
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2015; 8:1237–1255

Published online 21 August 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1077

RESEARCH ARTICLE

Using HTML5 to prevent detection of
drive-by-download web malware
Alfredo De Santis1, Giancarlo De Maio1 and Umberto Ferraro Petrillo2 *

1 Dipartimento di Informatica, Università degli studi di Salerno, Rome, Italy
2 Dipartimento di Scienze Statistiche, Università di Roma “La Sapienza”, Fisciano Salerno, Italy

ABSTRACT

The Web is experiencing an explosive growth in the last years. New technologies are introduced at a very fast pace with
the aim of narrowing the gap between web-based applications and traditional desktop applications. The results are web
applications that look and feel almost like desktop applications while retaining the advantages of being originated from
the Web. However, these advancements come at a price. The same technologies used to build responsive, pleasant, and
fully featured web applications can also be used to write web malware able to escape detection systems. In this article,
we present new obfuscation techniques, on the basis of some of the features of the upcoming HTML5 standard, which
can be used to deceive malware detection systems. The proposed techniques have been experimented on a reference set of
obfuscated malware. Our results show that the malware rewritten using our obfuscation techniques goes undetected while
being analyzed by a large number of detection systems. The same detection systems were able to correctly identify the
same malware in its original unobfuscated form. We also provide some hints about how the existing malware detection
systems can be modified in order to cope with these new techniques. Copyright © 2014 John Wiley & Sons, Ltd.

KEYWORDS

web malware; detection systems; obfuscation; JavaScript; HTML5

*Correspondence

Umberto Ferraro Petrillo, Dipartimento di Scienze Statistiche, Università di Roma ‘La Sapienza’, Piazzale Aldo Moro 5, 00185. Italy.
E-mail: umberto.ferraro@uniroma1.it

1. INTRODUCTION

The Web is becoming the medium of choice for the
development and the spreading of malware. Currently, it
is estimated that approximately the 85% of all malware
comes from the web [1]. One particular type of mal-
ware that is gaining success is the one implementing the
drive-by-download attack [2]. In this attack, the unaware
user downloads a web page from the Internet containing
a malicious code, typically written in JavaScript. Once
downloaded, the code starts acquiring information from
the context where it is executed in order to determine
which exploits can be used to gain access to some of the
resources of the local machine. If a known vulnerability is
found, the corresponding exploiting code is downloaded,
deobfuscated, and executed.

The spreading of drive-by-download malware may be
limited by using detection systems. These employ different
techniques to determine if a web page contains a malware.
Detection systems can be used either to prevent the spread-
ing of malware, by establishing in advance which websites
host malware and, thus, must be blacklisted, or, during

the ordinary browsing activity, to warn users about the
potential danger of a page being browsed. State-of-the-art
web malware detection systems are based on the usage of
honeyclients. These are client machines used to visit web
pages that could contain malware. If the client gets in some
way compromised after visiting a page, then the page is
marked as containing a malware. This approach is not only
very effective but also very expensive in terms of time and
computational power. For this reason, it is used in con-
junction with quick detection systems that are based on the
static or semi-static analysis of a web page. These are used
as fast filters to choose which pages could be harmful and,
thus, should be analyzed by the honeyclients. The choice
is carried out by classifying the behavior of web pages
according to several features that are usually found in
web malware.

The explosive growth of malware is continuously fueled
by the release of new technologies for the Web. On the one
hand, standardizing committees, web browser developers
and large companies operating on the Internet are pushing
for the adoption of technologies allowing the development
of rich web-based client applications. On the other hand,

Copyright © 2014 John Wiley & Sons, Ltd. 1237

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54506100?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

the flourishing of these technologies is multiplying the pos-
sibilities of developing malware, which are more effective
and harder to detect than in the past.

In this work, we show how to use some of the func-
tionalities introduced with the upcoming HTML5 standard
to rethink some of the obfuscation techniques used to
deliver web malware on the browser of a victim machine.
We also developed a reference implementation for the
techniques we propose. These implementations have been
tested, together with a selection of publicly available web
malware, against several static and semi-static malware
detection systems. The tests have been conducted in two
stages. In the first stage, the malware samples have been
analyzed by means of the chosen detection systems. In
the second stage, the same malware has been reformu-
lated using our techniques and, then, analyzed again. The
outcoming results show that, in almost all the analyzed
cases, the considered web malware was correctly identi-
fied by the detection systems in its original form, but it
has gone undetected after being reformulated according
to our techniques. The final aim of this article is to raise
awareness about the potential dangers of some of the new
functionalities related to the HTML5 standard thus fueling
the development of more robust countermeasures. Some
of these possible countermeasures are proposed along with
the explanation of the obfuscation techniques.

1.1. Organization of the paper

The remainder of the paper is organized as follows. In
Section 2, we describe the anatomy of a typical drive-
by-download malware attack, with the help of a reference
example. In Section 3, we briefly review the different
approaches proposed so far in literature for the detection of
malicious JavaScript code. In Section 4, we discuss several
features introduced by the HTML5 standard and by sev-
eral other related specifications that are of interest for our
work. In Section 5, we introduce and detail our obfuscation
techniques. The description of each technique is accom-
panied by the discussion about the possible strategies to
deploy for countering it. In Section 6, we present a proto-
type implementation for our techniques together with the
results of an experimental analysis aimed at assessing their
effectiveness when used in conjunction with several mal-
ware codes and malware detection systems. Finally, we list
some concluding remarks in Section 7.

2. ANATOMY OF THE
DRIVE-BY-DOWNLOAD ATTACKS

Drive-by-download attacks work by fooling a victim user
in downloading a web page containing a malicious code
(usually written in JavaScript). This code leverages some
vulnerabilities existing in the web browser of the victim in
order to compromise the hosting machine. The exploitation
is usually carried out by targeting one or more bugs exist-
ing in some components of the browser, such as installed

add-ons or plug-ins. The final objective is the execution on
the client machine of a shellcode (typically, a hex-encoded
binary code) that gives the remote attacker access to the
machine. As discussed in [3], these attacks usually follow
a standard sequence of steps:

1. Redirection and cloaking. During this step, the vic-
tim may be sent through a long series of redirections,
with the goal of making it more difficult to track the
origin of the attack, up to reaching the page where
the real attack is initiated. Another activity carried
out in this step is the acquisition of information about
the execution environment (e.g., the IP address of
the client machine, the operating system, and the
browser being used). This information is often trans-
mitted to a remote server in order to determine if
the browser running on the target machine, or one of
its components, contains a vulnerability that can be
leveraged to have access to the machine. If such a
component is found, then a malware code exploiting
the corresponding vulnerability is sent back to the
client. If no vulnerability is found or if the malware
detects that it has been running on a honeyclient, no
shellcode is downloaded to the client.

