the

son vehicle’s pose is known with a given uncertainty. Thus, the features tracked

during this time interval can be triangulated. This allows generating an initial

map which can be used by the localization algorithm. This is the same as

assuming that the son loses the GPS signal after an initial time, which may

be plausible at the beginning of a mission scenario before entering in the GPS

challenging area.

Before moving on to the results, it is important to outline that the idea of

keeping fixed the update rate of the mapping algorithm, which is valid for the an-

alyzed case studies, is not optimal for the SLAM process. Indeed, the decision of

activating of the mapping function should dynamically adapt to variation in the

vehicle’s height and velocity in order to optimize the baseline for triangulation

while avoiding loosing track of the features due to very large displacement.

4.5 Results

The simulation environment developed in section 4.4 gives the possibility to

consider a wide variety of scenarios. In the following, for proof of concept, some

particular cases are considered in which the chosen relative dynamics between

son and father(s) put in evidence important results.

In addition, experimental results are presented by processing data acquired

during the test 1 described in section 3.5.
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4.5.1 EKF with cooperative aiding (Simulations)

The integration of the son-to-father LOS within the EKF has been tested through

100 numerical simulations.

In the performed analysis, since it is assumed that bounded attitude errors

can be attained by exploiting accelerometers and gyroscopes, the major interest

lies in evaluating the capability of cooperative navigation to reduce or eliminate

position error drift. Thus, reported results focus on position error components

in terms of mean error µ and standard deviation σ. In particular, latitude and

longitude error variances are converted into Northing and Easting uncertainties

computed assuming as origin the initial position of the son UAV.

Error estimates are useful to understand if a certain cooperative architecture

can be adopted to fly safely in given GPS-challenging scenarios. In general, the

cooperative concept can also be used in synergy with other systems/techniques,

such as vision-aided navigation as it will be shown in subsection 4.5.2.

Three test cases have been considered, assuming a test duration of 300 sec-

onds:

- Case 1: it is assumed that the flight is performed in a GPS-denied area,

hence, no valid measurements from GPS satellites are available. There is 1

father vehicle that is moving in North direction at 10 m/s on a trajectory

that is parallel to the one performed by the son UAV Figure 4.8. The initial

displacement vector between the son and the father, in the son NED, is

[200, 0,−50]T meters;

- Case 2: it is assumed that the son UAV is flying in a GPS-challenging en-

vironment, hence, by properly selecting a mask angle, valid GPS pseudo-

range measurements from three satellites are available. In this simulation

the father is moving in North direction at 10 m/s on a trajectory that is

parallel to the one flown by the son Figure 4.8;
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- Case 3: it is assumed that the son UAV is flying in a GPS-denied area

and no valid measurements from GPS satellites are available. The son

UAV is in hovering, while the father UAV describes a series of consecutive

coordinated turns with a velocity of about 25 m/s Figure 4.9.

Figure 4.10 shows that single LOS aiding does not allow the navigation filter

to significantly reduce the position error drift. In fact, given the assumed flight

geometry, no direct positioning information is provided along North and Down

directions. As a result, the accumulated error remains of the order of hundreds

of meters in the considered simulation time. This effect is drastically mitigated

assuming the availability of three valid pseudorange measurements (Figure 4.11,

case 2). In this case, errors in East direction preserve the same order of mag-

nitude of the previous case, while the drift in North and Down directions is

eliminated.

As stated before, the practical availability of valid pseudorange measure-

ments is not always ensured. Thus, it is interesting to evaluate the aiding capa-

bility of father dynamics (Case 3), which is done in Figure 4.12.

In this case, in spite of the absence of any pseudorange aiding, father dynam-

ics allow eliminating position error drift and thus keeping a meter-level position

accuracy within the whole simulation time.

Though the considered architecture is different with respect to classical pas-

sive ranging scenarios, it actually brings similar benefits in terms of relative

position observability. In fact, oscillating LOS geometry generates similar oscil-

lations in position errors.
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Figure 4.8: Son UAV (blue) and father UAV (green) trajectories represented in the

son UAV initial NED reference frame. The red dashed line represents

the LOS.

Figure 4.9: Son UAV in hovering wile father UAV is performing coordinated turns.

The red dashed line represents the LOS.
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Figure 4.10: Statistics (mean µ and standard deviation σ) of the position error in

NED as a function of time (Case 1).

Figure 4.11: Statistics (mean µ and standard deviation σ) of the position error in

NED as a function of time (Case 2).
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Figure 4.12: Statistics (mean µ and standard deviation σ) of the position error in

NED as a function of time (Case 3).

4.5.2 EKF with cooperative aiding and vision-based SLAM

(Simulations)

The performance of navigation framework in which cooperative measurements

and SLAM are combined (Figure 4.4) has been assessed in terms of the accuracy

which characterizes the position components of the estimated pose state. In

the analyzed case study, two UAVs fly along a linear path in North direction

keeping fixed both the speed (5 m/s) and the altitude with respect to ground.

Specifically, the son vehicle flies at an altitude of 20 meters, while the father

provides a constant baseline with respect to the son of 20 meters and 80 meters

in Up and North directions, respectively. The simulation lasts 5 minutes and

the time interval exploited to initialize the map is set to 2 seconds. Finally, the

presence of 2000 features is simulated on the ground area covered by the FOV

of the nadir-looking camera. These features are uniformly distributed with a

density around 0.03 features/m2 in the NED horizontal plane, and between −1
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m and 1 m of altitude.

The time variation of the error in the estimation of the son vehicle’s position

vector in NED is shown in Figure 4.13. The major result is that the position

solution provided by the proposed EKF is characterized by a limited error for

each of its components, in spite of the absence of a direct aiding from GPS,

for 5 minutes during which the son vehicle travelled 1500 meters. Specifically,

there is no error accumulation in the estimation of the East component of the

position vector during the entire simulation time. Indeed, the error is bounded

in a narrow interval around 0, as demonstrated by the values of the temporal

mean (0.19 meters) and std (0.82 meters). As regards the North and Down

components of the position vector, the estimation error slowly increases as a

function of time but the accumulated error at the end of trajectory (EoT) is

small (i.e. around 21 m and 22 m in North and Down, respectively) compared

to the overall travelled path (around 1%). If the attention is focused on the first

100 seconds of the simulation time, during which the travelled path is 500-meters

long, the overall performance of the navigation filter is even better as the error

in the estimated vehicle displacement is kept below 6 meters in North, and 3

meters in Down and East.

Analysis of these results has shown a significant correlation between the error

in the estimation of the overall position vector and the mapping error obtained

in the triangulation process. Of course, this is a direct consequence of exploiting

the visual-SLAM concept.

It is now necessary to clarify, how the different aiding factors introduced

in the proposed EKF architecture, namely the loosely-coupled pose estimate

from the visual SLAM algorithm and the tightly-coupled visual/GPS cooperative

measurement from the father vehicle, contribute to obtain the accuracy level

presented above. To this end, the time statistics of the position estimation

accuracy provided by the developed EKF over the entire simulation time are
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Figure 4.13: Son vehicle position error in NED as a function of time.

122



shown in Table 4.3, where a comparison is carried out considering the results

provided by two additional navigation solutions:

• Standalone visual-SLAM;

• EKF with cooperative aiding.

