90,718 research outputs found

    Exploitation of Dynamic Communication Patterns through Static Analysis

    Full text link
    Abstract not provide

    Using HTML5 to Prevent Detection of Drive-by-Download Web Malware

    Get PDF
    The web is experiencing an explosive growth in the last years. New technologies are introduced at a very fast-pace with the aim of narrowing the gap between web-based applications and traditional desktop applications. The results are web applications that look and feel almost like desktop applications while retaining the advantages of being originated from the web. However, these advancements come at a price. The same technologies used to build responsive, pleasant and fully-featured web applications, can also be used to write web malware able to escape detection systems. In this article we present new obfuscation techniques, based on some of the features of the upcoming HTML5 standard, which can be used to deceive malware detection systems. The proposed techniques have been experimented on a reference set of obfuscated malware. Our results show that the malware rewritten using our obfuscation techniques go undetected while being analyzed by a large number of detection systems. The same detection systems were able to correctly identify the same malware in its original unobfuscated form. We also provide some hints about how the existing malware detection systems can be modified in order to cope with these new techniques.Comment: This is the pre-peer reviewed version of the article: \emph{Using HTML5 to Prevent Detection of Drive-by-Download Web Malware}, which has been published in final form at \url{http://dx.doi.org/10.1002/sec.1077}. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archivin

    The zombies strike back: Towards client-side beef detection

    Get PDF
    A web browser is an application that comes bundled with every consumer operating system, including both desktop and mobile platforms. A modern web browser is complex software that has access to system-level features, includes various plugins and requires the availability of an Internet connection. Like any multifaceted software products, web browsers are prone to numerous vulnerabilities. Exploitation of these vulnerabilities can result in destructive consequences ranging from identity theft to network infrastructure damage. BeEF, the Browser Exploitation Framework, allows taking advantage of these vulnerabilities to launch a diverse range of readily available attacks from within the browser context. Existing defensive approaches aimed at hardening network perimeters and detecting common threats based on traffic analysis have not been found successful in the context of BeEF detection. This paper presents a proof-of-concept approach to BeEF detection in its own operating environment – the web browser – based on global context monitoring, abstract syntax tree fingerprinting and real-time network traffic analysis

    Avoiding evolutionary inefficiencies in innovation networks

    Get PDF
    Innovation policy is in need for a rational which allows the design and evaluation of policy instruments. In economic policy traditionally the focus is on market failures and efficiency measures are used to decide whether policy should intervene and which instrument should be applied. In innovation policy this rational cannot meaningfully be applied because of the uncertain and open character of innovation processes. Uncertainty is not a market failure and cannot be repaired. Inevitably policy makers are subject to failure and their goals are to be considered as much more modest compared to the achievement of a social optimum. Instead of optimal innovation, the avoidance of evolutionary inefficiencies becomes the centrepiece of innovation policy making. Superimposed to the several sources of evolutionary inefficiencies are socalled network inefficiencies. Because of the widespread organisation of innovation in innovation networks, the network structures and dynamics give useful hints for innovation policy, where and when to intervene. --innovation policy,innovation networks,uncertainty,exploration and exploitation,evolutionary inefficiencies,policy rational

    MERIC and RADAR generator: tools for energy evaluation and runtime tuning of HPC applications

    Get PDF
    This paper introduces two tools for manual energy evaluation and runtime tuning developed at IT4Innovations in the READEX project. The MERIC library can be used for manual instrumentation and analysis of any application from the energy and time consumption point of view. Besides tracing, MERIC can also change environment and hardware parameters during the application runtime, which leads to energy savings. MERIC stores large amounts of data, which are difficult to read by a human. The RADAR generator analyses the MERIC output files to find the best settings of evaluated parameters for each instrumented region. It generates a Open image in new window report and a MERIC configuration file for application production runs

    A Compiler and Runtime Infrastructure for Automatic Program Distribution

    Get PDF
    This paper presents the design and the implementation of a compiler and runtime infrastructure for automatic program distribution. We are building a research infrastructure that enables experimentation with various program partitioning and mapping strategies and the study of automatic distribution's effect on resource consumption (e.g., CPU, memory, communication). Since many optimization techniques are faced with conflicting optimization targets (e.g., memory and communication), we believe that it is important to be able to study their interaction. We present a set of techniques that enable flexible resource modeling and program distribution. These are: dependence analysis, weighted graph partitioning, code and communication generation, and profiling. We have developed these ideas in the context of the Java language. We present in detail the design and implementation of each of the techniques as part of our compiler and runtime infrastructure. Then, we evaluate our design and present preliminary experimental data for each component, as well as for the entire system

    Idea-caution before exploitation:the use of cybersecurity domain knowledge to educate software engineers against software vulnerabilities

    Get PDF
    The transfer of cybersecurity domain knowledge from security experts (‘Ethical Hackers’) to software engineers is discussed in terms of desirability and feasibility. Possible mechanisms for the transfer are critically examined. Software engineering methodologies do not make use of security domain knowledge in its form of vulnerability databases (e.g. CWE, CVE, Exploit DB), which are therefore not appropriate for this purpose. An approach based upon the improved use of pattern languages that encompasses security domain knowledge is proposed
    corecore