2. Deobfuscation. The malware code usually comes as
an obfuscated JavaScript program. This is performed
in order to hide the real purpose of a code and
overcome signature-based analysis. The same may
apply to the shellcode carried by the malware. When
the attack has to take place, the obfuscated code is
transformed in clear text.

3. Environment preparation. Most part of the
JavaScript-based attacks leverage on vulnerabilities
found in some of the dynamic-link libraries or of the
plug-ins commonly installed in a browser. During
this phase, the malware prepares the code required
to exploit these vulnerabilities and execute arbitrary
code.

4. Exploitation. This phase concerns with carrying out
the attack. This typically involves the instantiation of
the vulnerable software components and the injection
of the harmful code (shellcode).

5. Malware installation. The shellcode executed during
the exploitation phase is often aimed to download
and execute a malicious file onto the victim machine.
The downloaded executable, which typically is a tro-
jan horse or a bot, provides the attacker with full
control of the infected host.

A typical example of JavaScript-based attack is
the one presented in the Listings 1, 2, and 3. The
code has been generated by means of the mozilla_
attribchildremoved module of the Metasploit
Framework [4], which is publicly available on the Web.
The attack exploits an use-after-free vulnerability [5,6] that
affects some recent versions of the Firefox browser and
that allows to execute arbitrary code on a victim machine
running Windows XP. Basically, the bug consists on the use

1238 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

of a previously dereferenced pointer (dangling pointer),
which results in a memory error and, typically, in the
application crash. The idea is that the memory previously
occupied by the removed object can be carefully manip-
ulated so that the buggy invocation results in a call to
arbitrary code.

It is worth noting that the sample malware presented in
this section cannot be considered a fully fledged drive-by-
download, because it does not implement all the phases
discussed in Section 2. For sake of simplicity, only the
exploitation phase is considered hereinafter. However,
without loss of generality, the techniques presented in this
paper can be straightforwardly extended to real-word web-
based malware, such as that implemented by the notorious
exploit kits.

In the first phase, a malicious web server uses fin-
gerprinting techniques in order to establish if the victim
browser suffers from the vulnerability documented in [5]
and in [6]. If so, a web page containing the malware is sent
to the browser.

In the second phase, the malicious code to be exe-
cuted upon the attack is typically deobfuscated by
leveraging the high dynamicity of JavaScript, which
allows to execute code assembled at runtime. In this

case, the obfuscation technique used by the mozilla_
attribchildremoved module simply consists of
assigning random names to the variables used in the mali-
cious code. In the sample code presented in this section,
the random variable names have been substituted with sim-
plified uppercase names for the sake of clarity. No further
modifications to the original code have been made.

The third logical phase of the malware, related to the
environment preparation, consists of placing the payload in
a predictable memory location, so that it can be called upon
the exploitation. Listing 1 shows an excerpt of the payload
used for this experiment, which contains a series of binary
instructions, encoded as an UTF-8 string, aimed to simply
execute the Calculator application under Windows XP. In
this case, the malware employs the heap-spray technique
[7–9] in order to accomplish this task. A typical heap-spray
procedure resembles that presented in Listing 2.

Finally, the malware can trigger the execution of the
payload by exploiting the vulnerability that causes the arbi-
trary code execution. The code responsible for this task
is shown in Listing 3. Basically, the removal of a child
node from the tree representing the structure of the web
page being shown allows, in some circumstances, the child
to still be accessible because of a premature notification.

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1239
DOI: 10.1002/sec



Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

By manipulating the memory reserved to this element, it
is possible to modify the program execution in order to
launch the payload.

At this point, the arbitrary instructions contained in the
payload may finalize the infection by downloading and
executing a malicious binary onto the victim machine.

3. DETECTING MALICIOUS
JAVASCRIPT CODE

Several techniques have been proposed so far for detecting
web malware. In the simplest approach, a database of mal-
ware patterns (signatures) is statically matched against an
input JavaScript code. If a match is found, then the code is
classified as a malware. This approach is typically imple-
mented by antivirus software such as those in [10–12], as
well as by intrusion detection systems such as those in [13].

Static detection can be easily overcome in many ways.
One of the most used approaches relies on the dynamic
features of the JavaScript language. Namely, the malware
is brought to the victim machine in an encrypted or obfus-
cated form through a web page acting as an attack vector,
as described in Section 2. The web page analyzes the
environment where it is run and sends the outcoming infor-
mation back to a remote server. Then, it downloads the
payload of the attack (i.e., the malware). Finally, the mal-
ware code is put in plain and executed using a dynamic
code evaluation function, such as eval(). A static anal-
ysis through a signature-based detection system will com-
pletely miss the code run by the malware, as it is revealed

only at runtime, thus making the correct detection of the
malware by means of a static analysis much harder.

A completely different and much more effective
approach consists in runtime analysis, which can be further
divided in off-line and online analysis. Off-line analysis is
performed by means of a honeyclient, which is an instru-
mented environment aimed to analyze the effects produced
by the execution of potentially malicious code. In high-
interaction honeyclients (e.g., [14,15]), the rendering of the
web page is carried out in a sandbox, which is typically
implemented as a virtual machine running a fully fea-
tured browser. The surrounding environment is monitored
in order to detect eventual attempts to compromise the
system, which is typically accomplished by analyzing pro-
gramming application programming interface (API) calls,
system calls, filesystem modifications, network activity,
and so on.

A limitation of high-interaction honeyclients is that a
malware can be detected only if the attack succeeds, which
may not happen. Malware may employ fingerprinting and
cloaking techniques in order to adapt its behavior at run-
time according to the environment where it runs. A web
page could be harmful if open with a certain version of
a certain type of browser using a certain type of plug-
in, while being completely harmless if open in any other
configurations. The malware could even be able to dis-
cern whether it runs inside a sandbox [16] and completely
evade the analysis as consequence. This implies the need
of checking the same web page several times, using all
the different combinations of browsers, operating systems,
installed plug-ins, and so on. This has the effect of dramat-
ically increasing the computational time required to scan

1240 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

all the possible configurations as well as the overhead to be
spent for keeping the system updated with all the possible
testing configurations. This cost is further magnified by the
release of new versions for the software products used in
the browsing activity and by the discovery and disclosure
of new vulnerabilities for these software.

A similar approach is adopted by low-interaction hon-
eyclients (e.g., [17–21]). Rather than analyzing the effects
on the system, the code flow produced by the web page is
analyzed instead. It is typically accomplished by means of
an emulated environment that enables to inspect instruc-
tions and data. Detection can be based on signature
matching [22] or on more sophisticated anomaly detec-
tion procedures [19]. Thanks to browser and environment
emulation, low-interaction honeyclients have higher detec-
tion rates with respect to high-interaction honeyclients.
Moreover, also preliminary phases of an attack (e.g., fin-
gerprinting, deobfuscation, and memory preparation) can
be exposed. Off-line detection systems are typically fed by
web crawlers and are used to perform large-scale analyses.
Malicious URLs can be added to a black list of malicious
domains that may be used, for example, by browsers and
search engines to warn users about the page they have
been visiting.