Starting from the standalone visual-SLAM algorithm, the position estimation

error along East and Down directions is characterized by a significant drift as it

can be seen by looking at the value of the EoT error, while the corresponding

root mean square error (rms), evaluated over the entire trajectory, is about 73

meters and 179 meters, respectively. Conversely, the estimation error in the

North position component does not drift and its rms and maximum values are

about 13 meters and 22 meters, respectively. This result can be explained since

the apparent movement of the features tracked in the images collected by the

nadir-looking camera minimizes the mapping error along the North direction

and thus makes this movement observable. The situation changes completely

when the LOS is integrated in the EKF. In fact, due to the considered formation

geometry, the error drift in East direction is eliminated (the EOT error is about

1 m) and the estimation error does not overcome a threshold of approximately 3

m. Unfortunately, the LOS aiding does not allow the navigation filter to avoid

the position error drift along the North and Down directions. Consequently, the

accumulated position error goes up to a few hundreds of meters. The above

mentioned effects are drastically mitigated, both in terms of rms and EoT error,

when both LOS and visual-SLAM are integrated within the EKF.

Besides showing the potential of the combined visual SLAM / cooperative

approach, these statistics clearly demonstrate how the flight trajectory and the

formation geometry impact the navigation performance. This naturally leads to

the need of coordinated motion between UAVs.
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Table 4.3: Comparison of position estimation errors: Standalone visual-SLAM, EKF

+ visual-SLAM, EKF + cooperative aiding, EKF + cooperative aiding +

visual-SLAM.

Navigation approach
Error in North Error in East Error in Down

rms (m) max (m) EoT (m) rms (m) max (m) EoT (m) rms (m) max (m) EoT (m)

Standalone

visual-SLAM
13.50 22.23 13.06 73.19 161.54 161.54 179.59 416.43 416.43

EKF with

cooperative aiding
414.22 787.27 787.27 1.19 3.09 1.28 99.43 191.05 191.05

EKF with cooperative

and visual-SLAM aiding
25.45 58.39 21.14 0.84 3.40 3.01 10.41 22.39 22.35

4.5.3 EKF with cooperative aiding (Experimental Results)

The preliminary experimental results shown in the following have been obtained

using the experimental setup of Test 1 (subsection 3.5.2) where the two ground

antennas this time play the role of fathers. That is, the Pelican UAV flying in

GPS-challenging environments, is the son, while the two ground antennas with

full GPS-coverage, are the surrogate father vehicles.

The analysis has been conducted on a time frame of about 70 seconds during

which it is assumed that the Pelican UAV is flying in a GPS-denied environment.

Hence, within the filtering architecture, described in Figure 4.3, only LOS and

attitude measurements have been integrated.

In the following, the position, in terms of North (Figure 4.14), East (Fig-

ure 4.15) and Down (Figure 4.16), estimated by the proposed EKF where 1

LOS (single ground antenna) and 2 LOS (both ground antennas) are integrate,

is compared with the position provided by the Pelican GPS receiver. By ana-

lyzing these results it is possible to highlight that:

• integrating 1 LOS, or 2 LOS, within the EKF, provides a significant im-

provement with respect to the pure inertial navigation;

• the position error of the proposed EKF is bounded in the considered time
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Figure 4.14: Comparison of the North position component estimated by the EKF

(with 1 LOS and 2 LOS), with the one provided by the on board GPS

receiver.

frame;

• the East component is characterized by an almost constant bias related

to: 1) magnetic disturbances (bias on the magnetometer-based heading);

2) residual camera misalignment.
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Chapter 5

Autonomous UAV Take-off and

Landing

In many UAV applications, flexible trajectory generation algorithms and robust

navigation and control techniques, are required to enable high levels of auton-

omy for critical mission phases, such as take-off, area coverage, and landing.

Moreover, the need of overcoming the flight time limit, especially in monitoring

applications where UAVs take-off from a nest and return to it for recharging,

requires high levels of system autonomy to guarantee safe and reliable operation.

Often, the final phase (landing) is the most critical as it involves performing

delicate maneuvers; e.g., landing on a station for re-charging [95] or on a ground

carrier for transportation [8]. These procedures are subject to constraints on

time and space, and must be robust to changes in environmental conditions,

such as visibility and wind disturbances [96]. To achieve smooth landings, precise

sensing and accurate control techniques are therefore required.

In this chapter, these problems are addressed by integrating, within the end-

to-end software system developed at the ETH Zürich, a trajectory generation

algorithm based on a visual tracking system and a bio-inspired guidance method

for autonomously landing on a specified target either indoor or outdoor. This
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activity has been conducted during a 6 month of Academic Guest period at ETH

Zürich, and the motivation is to increase reliability and versatility of UAVs.

The adopted approach, presented in [97], is based on the improved intrinsic

tau guidance theory [98, 99] to generate spatio-temporal (4-D) trajectories for a

desired time-to-contact (TTC) based on the estimate of the relative pose of the

UAV with respect to the target. This approach enables to perform a maneuver

with arbitrary initial and final motion states, and tailor its trajectory profile for

various types of rotary- or fixed-wing tasks, such as landing, in-flight obstacle

avoidance, and object-picking.

The advantage of this approach is the possibility to generate “user-oriented ”

trajectories, where fundamental parameters can be tuned based on the mission

requirements. As such, the user may be interested in assigning predefined mis-

sion requirements for the trajectory, such as to maintain the course within the

boundary of two intersecting planes (e.g., flying within a natural or man-made

canyon), controlling the total mission time or energy consumption, or specifying

the initial and final landing angles.

In the following, simulation and experimental (indoor/outdoor) results are

presented, considering a rotary-wing UAVs equipped with a downward-looking

camera for detecting a static target.

5.1 Related Work

Significant work has been recently done on autonomous landing methods for

UAVs in various environments. As discussed in [96], landing navigation frame-

works mainly use a GPS and an IMU, with small, light-weight visual sensors

often integrated in order to improve the accuracy and to detect the landing

platform.

As far as guidance is concerned, several researchers adopted position-based
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approaches such as the pursuit [100] and the proportional [101] laws which lever-

age LOS to navigate the UAV towards the target. While these methods pro-

vide precise tracking [8], they may require complex control algorithms and lack

controllability of the UAV trajectory pattern and profile, thus restricting their

applicability.

Bio-inspired guidance paradigms represent a further solution. In fact, these

algorithms are usually based on visual information and use the TTC [102] or

optical flow [103] to generate 4-D trajectories [103, 104], enabling the control

of both their spatial and temporal components. In this category, the general

tau theory [98, 102] has been popularly postulated to describe goal-directed

movements, e.g. collision avoidance [99], docking, and landing [104]. Kendoul

[104] recently introduced a tau-based UAV autopilot and implemented it to

perform high-accuracy maneuvers. Similarly, here the tau principles are used to

generate 4-D trajectories for landing. However, by using elements of improved

intrinsic tau guidance [99], our method is not restricted to static initial and final

states and is thus also suitable for landing on moving platforms.

5.2 Logical Architecture

The logical architecture of the algorithms running on the UAV is described

in Figure 5.1, which depicts the different interacting modules. In particular,

the input data (Figure 5.1, left) include: GPS measurements, images from the

downward-looking camera and the Visual-Inertial (VI-)sensor, and accelerometer

and gyroscope measurements from the VI-sensor and the on-board IMU.

As far as the navigation is concerned, the adopted framework consists of

two main blocks (ROVIO and MSF). The RObust Visual Inertial Odometry

(ROVIO) framework [32] provides the UAV pose, by integrating VI-sensor and

GPS data. This is then integrated with UAV IMU data within the MSF frame-
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Figure 5.1: Logical architecture for autonomous UAVs landing.

work [105] to obtain a refined state estimate Figure 5.1. It is worth noting that,

in the absence of GPS data (e.g. indoor environments), only images and IMU

data are input to ROVIO and a pure visual inertial odometry is performed.

