2,934 research outputs found

    Exploiting affinity propagation for energy-efficient information discovery in sensor networks

    Full text link
    Wireless sensor networks (WSN) are attractive for information gathering in large-scale data rich environments. Emerging WSN applications require dissemination of information to interested clients within the network requiring support for differing traffic patterns. Further, in-network query processing capabilities are required for autonomic information discovery. In this paper, we formulate the information discovery problem as a load-balancing problem, with the combined aim being to maximize network lifetime and minimize query processing delay. We propose novel methods for data dissemination, information discovery and data aggregation that are designed to provide significant QoS benefits. We make use of affinity propagation to group &quot;similar&quot; sensors and have developed efficient mechanisms that can resolve both ALL-type and ANY-type queries in-network with improved energy-efficiency and query resolution time. Simulation results prove the proposed method(s) of information discovery offer significant QoS benefits for ALL-type and ANY-type queries in comparison to previous approaches.<br /

    A Framework for Efficient Routing in MANET using Index Routing Tables-based Algorithms

    Get PDF
    Conventional network routing protocols rely on predefined numerical network unique node ID or group identifier for packet delivery, independent of semantic applications. This compels incorporation of resource/service discovery approaches in the design itself, at higher layers of network, causing additional overhead. This overhead, though tolerable in high speed wired networks, significantly restricts the performance in the infrastructure-less wireless ad hoc networks expending their limited battery resources, which are already consumed due to assigning unique identifiers to the naturally anonymous and high mobile nodes. This study proposes a single routing approach which facilitates descriptive and semantically-rich identification of network’s resources/services. This fusion of the discovery processes of the resources and the path based on their similarity in a single phase significantly reduces traffic load and latency of communication considering the generality too. Further, a framework capable of exploiting application-specific semantics of messages, adaptable to diverse traffic patterns is proposed. Analytical results amply illustrate the scalability and efficacy of the proposed method

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Semi-Supervised Learning for Diagnosing Faults in Electromechanical Systems

    Get PDF
    Safe and reliable operation of the systems relies on the use of online condition monitoring and diagnostic systems that aim to take immediate actions upon the occurrence of a fault. Machine learning techniques are widely used for designing data-driven diagnostic models. The training procedure of a data-driven model usually requires a large amount of labeled data, which may not be always practical. This problem can be untangled by resorting to semi-supervised learning approaches, which enables the decision making procedure using only a few numbers of labeled samples coupled with a large number of unlabeled samples. Thus, it is crucial to conduct a critical study on the use of semi-supervised learning for the purpose of fault diagnosis. Another issue of concern is fault diagnosis in non-stationary environments, where data streams evolve over time, and as a result, model-based and most of the data-driven models are impractical. In this work, this has been addressed by means of an adaptive data-driven diagnostic model
    corecore