The analysis performed by means of a honeyclient may
require a considerable amount of time. For this reason,
the usage of honeyclients is often combined with other
lighter detection techniques, like the ones presented in
[3,18,23,24]. The rationale of these techniques is to ana-
lyze, either statically or dynamically, the content of a
page and classify its behavior according to several features
such as the instantiation of very long strings, the usage
of encrypting and decoding primitives, and the allocation
of software components that are known to be subject to
exploits. This analysis occurs at a preliminary stage. If a
page is found to be potentially harmful, it is sent to the
honeyclient for a further analysis. Otherwise, the page is
discarded. The advantage of this hybrid approach is that
this preprocessing can be performed much faster than the
honeyclient-based analysis, thus resorting to honeyclients
only for pages that have a higher chance of being harmful.

Online analysis is more concerned about host security
and can be employed in order to detect and prevent exe-
cution of web malware at runtime. It can be accomplished
by means of in-browser [25] or binary [26] instrumenta-
tion. Because efficiency is one of the main aim of these
systems, online analysis is typically based on a combina-
tion of dynamic and static approaches. Basically, function
parameters are retrieved dynamically, while detection is
performed by means of static classifiers (e.g., presence of
certain patterns likely to be malicious). Semi-static anal-
ysis could be evaded by using code obfuscation or by
rearranging the code [27]. Some solutions have been pro-
posed that make use of anomaly detection instead of simple
pattern matching techniques, such as in [27] and [28]. They
are based on a classifier that needs to be trained with a
set of malicious and a set of benign samples, which allows
to discern the set of features characterizing the execu-

tion of malicious code. While the former extracts features
from the structure of the code (i.e., the abstract syntax
three), the latter focuses on the analysis of JavaScript
opcodes. Some online analysis approaches aim to detect
specific phases of a drive-by-download attack, such as
the heap spraying [20,29]. Generally speaking, the heap
spraying is a powerful approach that allows to put arbi-
trary data, such as a shellcode, at a predictable memory
location and is able to bypass OS-level security mecha-
nisms like address space layout randomization [30]. Most
recent heap-spraying techniques, such as those presented
in [7,8] and [9], are able to evade targeted online analy-
ses like those discussed in [20] and [29]. In [31], a system
for detecting environment fingerprinting and cloaking has
been proposed, which can be used in conjunction with
both online and off-line analysis. A completely different
approach, based on behavioral analysis, is adopted in [32]
and [33]. These techniques are based on the idea that a file
downloaded through the browser should be executed only
if the user consents it. In order to accomplish this task,
both techniques try to reconstruct the context of a file being
downloaded by the browser. The file is executed only if
the correct sequence of actions is performed by both the
browser (e.g., a dialog is prompted to the user) and the user
(e.g., he or she clicked on the open button). This approach
is effective in both detecting and preventing the last phase
of a drive-by attack, which is the malware installation.

Other approaches are not based on the analysis of the
potentially malicious code itself. This is the case of the
technique presented in [34], which is able to analyze the
information about URL redirection collected by an honey-
client in order to discern all the potentially malicious URLs
belonging to the same malware distribution network.

4. HTML5 AND THE NEXT
GENERATION WEB

HTML5 is the arising standard for the next generation
web. Although not being finished, the standard is already
available as a draft [35,36] and is mostly implemented
in all major browsers. It is currently being developed by
both the World Wide Web (W3C) consortium and by the
Web Hypertext Application Technology Working Group
(WHATWG). The W3C is focused on the development
of the standard specification, while the WHATWG group
pays more attention to the way the specification is imple-
mented by the web browsers and to the development of all
the technologies that are related to this standard.

In addition, the W3C consortium and the WHATWG
group are also active in the development of several other
specifications (see, e.g., [37,38]) that integrate the work
carried out with the HTML5 main specifications. One of
the goals of these specifications is to provide developers
with the instruments required to code web applications that
resemble and feel like standard desktop applications, while
retaining the advantages of the distributed computing. To
this end, the specifications introduce several new features

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1241
DOI: 10.1002/sec



Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

that allow to obtain richer and more responsive user inter-
faces, to cache and retrieve efficiently user’s data on a local
machine, to have web applications seamlessly transfer data
with their server counterparts with a small overhead, and
to be able to mash together several services hosted by dif-
ferent providers and used by the same application. These
features can be leveraged through several JavaScript-based
programming APIs.

In the following, we briefly describe some of the most
noteworthy HTML5 APIs.

4.1. Local storage API

This allows to persistently store structured data, indexed by
textual keys, in a storage area provided by the browser [38].
This mechanism is an evolution of the one implemented by
the cookies. The access to the storage is restricted on a per-
domain basis (i.e., only applications originated by the same
domain that originated a storage area can access it) and is
only possible from the client side of a web application.

4.2. Web SQL storage API

This allows to persistently store and query relational data
using a database and the SQL language [39]. The access
protection scheme is the same used in the local storage
case. At the moment, there is not a standard specification
of the SQL dialect to be supported by this technology.
Instead, all web browser implementors refer to the SQL
dialect supported by SQLlite. This database management
system is also the one used by all browsers (except Firefox)
for implementing this feature.

4.3. IndexedDB API

This allows to persistently maintain and query a collection
of records containing either simple values or hierarchical
objects [40]. Each record consists of a key and some val-
ues. Information can be retrieved either by using its key
or by defining indexes on some of the fields of the stored
data. Differently from the web SQL storage API, this API
cannot rely on the expressiveness and the flexibility of the
SQL language while querying for data. Conversely, the
key-value approach guarantees faster querying times and
prevents from SQL injections attacks.

4.4. File API

This allows to persistently maintain and access informa-
tion using a file-oriented interface [37]. Data can be of two
types: File or Blob. The former is typically used to map
access to objects that are stored as files in the file system
underlying the browser. The latter is used to map access
to immutable raw binary data that are usually stored in
memory and exchanged with a remote server.

4.5. Web workers API

This implements a multi-threaded execution model within
web applications. The application has the possibility to
fork one or more threads. These are executed concurrently
with their parent thread, using a different core/processor (if
available). These threads run as long as their parent threads
exist. Their execution occurs in a sandbox where most part
of the APIs available to web applications cannot be used.
The communication between threads is implemented by
sharing some common data structures. These threads are
conceived as a mean for web applications to carry out CPU
intensive tasks without affecting the response time of the
user interface.

4.6. Canvas API

This allows to draw and manipulate arbitrary graphics on
a canvas surface [41]. The surface is encapsulated in a
Canvas HTML element. The application can modify the
content of a canvas pixel-by-pixel or use high-level graph-
ical primitives to draw lines, shapes, text, and images. The
content of a canvas can also be processed using image
transformation operators or composition operators. Finally,
arbitrary graphical animations can be easily implemented
by programmatically updating the content of a canvas
element through a periodical refresh.