Guidance is based on the improved tau guidance strategy (red block in Fig-

ure 5.1), which uses the actual UAV state and the camera-to-target relative pose

to generate reference trajectories that are then tracked by a non-linear Model

Predictive Controller (MPC) [106].

In the following, the focus is set on the improved intrinsic tau guidance

strategy.

5.3 Tau guidance

As already mentioned, there are various UAV missions requiring large area cov-

erage. For safe and robust autonomous operation, it is necessary to generate

successive and consecutive trajectories by maintaining position and/or velocity

continuities on the boundary waypoint between the nth and the nth+1 trajecto-

ries. Adjourning the trajectories is also required during the successive steps of

following or landing on a moving object, taking into account the error deriving

130



by the tracking algorithm, including noise. Consequently, the main problem is

to develop and apply a fast and flexible algorithm enabling the UAV to perform

the above-mentioned phases autonomously, while maintaining a small number

of intuitive turning parameters.

The general goal-directed trajectory generation problem is defined as follows.

A spatio-temporal 4-D UAV trajectory is described by the state:

S(t) = {x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)}

The aim is to guide the UAV from arbitrary initial states S(t0) to goal states

S(t0 + T ) in the execution time T .

The trajectory is adjourned based on visual information provided by a camera

during the approach phase. The specific requirements for a successful landing

are to:

1. reach the target point in a specified time T ,

2. arrive and stop at the target point with zero velocity at contact, such that

S(t) = {x(t), y(t), z(t), 0, 0, 0} at t = t0 + T ,

3. reach the target point from a specific approach direction.

5.3.1 Trajectory Parametrization

With reference to Figure 5.2, in the East-North-Up (ENU) frame, the landing

maneuver usually requires arriving at a destination with a final state of the

trajectory depending on the target morphology and dynamics. The main gaps

are

• the distance gap d(t),

• the relative speed,
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Figure 5.2: Reference frame and main gaps for autonomous tau-landing.

• the approaching angle of the trajectory α(t), between d(t) and the normal

to the EN plane,

• the approaching angle of the trajectory β(t), which permits changing the

UAV heading during perching.

d(t) is the instantaneous distance along the LOS to the target, given by the

difference between the UAV position p
u
(t), and the target position p

t
(t). The

relative speed is given by ṗ
u
(t) − ṗ

t
(t) which, in order to avoid collisions, must

be zero at the touch-down. The approaching angle α(t) is based on the landing

approach, and consequently depends on the UAV platform and application, e.g.,

along the tangent to the surface for a fixed-wing UAV, near-vertical for a rotary-

wing UAV, or inclined at a certain angle to enter an opening. The approaching

angle β(t) ensures that the body frames, of the UAV and the target, respect a

required orientation at the touch-down, e.g., when recharging requires docking

between the two.

5.3.2 Improved Intrinsic Tau Guidance Strategy

The developed landing method uses the improved intrinsic tau guidance strat-

egy [99] to allow for goal-directed movements and, in particular, to start the

trajectory with arbitrary initial flight conditions. The intrinsic guidance gap of
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a movement Gv(t) can be formulated as:
Gv(t) = −0.5at2 + VGt+G0,

Ġv(t) = −at+ VG,

G̈v(t) = −a,

(5.1)

where a is the acceleration, VG is an initial velocity, and G0 specifies an initial

intrinsic gap. In particular, the intrinsic tau guidance strategy Equation 5.1

represents the vertical component of a projectile motion. Once the acceleration

a is assigned, the initial velocity VG and the initial gap G0 must be computed

according to the initial (t = 0) and the final (t = T ) conditions of the actual

movement, as described in the following.

Considering the movement along a generic x-axis from time 0 to T as an

example, the position and velocity gaps can be expressed as ∆x = xT − x and

∆ẋ = ẋT − ẋ, respectively, where xT and ẋT denote the goal states at time T .

By Applying the tau coupling strategy [104, 99] for synchronous gap-closing it

is possible to obtain the reference trajectory

x(t) = xT + ẋT (t− T )− χx0

G
1/kx
0

G1/kx
v ,

ẋ(t) = ẋT −
χx0

kxG
1/kx
0

ĠvG
1/kx−1
v ,

ẍ(t) = − χx0

kxG
1/kx
0

G1/kx−2
v

(
1− kx
kx

Ġ2
v +GvG̈v

)
.

(5.2)

where kx is a gain parameter controlling gap convergence along the x-axis, as

discussed below.

From the definition of Gv, Equation 5.2, and Equation 5.1, it can be shown

that: 
G0 =

χx0gT
2

2(χx0 + kx∆ẋ0T )
,

VG =
kx∆ẋ0gT

2

2 (χx0 + kx∆ẋ0T )
.

(5.3)
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G0 and VG can be viewed as bonding actual and intrinsic movements due to

gravitational effects. If kx ∈ (0, 0.5), (x, ẋ, ẍ) → (xT , ẋT , 0) and the position

and velocity can be steadily guided to the target values, as required. Hence,

varying the elements of k = {kx, ky, kz} within this range allows for modifying

the trajectory profile along each axis.

In addition, using the tau coupling strategy it is possible to apply a more

”user − oriented” approach by coupling to the intrinsic movements the gaps

d(t), α(t) and β(t) as follows:

d(t) =
d(0)

G
1
kd
0

G
1
kd
v (5.4)

α(t) =
α(0)

d(0)
1
kα

d(t)
1
kα (5.5)

β(t) =
β(0)

d(0)
1
kβ

d(t)
1
kβ (5.6)

Where each gap has its own gain parameter (kd,kα,kβ). Combining these

equations the position vector at time t of the UAV is simply given by:

p(t) = p(T ) +


−d(t)sinα(t)cosβ(t)

−d(t)sinα(t)sinβ(t)

d(t)cosα(t)

 (5.7)

5.4 Simulations

The performance of the proposed landing method is validated preliminarily in

simulation. The simulation environment is developed in the RotorS framework

[107], which realistically replicates the flight dynamics of an Asctec Firefly and
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its on-board sensors. For the IMU, the orders of magnitude of biases and ran-

dom errors are set to be consistent with MEMS used on the AscTec Firefly

(Table 5.1). Furthermore, the GPS position uncertainty in the ENU frame is

modeled as a constant bias plus Gaussian white noise to account for the time

correlation in GPS errors. For vision sensing, only the downward-looking cam-

era was simulated with an IFOV uncertainty modeled as Gaussian white noise

with a standard deviation of 0.05◦. This camera is used to detect the land-

ing target on the ground and to obtain its relative pose with respect to the

UAV. Consequently, navigation is achieved here without simulating ROVIO,

but only integrating simulated position and attitude measurements within the

MSF framework.

Table 5.1: Assumptions on the simulated bias and random errors for our simulation

trials.

Sensors Bias instability Random walk

Gyroscopes 14.5◦/hr 0.66◦/
√
hr

Accelerometers 0.25 mg 0.11 m/sec/
√
hr

The simulations serve to validate and integrate each component of the soft-

ware framework before the experimental tests. Since the focus is set on rotary-

wing UAVs, the interest is also to land on the platform with a desired orientation

α(t) and zero velocity. Hence, simulations have been performed to evaluate the

behavior of trajectory shapes for varying coefficients k with an emphasis on ver-

tical landing. Figure 5.3 (a) shows a comparison of different landing trajectories

where the maneuver starts from an height of 1.5m and EN components of 0.8m

each. This figure evidences how the 3-D shape of each trajectory is determined

by coupling the coefficients k. In particular, the smaller is the adopted k value,

the faster is the closing of the relative gap. In addition, Figure 5.3 (b) shows
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the velocity and acceleration profiles during the near-vertical landing trajectory

(blue curve in Figure 5.3 (a)), demonstrating that zero velocity is reached at the

end of the landing maneuver.
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Figure 5.3: (a) depicts landing trajectories with different elements in k. These pa-

rameters enable modifying the trajectory profile for LOS (black), near-

vertical (blue), and near-horizontal (red) shapes. (b) shows the velocity

and acceleration norm profiles for the near-vertical (blue) curve in (a).