4.7. Cross-origin client communication

This allows two or more web applications originated from
different domains and running in different contexts (i.e.,
two iframes in the same page or two different pages) to
communicate. The communication is asynchronous and
is based on the exchange of messages [42]. The appli-
cation willing to receive messages creates a new listener
that is uniquely bound to the domain where it originated.
The application interested in communicating creates a new
message and sends it by providing the domain address
where the target application should be listening. When
receiving a new message, the target application may check
(programmatically) the source of the message and decide
if examine or discard it.

4.8. WebSocket API

This allows a web browser to maintain a Transmis-
sion Control Protocol-based communication channel with
server-side processes [41]. Differently from traditional
communication mechanisms based on the exchange of
HTTP headers, this channel allows for full-duplex trans-
missions. The content of a communication can be either
data or text, and it can be initiated by any of the two parties
of the communication.

1242 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

5. FOOLING MALWARE
DETECTION SYSTEMS

As discussed in Section 2, the malicious code of a drive-
by-download attack is usually encrypted and/or obfuscated
in order to escape signature-based detection. As a con-
sequence, many static and semi-static detection systems
aim to analyze web pages in order to discern the presence
of programming patterns that resemble decoding or deob-
fuscation routines. Together with some other clues, this
approach is used to establish if a web page is likely to
contain malicious code.

In this article, we show three obfuscation techniques, on
the basis of some HTML5 APIs, to deliver and reassem-
ble malicious code in a web page. These techniques focus
on those phases of a drive-by attack that take place in
the victim’s browser (i.e., preparation and exploitation).
Specifically, we will show that a malicious JavaScript code
obfuscated by means of our techniques is able to evade
static detection systems on the basis of the analysis of
the in-browser code. The post-exploitation phase (malware
installation) is out of scope of this work and can still be
detected by means of methods like that presented in [32].
However, we will present a scenario in which our tech-
niques can be leveraged in order to discern if the victim
machine is an honeyclient. In that case, the detection can be
evaded by completely skipping the exploitation and/or the
malware installation phases. Our techniques can be used
solely or can be mixed together to further raise the prob-
ability of escaping analysis. The general aim of this work
is to show that current web-malware detection systems
are not prepared to cope with the reckless and unceasing
introduction of new web technologies, like HTML5.

All the presented techniques are based on the original
drive-by-download schema described in Section 2. In the
first step, the original attack code is obfuscated and stored
server side. Once the victim visits the malicious page, the
web malware is sent to the client machine. In the second
step, the malicious JavaScript code is deobfuscated. In the
third step, the exploit is prepared, and in the fourth step,
the payload is executed. The last step is out of scope of our
techniques, because it does not take place in the victim’s
browser.

In our case, the first step is common to all the tech-
niques we propose and can be summarized as follows. The
malicious code is split in a series of chunks, each one
containing a piece of the original code. The chunks are
constructed ad-hoc in order to be individually undetectable
(i.e., they resemble common strings). The third and the
fourth steps are dependent on the particular type of mal-
ware to be executed and are not involved by our techniques.
The second step leverages on HTML5 functions to avoid
the typical (de)obfuscation patterns detectable upon a static
or semi-static code analysis. The three techniques are as
follows:

� Delegated preparation. Delegate the preparation of a
malware to the system APIs.

� Distributed preparation. Distribute the preparation
code over several concurrent and independent pro-
cesses running within the browser.

� User-driven Preparation. Let the user trigger the exe-
cution of the preparation code during the time he or
she spends on a single page or a website.

5.1. Delegated preparation

Web malware makes massive use of strings. JavaScript
provides many string manipulation functions that are par-
ticularly useful to embed shellcode in a web page and to
implement (de)obfuscation routines. For this reason, detec-
tion systems focus on study of strings and string-related
functions. Detection rules are typically based on features
such as occurrences of string manipulation functions such
as unescape(), decoding functions such as decode()
and decodeURIComponent(), very long loops that
are typically used for code deobfuscation, and number of
occurrences of eval() or document.write() func-
tions, which can be used to evaluate a string.

The delegated preparation technique allows a web mal-
ware to avoid (at all or partially) the activities related to the
decoding and/or the deobfuscation of a string by delegating
these to the web browser internals, through the WebSQL
API or the IndexedDB API. As described in Section 4,
these APIs allow to maintain and to query a database on
the client side of a web application. The idea we propose
is to split the malicious code into a series of chunks and
to recompose it at runtime, as typically occurs for sim-
ple (de)obfuscation routines. The difference here is that
each chunk is stored in a table entry on the local browser
database. Then, when the attack has to take place, the
retrieval and the preparation of the malicious code is del-
egated to the database engine through a properly crafted
selection query. If a browser implementing the WebSQL
API through the SQLlite software is used, the concate-
nation of the strings can be completely delegated to the
SQL engine, by means of the GROUP_CONCAT() oper-
ator. Otherwise, it would be up to the user-level code to
browse the recordset returned by the query and concate-
nate the resulting strings. The resulting code can be finally
executed by using the eval() function. An alternative
approach is based on the usage of the FileReader API.
As described in Section 4, this API allows to maintain
and process data in the local storage of a browser using
a file-oriented interface. An additional, although less pop-
ular, capability of this API concerns with the possibility
of managing in-memory generic objects consisting of raw
binary data: the Blob objects. These can hold an arbitrary
number of array of bytes and are provided with a function
that allows to convert their content into a single string of
text. The aforementioned technique could be adapted by
having a malicious code converted into a string of bytes
and scattered into several very short arrays. These are sent
to the client machine, where they are stored as separate
arrays in a single Blob object. Whenever the attack has to
be triggered, the content of the Blob is converted into text,

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1243
DOI: 10.1002/sec



Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

using the readAsText() function available with the
FileReader API.

5.1.1. Comment.

The discussed techniques should prevent signature-
based anti-malware systems from detecting malicious code
during a static analysis, because it is assembled dynam-
ically. Moreover, they do not require to apply further
encryption nor obfuscation techniques, as the malicious
code is implicitly obfuscated by the fragmentation schema
used to break it into records. This allows to avoid all the
operations that are usually needed to recover an encrypt-
ed/obfuscated code and that are used by detection systems
as a hint to guess the presence of a threat. Instead, the
malicious code is retrieved by using an application pattern
that is apparently harmless and very common in prac-
tice. For example, it resembles the code to be written
when preparing the text labels to be used when draw-
ing a multi-language user interface. Finally, when the
GROUP_CONCAT() function is available, the assembling
of the original code string is triggered by one single line
of user-level code, as it is completely delegated to the SQL
storage engine.