5.5 Experimental Setup

This section details physical system architectures used to test the proposed

method. To demonstrate applicability, experiments in both outdoor and indoor

environments have been conducted.

The outdoor experiments are conducted on an empty 20 × 20m farmland

plot in clear weather conditions (Figure 5.4), where the algorithms are run in

real-time on an AscTec Firefly (Figure 5.5). The UAV is equipped with an au-

topilot providing a low- and high-level control, and on-board computer (AscTec

Mastermind), and the following sensors:

• 100Hz IMU,
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Figure 5.4: Experimental set-up on the field, with the GPS RTK base station visible

on the right.

• 10Hz Piksi V2 RTK differential GPS,

• 20Hz VI-sensor,

• 50Hz downward-looking Point Grey Chameleon 2.0 camera.

The landing platform target (Figure 5.6) is an A3 (297× 420mm) arrangement

of variable-dimension tags, obtained from the ar_track_alvar library. The

nested tag layout on the platform allows for detecting and estimating the camera-

to-target relative pose from different altitudes. Note that, in this chapter, static

platform is considered for proof of concept and leave the study of moving targets

to future work.

Indoor experiments were also performed in an empty 20× 20m environment

(Figure 5.7) using the same landing platform. Here, algorithms run in real-time

on a DJI Matrice 100 with a 100Hz IMU and Intel RealSense ZR300 camera

providing 30Hz images. The system comprises the general pipeline in Figure 5.1;
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Figure 5.5: AscTec Firefly positioned on the landing platform.

Figure 5.6: AscTec Firefly positioned on the landing platform.
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Figure 5.7: A side view of our indoor experimental set-up showing the UAV and the

landing platform.

however, in the absence of GPS data, only images and IMU data are input to

ROVIO and MSF.

5.6 Experimental Results

Multiple experiments have been conducted to test the developed approach using

the set-ups described in section 5.5. In each trial, the UAV was commanded to:

1. take-off and perform its mission,

2. fly back to the landing area,

3. fly a search path to detect the target, and

4. safely land on the target point in a specified time.

Figure 5.8 and Figure 5.9 illustrate the two autonomous landing stages for an

outdoor test using an AscTec Firefly. The first stage is target detection (at an
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height of about 2m, as shown in Figure 5.8 (c)) followed by a refinement phase

for noise reduction. Once the target is detected and tracked, the UAV starts

the approaching stage during which the camera continues tracking the target

to update its relative pose. If the difference between successive target positions

is larger than a certain tolerance, the trajectory is re-planned accordingly and

passed to the non-linear MPC.

These aspects are evident in Figure 5.8, which shows the UAV position com-

ponents in the ENU frame. A comparison of the reference trajectory generated

by our guidance strategy with the UAV position output from the MSF frame-

work confirms that the controller follows the reference throughout the maneuver

until the touch-down.

Figure 5.9 compares the UAV position and velocity along the three co-

ordinate axes. The plots illustrate the optimum velocity profile of the maneuver

to reach the softest touch-down while achieving the accuracy required to land

near the target center.

As shown in Figure 5.10, the final landing position remains within a max-

imum dispersion of several centimeters with respect to the target center. It

is worth noting that, if the target is lost for a certain time period, the UAV

is commanded to climb to increase the camera footprint, and returns on the

landing path only after the target is detected and tracked again. Figure 5.10

demonstrates this effect as the target is lost at ∼ 20 cm height mainly due to

the UAV shadow causing occlusions impeding robust tracking. As a result, the

UAV ascends, landing smoothly upon target re-detection.

In addition, 63 successful indoor landings were executed with the DJI Ma-

trice 100. State estimation was obtained by integrating ROVIO within the MSF

framework, the relative pose between the UAV and the landing platform was

obtained by images acquired by the Intel RealSense ZR300 and the VICON

system was used for ground truth reference. These tests show the repeatabil-
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Figure 5.8: Differences between the reference and MSF trajectories during the final

phases of landing.
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Figure 5.9: Velocity profile during the landing maneuver with the position profile as

a reference.
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plane.

Height (m) 1.5 2.0 2.5

kz = 0.2 kz = 0.4 kz = 0.2 kz = 0.4 kz = 0.2 kz = 0.4

Mean (m) 0.15 0.16 0.14 0.14 0.2 0.19

Std (m) 0.02 0.04 0.04 0.05 0.04 0.04

Table 5.2: Landing mean errors and standard deviations for the case studies consid-

ered.

ity and robustness of the proposed landing approach as well as its achievable

accuracy. To this end, six case studies were considered varying in the k coef-

ficients and the height of the target detection stage . The approaching heights

tested were 1.5m, 2m, and 2.5m meters, with two different sets of k coefficients:

kx = ky = 0.2, kz = 0.4, and kx = ky = kz = 0.2. Statistical results are summa-

rized in Table 5.2. Here, errors are computed based on UAV and target ground

truth positions acquired from the VICON system.
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Chapter 6

Conclusions

This thesis presented new methodologies to overcome single micro-UAV limits

(e.g. performance, coverage and reliability), where the concept is to exploit

two or more UAVs flying cooperatively, and to develop an autonomous take-off

and landing technique, in order to improve navigation performance and flight

autonomy. In fact, formations of UAVs, besides being adopted for real time

coverage of large areas and for increasing the capability to prevent and control

natural disasters, can be exploited to improve the navigation performance, of ve-

hicles within the formation, by adopting two main concepts, that is, information

sharing and relative sensing.

Among several research challenges to be addressed in order to design and op-

erate a distributed system of vehicles working together for real time applications,

this thesis in particular has achieved the following results:

Improvement of UAV navigation performance In this research activity,

algorithms for cooperative UAV navigation in outdoor environments were

presented. These algorithms are based on the concepts of differential

GNSS, relative sensing provided by machine vision (DGPS/Vision), and

sensor fusion with the onboard navigation sensors. The logical architecture

and the main processing steps were presented, focusing on the vision-based
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tracking algorithm, the two adopted differential GPS solutions (CGDPS

and code-based DGPS) and the sensor fusion algorithm based on a cus-

tomized EKF. Both numerical simulations and flight results showed the

potential of sub-degree angular accuracy. In particular, proper formation

geometries, and even relatively small baselines, allow achieving a heading

uncertainty that can approach 0.1◦, which represents a very important re-

sult taking into account typical performance levels of IMUs onboard small

UAVs. Furthermore, the dependency of attitude estimation performance

on formation geometry can be exploited to the navigation advantage if

proper cooperative guidance laws are used to reconfigure the UAV forma-

tion as needed. Flight experiments showed that the main factor enabling

highly accurate attitude estimates is the information independence from

both inertial and magnetic measurements. On the one hand, DGPS/Vision

estimates are not influenced by flight history and changing inertial sen-

sors biases, thus being insensitive to error accumulation phenomena. On

the other hand, they are not affected by magnetic phenomena which are

difficult to counteract in single vehicle applications since resulting errors

depend on vehicle orientation.