5.1.2. Countermeasures.

A simple, although rough, way to counter the delegated
preparation technique is to deny at all the possibility to
run code that has been dynamically assembled using the
output of a query to the local storage engine. In a sim-
ilar way, it should be denied the possibility to run code
assembled using the readAsText() operation of the
FileReader API. However, this solution may be too limit-
ing in a context where execution of dynamically assembled
code is required. In such cases, a different strategy should
be employed.

Among the different approaches proposed in literature,
one that seems to be promising for countering the delegated
preparation technique is the one based on taint analysis
[43,44]. This is a particular type of data flow analysis that
works by marking as tainted the data, in a program execu-
tion, that comes from a potentially malicious source. Then,
propagation of tainted values is traced along the execution
of the program. Finally, as tainted values are used, as input,
for the execution of a given set of, potentially harmful,
commands, a warning is produced.

In our case, taint analysis could be applied by isolating
all cases where a collection of strings is downloaded from
the network, assembled into one string, and then used as
input for a dynamic evaluation function. In order to follow
this strategy, taint analysis should be implemented with the
possibility to keep track of tainted values, even if these
are stored and retrieved from the local storage engine, as
shown, for example, in [45]. A possible way to reduce the
number of false positives would be to employ string analy-
sis techniques to mark as tainted only strings that are likely
to contain assembly code.

5.2. Distributed preparation

Typically, the operations driving the deobfuscation and
the execution of a malware would look harmless in them-
selves but harmful if considered as a whole. The distributed
preparation technique aims at deceiving detection systems
by breaking up the execution of a malware code in sev-
eral simpler pieces to be executed separately in different
contexts. Each piece of code would execute its part of the
attack and, then, make available the result to the next part.

From the technical point of view, this idea can be imple-
mented by separating the three activities of gathering the
malicious code (in an encoded and/or obfuscated form),
deobfuscating it, and running it, by executing them in
different threads through web workers (Section 4). Com-
munication between different workers could be established
by using cross-origin client communication primitives
(Section 4). Moreover, in order to further confuse detection
systems, the communication patterns to follow during the
execution of the attack would not be established statically
but would be decided at runtime, by evaluating a function
that would decide which other web worker would be the
target of a communication at the end of a certain step.

5.2.1. Comment.

The expectation is that this approach should be able
to fool either static and semi-dynamic detection systems
because these should not be able to recognize the activity
performed by a single worker as part of a more complex
distributed algorithm performed by all the involved work-
ers. First, the analysis of the code executed by a single web
worker would not reveal any damaging activity. Second,
it would be hard for a detection system to guess the cor-
rect order in which code is executed among different web
workers without executing it.

5.2.2. Countermeasures.

Countering an attack carried out using the distributed
technique is likely to be harder than in the case of the
delegated technique. Like in the previous case, a rough
solution would be to deny at all the possibility to run a
dynamic code assembled using data outcoming from an
untrusted source (in this case, a message received from
another worker). If this solution is not viable, it is pos-
sible again to resort to the taint analysis techniques for
detecting malicious code by tracing the usage of data com-
ing from untrusted sources. However, the problem here
is complicated by the distributed nature of the applica-
tion being run. Several solutions have been proposed to
this end in the recent literature, such as in [46,47]. The
rationale of these approaches is to introduce a framework
able to generalize and aggregate the behavior of each sin-
gle thread of a distributed application, so as to be able to
better trace the path followed for performing a malicious
activity. These frameworks are able to trace both the activ-
ities of the single threads as well as to trace pieces of data
exchanged among different threads. There remains, how-
ever, one important handicap. Because the communication

1244 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

patterns followed by the workers are not necessarily known
a priori, but it may be influenced by the execution flow of
the application, and the taint analysis should be performed
in a dynamic way (i.e., by monitoring the execution of
the distributed application in a setting where the malicious
activity takes place), thus leaving out static and semi-static
detection systems.

5.3. User-driven preparation

The user-driven technique is a variant of the distributed
preparation technique. Here, the activities related to the
preparation and to the execution of a malware are spread
across the time that a victim user spends visiting a single
page or a collection of pages (i.e., seconds or minutes),
rather than being concentrated in few milliseconds. More-
over, in order to avoid the predictability of the sequence,
the execution of the single activities is not automatic,
but it is triggered by the (unaware) user himself or her-
self. Such an approach falls into the category of the logic
bombs ([48]).

From a technical point of view, this technique can be
implemented by binding the execution of malware activi-
ties to the occurrence of some user-triggered events (e.g.,
the user clicks on a button contained in the web page).
A similar approach has been leveraged in the wild by the
Nuclear Pack exploit kit [49], whose malicious activity is
triggered at the occurrence of a onmousemove event. The
user-driven preparation technique is based on a more artic-
ulated idea. The content of the page is organized in such
a way that the victim has to perform an exact sequence
of steps in order to enjoy the content of the page (e.g.,
playing a game). By following this sequence, the victim
unintentionally drives the execution of the malware.

A possible refinement of this technique would require
to scatter the malware-related activities across several web
pages while using the browser local storage to save tem-
porary data. This would make even more difficult for
analyzers to detect the malware code.

5.3.1. Comment.

We expect this technique to be able to escape static and
semi-static detection systems because the harmful code is
scattered across several parts of the page (or of several
pages) and its execution is triggered by external non-
deterministic events. Moreover, this technique could also
be effective against detection systems based on honey-
clients as the exact sequence of steps that cause an attack
to take place is strongly related to the way a human user
would interact with page. With respect to previous attempts
of avoiding honeyclient analysis, such approach is much
more effective because it would be very complicated for an
automatic program to replicate the exact actions leading to
the triggering of the attack.

5.3.2. Countermeasures.

The user-driven technique falls in the more general cate-
gory of trigger-based behaviors in malware, that is, hidden

behaviors in a code, which are activated only when prop-
erly triggered. Similarly to what has been said for the
previous techniques, the easiest (and more drastic) way to
counter attacks based on the user-driven technique would
be to deny the possibility to run code whose content has
been influenced by the user’s input. When such a policy is
not viable, it is possible to resort to some of the solutions
existing in literature for this class of problems. Namely,
detection systems such as the one described in [50,51]
are able to detect, automatically or semi-automatically, the
existence of a trigger-based behavior in a code, find the
conditions that trigger such hidden behavior, and finally,
find inputs that are able to trigger these conditions. The
approach being used takes advantage from a mix of anal-
ysis techniques and may require a deep instrumentation or
a reference execution of the code being analyzed. In our
case, it is not clear if the time required by these systems for
completing a scan over a malicious code that implements
the user-driven technique would be feasible.