UAV navigation in GPS challenging environments This research topic

aimed at developing algorithms, for improving navigation performance

of UAVs flying in GPS-challenging environments (e.g. natural or urban

canyons, or mixed outdoor-indoor settings), based on the concept of in-

cluding within the navigation filter the line-of-sight with respect to a co-

operative vehicle flying under nominal GPS coverage. After an overview

of cooperative and vision-aided approaches, logical architecture and the

mathematical structure of the algorithms were discussed. The core of the

algorithms is an Extended Kalman Filter (EKF) which integrates measure-

ments coming from on-board inertial sensors with measurements coming
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from a cooperative vehicle flying under nominal GPS coverage, that is

the visual Line-Of-Sight (LOS) and its GPS position. In addition, the

integration with monocular pose estimation algorithms was investigated

showing the possibility to counteract the position error drift. The perfor-

mance of the proposed approach was evaluated through numerical simu-

lations in which low cost MEMS inertial sensors and typical uncertainty

values for both cooperative and vision-based navigation techniques were

assumed. Moreover, preliminary experimental results have been achieved

by adopting a customized quadrotor and two ground GPS antennas. Re-

sults showed that aiding measurements from standalone visual-SLAM or a

single cooperative UAV do not allow eliminating position error drift. How-

ever, combining both approaches drastically reduces the position error drift

keeping meter-level positioning accuracy also in absence of reliable GPS

observables. Moreover, the error drift can be reduced either integrating

valid pseudorange measurements in the tightly coupled filtering structure,

or exploiting ad hoc commanded motion of the cooperative vehicle under

GPS coverage. In both these cases, meter-level positioning accuracy is

preserved in spite of absent or limited GPS coverage, resulting in the un-

availability of position fix. These results show that cooperative navigation

has a significant potential for safe flight in GPS-challenging environments,

also in absence of inter-vehicle range measurements.

Autonomous take-off and landing This research activity, conducted during

a 6 month Academic Guest period at ETH Zürich, focused on increasing

reliability, versatility and flight time of UAVs, by developing an autono-

mous cooperative take-off and landing technique.

In particular, a guidance approach, based on the improved intrinsic Tau

guidance law for autonomous UAV landing on a static platform was pre-

sented. The guidance theory generates smooth and computationally ef-
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ficient 4-D trajectories that are both suitable for fixed- and rotary-wing

UAV platforms. The framework was validated in simulations and mul-

tiple outdoor and indoor experiments with different platforms, showing

that trajectories can be easily designed by varying the guidance coeffi-

cients. Results from over 60 indoor tests, using a VICON system only to

provide ground truth reference, demonstrate landing with centimeter-level

accuracy.
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Appendix A

System dynamic matrix

Navigation error arises due to initial condition error and the accumulation of

instrumentation errors through the integration process. This section, focuses

on model development for the geographic frame (NED) mechanization approach

[9]. In particular, this appendix introduces the 9 × 9 continuous-time system

dynamic matrix F of the linear dynamic model for the

δẋ = Fδx+ Γ q (IA.1)

where δẋ is the state error vector defined in Equation 3.15, and Γ and q are

Γ =


0 0

−Rn

b
0

0 −Rn

b

 ; q =
[
(δf b)T , (δωbib)

T

]T
(IA.2)

To clearly present the matrix entries, it is important to define the following

terms

- ωie = earth rotational rate

- Re = earth radius

- φ = latitude
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Table A.1: Dynamic matrix entries

ΩN = ωie cosφ ωE = ρE F53 = −ρEρD − kDρN
ΩD = −ωie sinφ ωD = ΩD + ρD F54 = −(ωD + ΩD)

ρN = ve
Re

kD = vd
Re

F55 = kD − ρE tanφ

ρE = − vn
Re

F41 = −2ΩNve − ρNve
cosφ2

F56 = ωN + ΩN

ρD = −ve tanφ
Re

F43 = ρEkD − ρNρD F63 = ρ2N + ρ2E − 2 g
Re

ωN = ΩN + ρN F51 = 2(ΩNvn + ΩDvd) + ρNvn
cosφ2

F91 = ΩN + ρN
cosφ2

- fn; fe; fd = specific force components in NED

- vn; ve; vd = velocity components in NED

Consequently (see also Table A.1), the 9x9 system dynamic matrix is given

by

F =



0 0 ρE
Re

1
Re

0 0 0 0 0

− ρD
cosφ

0 − ρN
Re cosφ

0 1
Re cosφ

0 0 0 0

0 0 0 0 0 −1 0 0 0

F41 0 F43 kD 2ωD −ρE 0 fd −fe
F51 0 F53 F54 F55 F56 −fd 0 fn

−2veΩD 0 F63 2ρE −2ωN 0 fe −fn 0

−ΩD 0 ρN
Re

0 − 1
Re

0 0 ωD −ωE
0 0 ρE

Re
1
Re

0 0 −ωD 0 ωN

F91 0 ρD
Re

0 tanφ
Re

0 ωE −ωN 0



(IA.3)

150



Acknowledgments

During my PhD activity, I had the opportunity of working and collaborating

with many great researchers. Most of them have contributed to my professional

growth, and I would like to thank them all for their help.

First and foremost, I would like to thank my supervisors, Professors Domenico

Accardo and Giancarmine Fasano, their guidance and support has been funda-

mental to define the research path and to broaden my knowledge. Professor

Alfredo Renga also contributed to my professional growth and deserves my spe-

cial thanks. Moreover, I would like to thank my colleagues and friends, Antonio,

Roberto and Vittorio with whom I shared a wide part of my joys, expectations

and hopes. More in general, I would like to thank the whole Aerospace Systems

Team for the great moments shared during this journey.

During my PhD a six month research period was also spent at ETH, in

Zurich, with the Autonomous Systems Lab (ASL). I immediately felt part of

the group and I really enjoyed the team spirit and the possibility of sharing

opinions, jokes, ideas. Hence, my special thanks to Professor Roland Siegwart

and Juan Nieto for having given me the possibility of joining this great team.

Moreover, thanks to the whole MAV team, in particular Inkyu, Masha and

Raghav for their help and efforts in conducting the experimental campaigns.

A heartfelt thanks goes out to Marcella who has been there every step of the

way with patience and love. Finally, my biggest thank goes to my family for all

their love and encouragement, I can’t see getting where I am without them.

151



Bibliography

[1] K. Valavanis and G.J. Vachtsevanos. Handbook of Unmanned Aerial Ve-

hicles. Springer, Dordrecht, The Netherlands, 2015.

[2] M. Brooks. Welcome to the personal drone revolution. New Scientist,

216(2894):42–45, 2012.

[3] Federal Aviation Administration. FAA Aerospace Forecast Fiscal Years

2010-2030, 2010.

[4] Federal Aviation Administration. Testimony Statement of Earl Lawrence,

2017.

[5] K. Dalamagkidis. Classification of UAVs in Handbook of Unmanned Air-

craft Systems. Springer, Dordrecht, Netherlands, 2015.

[6] R. Austin. Unmanned Aircraft System: UAVS Design, Development and

Deployment. John Wiley & Sons, Ltd, Chichester, UK, 2010.

[7] B Clough. Metrics, schmetrics! How do you track a UAV’s autonomy?

In Proceedings of the AIAA 1st Technical Conference and Workshop on

Unmanned Aerospace Vehicles, Portsmouth, 2002.

[8] Farid Kendoul. Survey of advances in guidance, navigation, and control of

unmanned rotorcraft systems. Journal of Field Robotics, 29(2):315–378,

2012.

152



[9] Jay Farrell. Aided Navigation: GPS with High Rate Sensors. McGraw-Hill,

Inc., New York, 1 edition, 2008.

[10] C. De Wagter, S. Tijmons, B.D.W. Remes, and G.C.H.E. de Croon. Au-

tonomous flight of a 20-gram Flapping Wing MAV with a 4-gram onboard

stereo vision system. In 2014 IEEE International Conference on Robotics

and Automation (ICRA), pages C. De Wagter, S. Tijmons, B.D.W. Remes,

and G.C.H., 2014.

[11] Amedeo Rodi Vetrella, Giancarmine Fasano, and Domenico Accardo. Dif-

ferential GNSS and Vision-Based Tracking to Improve Navigation Perfor-

mance in Cooperative Multi-UAV Systems. Sensors, 16(no. 12):Article

number 2164, 2016.

[12] Amedeo Rodi Vetrella, Giancarmine Fasano, and Domenico Accardo.

Satellite and Vision-aided Sensor Fusion for Cooperative Navigation of

Unmanned Aircraft Swarms. Journal of Aerospace Information Systems

(JAIS), 14(6):327–344, 2017.

[13] Giancarmine Fasano, Domenico Accardo, Antonio Moccia, and David

Maroney. Sense and avoid for unmanned aircraft systems. Aerospace and

Electronic Systems Magazine, 31(11):82–110, 2016.

[14] Giancarmine Fasano, Domenico Accardo, Anna Elena Tirri, Antonio Moc-

cia, and Ettore De Lellis. Radar/electro-optical data fusion for non-

cooperative UAS sense and avoid. Aerospace Science and Technology,

46:436–450, 2015.

[15] Luis Mejias, John Lai, Jason J. Ford, and Peter O’Shea. Demonstration

of closed-loop airborne sense-and-avoid using machine vision. Aerospace

and Electronic Systems Magazine, 27(4):4–7, 2012.

153



[16] C.; Eling, M.; Wieland, C.; Hess, L.; Klingbeil, and H. Kuhlmann. De-

velopment and Evaluation of UAV based Mapping Systems for Remote

Sensing and Surveying Applications. International Archives of the Pho-

togrammetry, Remote Sensing and Spatial Information Sciences, Volume

XL-, 2015.

[17] Y. Lin, J. Hyyppa, and A. Jaakkola. Mini-UAV-Borne LIDAR for Fine-

Scale Mapping. IEEE Geoscience and Remote Sensing Letters, 8(3):426–

430, 2011.

[18] M. Rehak and J. Skaloud. Applicability of new approaches of sensor ori-

entation to micro aerial vehicles. In XXIII ISPRS Congr., pages 441–447,

Prague, Czech Repub., 2016.

[19] U-blox. NEO-M8P series.

[20] Piksi Multi GNSS Module.

[21] Amedeo Rodi Vetrella, Giancarmine Fasano, Alfredo Renga, and

Domenico Accardo. Cooperative UAV Navigation Based on Distributed

Multi-Antenna GNSS, Vision, and MEMS Sensors. In IEEE Interna-

tional Conference on Unmanned Aircraft Systems, Denver, CO, USA,

2015. IEEE.

[22] Amedeo R Vetrella, Giancarmine Fasano, and Domenico Accardo. Accu-

rate attitude estimation for cooperating UAVs based on tight integration

of GNSS and vision-based measurements. Submitted to IEEE Transactions

on Aerospace and Electronics Systems.

[23] Amedeo Rodi Vetrella, Flavia Causa, Alfredo Renga, Giancarmine Fasano,

Domenico Accardo, and Michele Grassi. Flight Demonstration of Multi-

UAV CDGPS and Vision-Based Sensing for High Accuracy Attitude Esti-

154



mation. In IEEE International Conference on Unmanned Aircraft Systems,

Miami, FL, USA, 2017. IEEE.

[24] Amedeo Rodi Vetrella, Flavia Causa, Alfredo Renga, Giancarmine Fasano,

Domenico Accardo, and Michele Grassi. Multi-UAV Carrier Phase Differ-

ential GPS and Vision-based Sensing for High Accuracy Attitude Estima-

tion. Submitted toJournal of Intelligent & Robotic Systems for publication.

[25] H.G. De Marina, F.J., Pereda, and J.M. Giron-Sierra. UAV attitude es-

timation using unscented kalman filter and TRIAD. IEEE Trans. Ind.

Electron., Volume 59(Issue 11):pp. 4465–4474, 2012.

[26] Roberto G Valenti, Ivan Dryanovski, and Jizhong Xiao. Keeping a good

attitude: A quaternion-based orientation filter for IMUs and MARGs.

Sensors, 15(8):pp. 19302—-19330, 2015.

[27] SBG. Ellipse.

[28] Sensonor. Stim300.

[29] G. Giorgi, P.J.G. Teunissen, S. Verhagen, and P.J. Buist. Testing a new

multivariate GNSS carrier phase attitude determination method for re-

mote sensing platforms. Advances in Space Research, 46(2):118–129, 2010.

[30] D. Scaramuzza and F. Fraundorfer. Visual Odometry [Tutorial]. IEEE

Robotics & Automation Magazine, 18(4):80–92, 2011.

[31] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. On-Manifold

Preintegration for Real-Time Visual–Inertial Odometry. IEEE Transac-

tions on Robotics, 33(1):1–21, 2017.

[32] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart.

Robust Visual Inertial Odometry Using a Direct EKF Based Approach.

155



In IEEE/RSJ Intenational Conference on Intelligent Robots and Systems,

pages 298–304, Hamburg, 2015. IEEE.

[33] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The GRASPmultiple

micro UAV testbed. IEEE Robotics and Automation Magazine, 17(3),

2010.

[34] M. Saska, J. Chudoba, L. Precil, J. Thomas, G. Loianno, A. Tresnak,

V. Vonasek, and V. Kumar. Autonomous deployment of swarms of micro-

aerial vehicles in cooperative surveillance. In IEEE International Confer-

ence on Unmanned Aircraft Systems 2014 (ICUAS 2014), Orlando, 2014.

[35] A. Tsourdos, B. White, and M. Shanmugavel. Cooperative Path Planning

of Unmanned Aerial Vehicles. Wiley, 2010.

[36] I.V.Melnyk, J.A.Hesch, and S.I.Roumeliotis. Cooperative Vision-aided

Inertial Navigation Using Overlapping Views. In IEEE Int. Conf. on

Robotics Automation, Saint Paul, Minnesota, USA, 2012.

[37] H. Mokhtarzadeh and D. Gebre-Egziabher. Performance of networked

dead reckoning navigation system. IEEE Transactions on Aerospace and

Electronic Systems,, 52(5):2539–2553, 2016.

[38] S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. A Robust

and Modular Multi-Sensor Fusion Approach Applied to MAV Navigation.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS),

2015.

[39] H.D. Black. A passive system for determining the attitude of a satellite.

AIAA J., 2:1350–1351, 1964.

[40] J.R. Wertz. Spacecraft Attitude Determination and Control. D. Reidel

Publishing Company, 1978.

156



[41] W. Yuanwei, S. Yao, and W. Guanghui. Vision-based Real-Time Aerial

Object Localization and Tracking for UAV Sensing System, 2017.

[42] A. Nussberger, H. Grabner, and L. Van Gool. Feature article: Robust

Aerial Object Tracking from an Airborne platform. IEEE Aerospace and

Electronic Systems Magazine, 31(7):38–46, 2016.

[43] G. Fasano, D. Accardo, and A.E. et al. Tirri. Sky Region Obstacle Detec-

tion and Tracking for Vision-Based UAS Sense and Avoid. J. Intell Robot

Syst, 2016.