6. IMPLEMENTATION AND
EXPERIMENTS

In the remaining part of this work, we present the result
of an experimentation aimed at assessing the effective-
ness of the proposed techniques�. In these experiments, we
reproduced a series of real-world scenarios, where a victim
client visits a malicious website that tries to execute one or
more JavaScript-based malware. Such malware is obfus-
cated by means of the patterns discussed in Section 5. The
experimentation consisted of the following steps:

1. Selection of a reference set of JavaScript-based
attacks publicly available on the web (base mal-
ware);

2. Analysis of the selected malware by means of a
number of malware detection systems;

3. Obfuscation of the attacks by means of the tech-
niques presented in this work (obfuscated malware);

4. Re-analysis of the obfuscated malware.

The objective of the experiments is to show that the web
pages containing the malware rewritten using our tech-
niques result perfectly clean upon the re-analysis. The mal-
ware reference set includes some proof-of-concept attacks
published on the web, some of which are summarized in
Table I. As already highlighted in Section 2, for sake of
simplicity but without loss of generality, the sample mal-
ware used for the experiments is not real-world malware.
In fact, it just implements the execution phase and uses a
proof-of-concept payload. All the sample code has been
generated by means of publicly available modules of the
Metasploit framework, as summarized in Table I. Some of

� A copy of the code used in our experimentation is pub-
licly available at the following URL: www.statistica.uniroma1.it/
users/uferraro/experim/malware.

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1245
DOI: 10.1002/sec



Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

Table I. List of malware used in our experimentations.

Malware sample Target browser Vulnerability Public PoC exploit

A Firefox 8,9 CVE-2011-3659 [52]
B Internet Explorer 6 CVE-2010-0249 [53]
C Firefox 3.5 CVE-2009-2478 [54]
D Internet Explorer 6,7,8 CVE-2010-3962 [55]

PoC, proof of concept.

the selected malware is intentionally dated, hence currently
detected by most of (static and dynamic) malware detec-
tion tools selected at step 2. Clearly, the detection rate at the
last step cannot increase if using novel attacks (i.e., 0-days)
as base malware. All the malware samples have been con-
figured to simply execute the Calculator program as result
of the attack, but clearly the same results can be obtained
by adopting more complex payloads.

Despite lots of malware analysis techniques and tools
that have been proposed in literature (Section 3), a very
limited subset of them is publicly available for use. The
malware detection systems used to validate our methods
have been VirusTotal [56] and Wepawet [19]. The first is a
free online service that analyzes files and URLs for identi-
fication of various kinds of malware. VirusTotal aggregates
the output of different antivirus engines, website scan-
ners and other file, and URL analysis tools. This service
allowed for fast testing with more then 40 malware ana-
lyzers. VirusTotal uses not only state-of-the-art commer-
cial antivirus engines, on the basis of signature analysis,
but also reputation-based engines, IPS engines, browser
protection engines, buffer-overflow engines, behavioral
engines, and other heuristic engines�. Wepawet is a plat-
form for dynamic off-line analysis of web-based threats,
which combines a number of approaches and techniques
to analyze code executed by a web page. The core of
the system is the JSAND module, which is one of the
most advanced low-interaction honeyclients documented
in literature. It is able to emulate several environment con-
figurations in order to explore all the potentially harmful
code paths. Dynamic analysis is implemented by means
of anomaly detection techniques able to discern between
benign and malicious code execution. Because the imple-
mentation of these analysis tools is constantly evolving, it
is important to highlight that all the experiments have been
conducted between February and April 2013.

6.1. Testing environment

The obfuscated malware samples have been embedded in
a set of web pages and uploaded onto a local web server
running Apache 2.2.16 on Linux Debian 6.0. The server
machine used for the experiments has been a laptop with

� A comperhensive list of the products used by VirusTotal can
be found here: https://www.virustotal.com/en/about/credits/.

an Intel Core i3-370M and 4 GB of RAM. The vulnera-
ble client machine has been a laptop with Intel Pentium
Processor P6100 and 2 GB of RAM, running Windows XP
SP2 as operating system.

The attacks used in the experimentation target different
browser configurations under Windows XP, as summarized
in Table I. It is worth noting that some of these browsers,
like Internet Explorer, do not provide support for the
HTML5 APIs employed by our techniques, which means
that some attacks cannot be really executed against the
target environment. This should not be considered a weak-
ness of the method, because detection based on static code
analysis does not require the malware execution. On the
other hand, browsers with HTML5 support, like Firefox 8
and 9, have been successfully exploited by means of the
modified malware, which means that our obfuscation tech-
niques are able to preserve the timeliness, the order, and
the correctness of all the low-level instructions required to
accomplish the attack. The use of dated hardware for both
the server and the client machines has been carried out to
prove that no particular resources are required to execute
our HTML5-based techniques.

6.2. Experiment 1: evasion through
delegated preparation

The delegated preparation technique assumes that portions
of malware, referred to as malware chunks, are stored on
a malicious server and can be retrieved, for example, by
means of the WebSocket protocol. A malware chunk may
be a single instruction, a set of instructions, a piece of hex-
encoded payload, a pre-computed value, and so on. In the
example presented in the succeeding text, the malicious
web page uses the HTML5 WebSocket API in order to
establish a Transmission Control Protocol connection with
the server. The server sends back to the malicious webpage
a series of malware chunks that are differently processed
on the basis of the specific storage API.

Listing 4 shows a basic implementation of the delegated
preparation technique (for sake of clarity, some details
have been omitted and self-explanatory variable names
have been chosen). It is assumed that each malware chunk
is a single instruction of the original malware. First, a con-
nection with the malicious server is opened (line 2). On
the reception of a message (line 3), the received chunk is
stored in a local database (line 7). Once the connection is

1246 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

https://www.virustotal.com/en/about/credits/


A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1247
DOI: 10.1002/sec



Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

closed by the server (line 11), the full code is reassembled
by means of a single call to the GROUP_CONCAT() func-
tion of SQLite (line 14), which transparently returns the
concatenation of all the stored values.

As shown in the previous example, the use of the Web-
SQL API enables to assemble the malware in a transparent
way, thus completely avoiding any string manipulations.
Currently, the WebSQL API specification is being sup-
ported by Webkit-based browsers, such as Google Chrome,
Apple Safari, and Opera. In case the target browser does
not support Web SQL APIs (e.g., Mozilla Firefox), Web
Storage [38] or Indexed DB [40] could be leveraged
instead. Listing 5 shows a possible implementation of the
previous attack by using the Indexed DB API. As for the
previous case, on the reception of a message, the chunk
is stored on the local database (line 11). When the con-
nection is closed by the server, a cursor is used in order
to step through all the values in the object store (line 17).
The onsuccess() callback (line 19) is called for each
chunk in the object store, which can be processed as con-
sequence (e.g., passed to eval()). Also in this case, no
string manipulation is performed.

Another HTML5 API that can be used for the dele-
gated preparation is Blob, or BlobBuilder in older browser
versions. Both APIs can be leveraged to transparently con-
catenate a series of strings without using any suspicious
string manipulation functions. An example is shown in
Listing 6, where a BlobBuilder object is used to reassemble

a hex-encoded payload obtained by means of a WebSocket
connection. In more details, the chunks returned by the
server are progressively appended to a BlobBuilder object
(line 12). When the server closes the connection, the com-
plete blob is reassembled by means of the getBlob()
function (line 17). The content of the blob is subse-
quently read and merged in a single string by means of
the FileReader API (line 24). Finally, the resulting pay-
load is processed (line 19). Even in this case, no string
manipulation functions have been used.