[44] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid

objects using mean shift. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 142–149. IEEE, 2000.

[45] R. T. Collins and Y. Liu. On-Line Selection of Discriminative Tracking

Features. In IEEE Conf. on Computer Vision (ICCV),, pages 346–352.

IEEE, 2003.

[46] C. Tomasi and T. Kanade. Detection and Tracking of Point Features.

Tech. rep., International Journal of Computer Vision, 1991.

[47] Roberto Opromolla, Amedeo R Vetrella, Giancarmine Fasano, and

Domenico Accardo. Airborne Visual Tracking for Cooperative UAV

Swarms. In AIAA SciTech 2018, Florida, 2018. AIAA.

[48] J.; Heikkilla and O. Silvén. A Four-step Camera Calibration Procedure

with Implicit Image Correction. In In Proceedings of the 1997 Computer

Society Conference on Computer Vision and Pattern Recognition, San

Juan, Puerto Rico, 1997.

157



[49] E.D. Kaplan, J.L. Leva, D. Milbert, and M.S. Pavloff. Fundamentals of

Satellite Navigation. In Understanding GPS, Principles and Applications.

Artech House, Boston,MA, USA, 2nd edition, 2006.

[50] GPS Standard Positioning Service Performance Standard. Office of the

Secretary of Defense, New York, NY, USA, 4th edition, 2008.

[51] A Parkins. Increasing GNSS RTK Availability with a New Single-Epoch

Batch Partial Ambiguity Resolution Algorithm. GPS Solutions, 15(4):391–

402, 2011.

[52] G Hu, D A Abbey, N Castleden, W E Featherstone, C Earls, O Ovstedal,

and D Weihing. An Approach for Instantaneous Ambiguity Resolution

for Medium- to Long-Range Multiple Reference Station Networks. GPS

Solutions, 9(1):1–11, 2005.

[53] O Montenbruck, M Wermuth, R Kahle, Deutsches Zentrum, and Raum-

fahrt Dlr. GPS Based Relative Navigation for the TanDEM-X Mission -

First Flight Results. Earth, (February 2016):2797–2807, 2011.

[54] J Liu, M E Cannon, P Alves, M G Petovello, G Lachapelle, G MacGougan,

and L DeGroot. A performance comparison of single and dual frequency

GPS ambiguity resolution strategies. GPS Solutions, 7(2):87–100, 2003.

[55] A. Renga, G. Fasano, D. Accardo, M. Grassi, U. Tancredi, G. Rufino,

and A. Simonetti. Navigation facility for high accuracy offline trajectory

and attitude estimation in airborne applications. International Journal of

Navigation and Observation, 2013, 2013.

[56] P. J G Teunissen. The least-squares ambiguity decorrelation adjustment:

a method for fast GPS integer ambiguity estimation. Journal of Geodesy,

70(1-2):65–82, 1995.

158



[57] Urbano Tancredi, Alfredo Renga, and Michele Grassi. Real-Time Rela-

tive Positioning of Spacecraft over Long Baselines. Journal of Guidance,

Control, and Dynamics, 37(1):47–58, 2014.

[58] Paul D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated

Navigation Systems. 2008.

[59] S Verhagen. Integer ambiguity validation: an open problem? GPS Solu-

tions, 8(1):36–43, 2004.

[60] W.G. Melbourne. The Case for Ranging in GPS-based Geodetic Systems.

In 1st International Symposium on Precise Positioning with the Global

Positioning System, pages 373–386, 1985.

[61] G Wübbena. Software Developments for Geodetic Positioning with GPS

using TI-4100 Code and Carrier Measurements. In 1st International Sym-

posium on Precise Positioning with the Global Positioning System, pages

403–412, 1985.

[62] Sandra Verhagen and Li Bofeng. LAMBDA software package, Matlab

Implementation, Version 3.0, 2012.

[63] Paul D. Groves. Navigation using inertial sensors [Tutorial]. IEEE

Aerospace and Electronic Systems Magazine, 30(2), 2015.

[64] M.D. Shuster and S.D. Oh. Three-axis attitude determination from vector

observations. AIAA Journal of Guidance and Control, 4(1):70–77, 1981.

[65] Rui Hirokawa and Takuji Ebinuma. A Low-Cost Tightly Coupled

GPS/INS for Small UAVs Augmented with Multiple GPS Antennas. Jour-

nal of the Institute of Navigation, 56(1):34–44, 2009.

[66] Comune di Napoli. Rilievo aerofotogrammetrico. 1:1000 del comune di

Napoli.

159



[67] Y. Bar-Shalom. Update with out-of-sequence measurements in tracking:

exact solution. IEEE Trans. Aerosp. Electorn. Syst., 38(3), 2002.

[68] G. Fasano, D. Accardo, A.E. Tirri, A. Moccia, and E. De Lellis.

Radar/electro-optical data fusion for non-cooperative UAS sense and

avoid. Aerospace Science and Technology, 46:436–450, 2015.

[69] A. Bachrach, S. Prentice, R. He, and N. Roy. RANGE-Robust autono-

mous navigation in GPS-denied environments. Journal of Field Robotics,

28(5):644–666, 2011.

[70] Amedeo Rodi Vetrella, Giancarmine Fasano, and Domenico Accardo. Co-

operative navigation in GPS-challenging environments exploiting position

broadcast and vision-based tracking. In IEEE, International Conference

on Unmanned Aircraft Systems, Arlington, VI, USA, 2016. IEEE.

[71] Amedeo Rodi Vetrella, Roberto Opromolla, Giancarmine Fasano,

Domenico Accardo, and Michele Grassi. Autonomous Flight in GPS-

Challenging Environments Exploiting Multi-UAV Cooperation and Vision-

aided Navigation. In AIAA Infotech@ Aerospace, Grapevine, TX, USA,

2017. AIAA.

[72] (University of Minnesota). Impact and Mitigation of GPS-Unavailability

on Small UAV Navigation, Guidance and Control.

[73] S. Weiss and Et alii. Monocular Vision for Long-term Micro Aerial Vehicle

State Estimation: A Compendium. Journal of Field Robotics, 30(5):803–

831, 2013.

[74] G. Chowdhary and Et alii. GPS-denied Indoor and Outdoor Monocular

Vision Aided Navigation and Control of Unmanned Aircraft. Journal of

Field Robotics, 30(3):415–438, 2013.

160



[75] A. Lie and Et Alii. An Airborne Experimental Test Platforms. Inside

GNSS, pages 40–47, 2014.

[76] Z Zhu and Et alii. Architecture for Asymmetric Collaborative Navigation.

In IEEE PLANS, 2012.

[77] B. Ludington, E. Johnson, and G. Vachtsevanos. Augmenting UAV Au-

tonomy. IEEE Robotics & Automation Magazine, 13:63–71, 2006.

[78] Z. Yu, K. Nonami, J. Shin, and D. Celestino. 3D Vision Based Landing

Control of a Small Scale Autonomous Helicopter. International Journal

of Advanced Robotic Systems, 4:51–56, 2007.

[79] J. Kelly, S. Saripalli, and G. S. Sukhatme. Combined Visual and Iner-

tial Navigation for An Unmanned Aerial Vehicle. In Proceedings of the

International Conference on Field and Service Robotics, 2017.

[80] F. Caballero, L. Merino, J. Ferruz, and A. Ollero. Unmanned Aerial Vehi-

cle Localization Based on Monocular Vision and Online Mosaicking. Jour-

nal of Intelligent and Robotic Systems, 55:323–343, 2009.

[81] S. Weiss and R. Siegwart. Real-time metric state estimation for modular

vision-inertial systems. In Proceedings of IEEE International Conference

on Robotics and Automation, pages 4531–4537, Shanghai, China„ 2011.

IEEE.

[82] F. Andert, S. Lorenz, L. Mejias, and D. Bratanov. Radar-Aided Opti-

cal Navigation for Long and Large-Scale Flights over Unknown and Non-

Flat Terrain. In International Conference on Unmanned Aircraft Systems

(ICUAS), 2016.

161



[83] L. Merino, J. Wiklund, F. Caballero, A. Moe, J.R. Martinez-De Dios, and

Et Alii. Vision-Based Multi-UAV Position Estimation. IEEE Robotics &

Automotion Magazine, 1070(9932), 2006.

[84] P.E. Forssen and A. Moe. View matching with blob features. In in Proc.

2nd Canadian Conf Robot Vision,, pages 228–235, 2005.

[85] V. Indelman and Et alii. Graph-Based distributed cooperative navigation

for a general multi-robot measurement model. International Journal of

Robotics Research, 31(9):1057–1080, 2012.

[86] I.V.; Melnyk, J.A.; Hesch, and S.I. Roumeliotis. Cooperative Vision-aided

Inertial Navigation Using Overlapping Views. In IEEE Int. Conf. on

Robotics Automation, Saint Paul, Minnesota, USA„ 2012.

[87] O. Shakernia, W.-Z. Chen, and V.M. Raska. Passive Ranging for UAV

Sense and Avoid Applications,. In AIAA Infotech@Aerospace, 2005.

[88] R.M. Rogers. Applied Mathematics in Integrated Navigation Systems.

AIAA Education Series.

[89] J. Shi and C. Tomasi. Good features to track. In In Computer Vision and

Pattern Recognition, pages 593–600. IEEE, 1994.

[90] D. G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[91] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient

alternative to SIFT or SURF. In International conference on computer

vision, pages 2564–2571. IEEE, 2011.

[92] H. P. Gavin. The Levenberg-Marquardt method for nonlinear least squares

curvefitting problems. Technical report, Technical Report. Department of

Civil & Environmental Engineering, Duke University, 2013.

162



[93] F. Lu and R. Hartley. A fast optimal algorithm for L2 triangulation Tokyo.

In in Asian Conf. on Computer Vision, pages 18–22, 2007.

[94] F. Andert and L. Mejias. Improving monocular SLAM with altimeter

hints for fixed-wing aircraft navigation and emergency landing. In 2015

International Conference on Unmanned Aircraft Systems (ICUAS), 2015.

[95] Francesco Cocchioni, Adriano Mancini, and Sauro Longhi. Autonomous

Navigation, Landing and Recharge of a Quadrotor using Artificial Vision.

In International Conference on Unmanned Aircraft Systems, pages 418–

429, 2014.

[96] Alvika Gautam, P B Sujit, and Srikanth Saripalli. A Survey of Auton-

omous Landing Techniques for UAVs. International Conference on Un-

manned Aircraft Systems, pages 1210–1218, 2014.

[97] Amedeo Rodi Vetrella, Inkyu Sa, Marija Popovic, Raghav Khanna, Juan

Nieto, Giancarmine Fasano, Domenico Accardo, and Roland Siegwart. Im-

proved Tau-Guidance and Vision-aided Navigation for Robust Autono-

mous Landing of UAVs. In Field and Service Robotics (FSR). Springer,

2017.

[98] D N Lee. A theory of visual control of braking based on information about

time-to-collision. Perception, 5(4):437–459, 1976.

[99] Zuqiang Yang, Zhou Fang, and Ping Li. Decentralized 4D Trajectory

Generation for UAVs Based on Improved Intrinsic Tau Guidance Strategy.

International Journal of Advanced Robotic Systems, 13(3):1–13, 2016.

[100] Seungho Yoon, Youdan Kim, and Seungkeun Kim. Pursuit Guidance

Law and Adaptive Backstepping Controller Design for Vision-Based Net-

Recovery UAV. In AIAA Guidance, Navigation and Control Conference

and Exhibit, number August, pages 1–33, Honolulu, HI, 2008. AIAA.

163



[101] Takeshi Yamasaki, Hirotoshi Sakaida, Keisuke Enomoto, Hiroyuki Takano,

and National Defense Academy. Robust Trajectory-Tracking Method for

UAV Guidance. In International Conference on Control, Automation and

Systems, pages 1404–1409, Seoul, 2007. IEEE.

[102] D N Lee, M N O Davies, P R Green, and F R (Ruud). Van Der Weel.

Visual control of velocity of approach by pigeons when landing. Journal

of Experimental Biology, 180:85–104, 1993.

[103] Reuben Strydom, Aymeric Denuelle, and Mandyam V Srinivasan. Bio-

Inspired Principles Applied to the Guidance , Navigation and Control of

UAS. Aerospace, 3(21), 2016.

[104] F Kendoul. Four-dimensional guidance and control of movement using

time-to-contact: Application to automated docking and landing of un-

manned rotorcraft systems. The International Journal of Robotics Re-

search, 33(2):237–267, 2013.

[105] Simon Lynen, Markus W Achtelik, Stephan Weiss, Margarita Chli, and

Roland Siegwart. A Robust and Modular Multi-Sensor Fusion Approach

Applied to MAV Navigation. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 3923–3929, Tokyo, 2013. IEEE.

[106] Mina Kamel, Thomas Stastny, Kostas Alexis, and Roland Siegwart. Model

Predictive Control for Trajectory Tracking of Unmanned Aerial Vehicles

Using Robot Operating System, pages 3–39. Springer International Pub-

lishing, Cham, 2017.

[107] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Ro-

torS A Modular Gazebo MAV Simulator Framework. Springer Interna-

tional Publishing, Volume 1:pp. 595–625, 2016.

164


	Introduction
	Why cooperation?

	Thesis Objectives
	Improvement of UAV Navigation performance
	Related Work
	Cooperative Navigation Architecture
	Assumptions and Requirements
	Communications and synchronization issues
	Processing strategies

	Algorithm Formulation
	Vision-based tracking
	Differential GPS
	Code-based DGPS
	Carrier phase DGPS

	TRIAD algorithm
	Extended Kalman Filter (EKF)
	State vector
	System propagation
	Measurement update (Loosely Coupled)
	Measurement update (Tightly Coupled)


	DGPS/Vision potential and trade-offs
	Testing and Validation Strategy
	Experimental Setup
	Flight Tests
	Pointing/Attitude Accuracy Evaluation Strategy

	Experimental Results
	Differential GPS
	Loosely coupled approach
	Test 1
	Test 2

	Tightly coupled approach


	Cooperative Navigation in GPS-Challenging Environments
	Related Work
	Cooperative Navigation Approaches
	Cooperative Navigation
	Cooperative Navigation and vision-based SLAM

	Logical Architectures and Algorithms
	Line-of-Sight Measurement Update
	Monocular Pose Estimation

	Simulation Environment
	Results
	EKF with cooperative aiding (Simulations)
	EKF with cooperative aiding and vision-based SLAM (Simulations)
	EKF with cooperative aiding (Experimental Results)


	Autonomous UAV Take-off and Landing
	Related Work
	Logical Architecture
	Tau guidance
	Trajectory Parametrization
	Improved Intrinsic Tau Guidance Strategy

	Simulations
	Experimental Setup
	Experimental Results

	Conclusions
	Appendices
	System dynamic matrix
	Bibliography