6.3. Experiment 2: evasion through
distributed preparation

The basic idea of this technique is to obfuscate the mali-
cious code by delegating the execution of different parts of
the same malware to different dedicated threads. It can be
accomplished by leveraging the web worker API supported
by most of recent browsers. A graphical representation of
the example presented in this section is described through
the tree diagram in Figure 1. The web workers are repre-
sented by nodes, and the dependency correlations among
web workers are represented by edges. In more details,
two web workers ww1 and ww2 are used to retrieve the
payload. They do not have any correlation, therefore can
be concurrently executed (same level). After their termina-
tion, ww3 is activated in order to perform the heap spray

1248 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

Figure 1. Distributed preparation: malware execution path.

(Section 2). Clearly, this step depends on the output of ww1
and ww2. As consequence, ww3 can only start once the
execution of its children is terminated. The memory cor-
ruption data are generated by ww4, which finally triggers
the exploit. Synchronization among web workers can be
managed by means of JavaScript events. It is worth noting
that the malware execution path could be more complex
of that presented in Figure 1 and can be generalized in
a graph.

A basic implementation of this example is presented
in Listing 7. The attack discussed in Section 2 is used as
base malware. At runtime, the malicious page instantiates
two web workers (ww1 at line 4 and ww2 at line 12), each
responsible for delivering a piece of the payload. They are
concurrently executed because their tasks are independent
with each other. When a web worker terminates its work,
the generated data are extracted from the received message
(lines 5 and 13), and its termination is signaled by means
of a Terminated event. The execution of ww3 is trig-
gered once all the required parameters have been obtained
(line 20). The third web worker is responsible for execut-
ing the heap spray. Afterwards, the code aimed to trigger
the exploit is executed (line 27). The exploit data are gener-
ated by means of the last web worker (line 31), ww4, which
returns the series of blocks used to overwrite the memory
referenced by the dangling pointer (line 36). Finally, the
memory error is triggered (line 40).

The concurrent preparation technique can be recur-
sively adopted by leveraging nested web workers (cur-
rently supported only by Firefox). Listing 8 shows a
possible implementation of ww3 on the basis of nested web
workers. The procedure is divided into three phases, each
performed by a dedicated web worker. In particular, ww3a

is in charge of generating the padding data, which is in turn
passed to ww3b together with the payload (line 8). At this
point, ww3b can use these parameters in order to assem-
ble the spray block. The last step is performed by ww3c
(line 15), which generates a random variable containing the
spray data. Once the spray is complete, the termination is
signaled to the main thread (line 25). Despite that ww3a,
ww3b, and ww3c must be executed in sequence because
they depend on each other, multiple instances of ww3 can
be executed in parallel in order to speed-up the procedure.

6.4. Experiment 3: evasion through
user-driven preparation

The user-driven technique is based on the idea that the exe-
cution of a malware can be associated to the interaction of
the user with a web page. Any web-based attack can be
straightforwardly adapted to this pattern. Technically, the
execution of a specific block of instructions is associated to
the occurrence of a particular event triggered by the user.
Only one (or a small subset) of all the possible sequences
of actions being practicable by the user leads to the full
execution of the malware. The effectiveness of this attack
relies on the fact that it leverages not only technical tricks
but also human factors, which are difficultly reproducible
by means of an automated program like a client honey-
pot. While this approach is not strictly related to HTML5,
such technology introduces many functionalities that can
be leveraged to realize the user-driven technique.

Clearly, a difficulty of this technique consists in induct-
ing the victim to perform the exact sequence of actions
leading to the execution of the malware. The example
discussed in the succeeding text shows how a common
browser game can be adapted to this purpose. In particu-
lar, this makes use of a simple version of the famous Snake
game (available at [57]), which is implemented by means
of the canvas API [58]. The canvas is used to draw the
plane in which the snake moves, and the direction of the
snake can be changed by the user through the direction
keys. The canvas is refreshed at progressive time inter-
vals (ticks). The example leverages two functions defined
in the original source code: changeDirection() and
updateScore(). The first is in charge of updating the
direction of the snake and is called whenever a keystroke
occurs. The second function is called whenever the snake
catches some food in order to update the user’s score. Thus,
by playing the game, the unaware user drives the correct
execution of the malware.

As shown in Listing 9, a hook has been inserted at
the beginning of the changeDirection() function,
which performs a call to the spray_step() proce-
dure. This performs a single step of the heap spray. It
is worth noting that this procedure can be obfuscated, in
turn, by means of the delegated preparation or the concur-
rent preparation. The heap spray remains quite effective
becuase it is executed within a short time, because a new
handle to the keydown event is created at each tick

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1249
DOI: 10.1002/sec



Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

without cleaning the previous handles (it is an imperfec-
tion of the original code). It results in multiple calls of
the changeDirection() function whenever a key is
pressed. When the heap spray is carried out, a global flag
bonus is set.

A hook has been inserted at the end of the
updateScore() function, which is in charge of trigger-
ing the vulnerability. It is worth noting that the bonus
and the score parameters are checked before performing
the call to the run() function. In such a way, the mal-
ware execution proceeds only whether (i) the heap spray
has been completed successfully and (ii) the user’s score
is above a certain threshold. This last requirement would
ensure that the player is really a human.

6.5. Analysis and reports

A victim machine has been set-up in order to carry out the
validation procedure. In the first phase, we prepared a set
of web pages, each containing one of the chosen malware
codes, then we verified that the selected malware detec-
tion systems correctly classified such pages as malicious.
In the second phase, we used the same detection systems to
surf the web pages containing the malware rewritten using
the novel obfuscation techniques. For each malware, we
wrote five different variants based on the three techniques
documented in Section 5. As discussed before, the tests
have been carried out by using VirusTotal, for online static
and dynamic analysis, and Wepawet, for off-line dynamic

1250 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1251
DOI: 10.1002/sec



Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

Table II. VirusTotal and Wepawet detection ratios on the
sample malware set.

VirusTotal Wepawet
Malware Detection ratio Detection ratio

A 11/46 1/1
B 31/46 1/1
C 30/46 1/1
D 28/46 1/1

analysis. In case of multiple resources constituting the mal-
ware, each file has been separately sent to VirusTotal for
analysis. In the case of Wepawet, only the URL to the main
page has been submitted. Because the implementation of
the systems used for the analysis is continuously evolving,
which influences the effectiveness of detecting new mal-
ware, it is important to highlight that all the experiments
have been conducted between February and April 2013.

Table II summarizes the detection ratio given by Virus-
Total and Wepawet in the first phase for each sample
malware in Table I. As it can be clearly seen, VirusTotal,
which, we recall, makes uses of 46 different (mostly static)
detection systems, and Wepawet were always able to cor-
rectly identify the analyzed code as malicious. It is worth
recalling that the malware samples were equipped with
simple proof-of-concept payloads (such as the execution
of the calc.exe program). Clearly, the use of more
complex payloads can only determine an increase of the
detection rate of static analyzers. Conversely, the effective-
ness of the obfuscation techniques presented in this work
does not depend on the complexity/length of the original
malware.

We turn out now our attention to the second phase of
the experimentation. Here, all the malware codes rewritten
using our techniques have always been able to evade detec-
tion, when analyzed with either VirusTotal or Wepawet,
even if for different reasons. As expected, VirusTotal was
able to classify as malicious only codes where a signifi-
cant part of the original malware, such as entire shellcodes
or exploit patterns, was in the same place. This seems to
be mainly due to the limitations of the static approach
employed by most of the detection systems used by Virus-
Total, as a page is classified as malicious if it matches,
within a certain threshold, with a previously known signa-
ture. Even the sandbox-based products used by VirusTotal
were not able to detect the threat, most likely because of the
limitations of the high-interaction honeyclients discussed
in Section 3. Such a problem should not affect Wepawet, as
it employs a completely dynamic approach based on emu-
lation to establish if a code contains a malware. Despite
this, Wepawet always failed in classifying as malicious our
code. A careful analysis revealed that this behavior was
probably due to the module used by Wepawet to emu-
late the execution of JavaScript code, which is apparently
not able to interpret the HTML5 APIs leveraged by our
obfuscation patterns. As consequence, Wepawet did not

uncover the modified attacks unless a significant part of the
malware code (e.g., the exploit) was in the main web page.

7. CONCLUSIONS

In this article, we presented three obfuscation techniques
that leverage on some functionalities of the HTML5 related
standards. These techniques can be used to write drive-
by-download malware to be able to evade either static
or dynamic detection systems. We have experimentally
assessed the effectiveness of our techniques by using them
to rewrite and analyze a reference set of web malware. Our
results show that, to the best of the detection systems pub-
licly available nowadays, our techniques seem to succeed
in preventing the detection of the malware.

This result was expected when speaking of static detec-
tion systems. The approach used by these systems to
identify malicious code is typically based on matching an
input code against a database of malware patterns (sig-
natures). Because the patterns we were experimenting are
still unknown to the existing static detection systems, they
went undetected. We have obtained the same results even
when experimenting with semi-static detection systems.
These systems implement a blended approach by mix-
ing the signature-based technique with more advanced
techniques such as heuristics and statistical features to dis-
tinguish between benign and malign tools. Despite this,
the semi-static detection systems employed in our exper-
iments were unable to detect the tested malware. Finally,
the experimented obfuscation techniques were also able to
deceive, in our tests, dynamic detection systems. This may
be surprising as these systems are able to detect a mal-
ware not by its code but according to its behavior. A further
investigation revealed that this failure was due to the inabil-
ity of these systems to recognize and deal with HTML5
related primitives. Thus, the first countermeasure would
be to update existing dynamic detection systems with the
support for HTML5-related primitives. This would make
it possible to determine if the dynamic approach is able to
correctly detect malware obfuscated with our techniques.
We also provided several hints about the other countermea-
sures that could be put in practice in order to counter our
techniques. As a more general consideration, as far as new
web-related technologies increase the range of possibilities
for web applications, there is an urgent need of hardening
the standard level of security of web browsers as well as
increasing the public awareness about the potential dangers
of running untrusted web applications.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their helpful and valuable comments, especially those con-
cerning alternative approaches for preventing or detecting
drive-by-download attacks.

1252 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

REFERENCES

1. Sophos Ltd. Security threat report 2012, 2012. Avail-
able from: http://www.sophos.com/en-us/security-news-
trends/reports/security-threat-report.aspx [Accessed
on 3 September 2013].

2. Egele M, Kirda E, Kruegel C. Mitigating drive-by
download attacks: challenges and open problems. In
iNetSec 2009 Open Research Problems in Network
Security IFIP Advances in Information and Communi-
cation Technology, Vol. 309, Camenisch J, Kesdogan
D (eds). Springer: Boston, 2009; 52–62.

3. Cova M, Kruegel C, Vigna G. Detection and analysis
of drive-by-download attacks and malicious JavaScript
code. In Proceedings of the 19th International Confer-
ence on World Wide Web, WWW ’10. ACM: New York,
NY, USA, 2010; 281–290.

4. Rapid7. Exploit database (DB) – metasploit, 2013.
Available from: http://www.metasploit.com/modules/
[Accessed on 3 September 2013].

5. Bradshaw S. The Grey corner: heap spray exploit
tutorial: internet explorer use after free Aurora
vulnerability, 2010. Available from: http://www.
thegreycorner.com/2010/01/heap-spray-exploit-tutorial-
internet.html [Accessed on 3 September 2013].

6. d0c_s4vage. Insecticides Don’t Kill Bugs, Patch
Tuesdays Do, 2011. Available from: http://d0cs4vage.
blogspot.it/2011/06/insecticides-dont-kill-bugs-patch.
html [Accessed on 3 September 2013].

7. Ding Y, Wei T, Wang T, Liang Z, Zou W. Heap
Taichi: exploiting memory allocation granularity in
heap-spraying attacks. In Proceedings of the 26th
Annual Computer Security Applications Conference,
ACSAC ’10. ACM: New York, NY, USA, 2010;
327–336.

8. Corelan Team. Exploit writing tutorial part 11: heap
spraying demystified, 2011. Available from: https://
www.corelan.be/index.php/2011/12/31/exploit-writing-
tutorial-part-11-heap-spraying-demystified/ [Accessed
on 3 September 2013].

9. Ramilli M. Nozzle and BuBBLE: a trick to
JUMP them!, March 2013. Available from: http://
marcoramilli.blogspot.it/2013/03/nozzle-and-bubble-
trick-to-jump-them.html [Accessed on 3 September
2013].

10. Symantec Corporation. Norton antiVirus, 2012. Avail-
able from: http://us.norton.com/antivirus/ [Accessed
on 3 September 2013].

11. Webroot Inc. Fastest PC & Mac Virus Protection -
SecureAnywhere Antivirus 2013 – Webroot, 2012.
Available from: http://www.webroot.com/En_US/
consumer-products-secureanywhere-antivirus.html
[Accessed on 3 September 2013].

12. AV-TEST. The Independent IT-Security Institute:
2011, 2012. Available from: http://www.av-test.
org/en/tests/award/2011/ [Accessed on 3 September
2013].

13. Roesch M. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th USENIX Con-
ference on System Administration, LISA ’99. USENIX
Association: Berkeley, CA, USA, 1999; 229–238.

14. Guarnieri C, Tanasi A, Bremer J, Schloesser M. Auto-
mated malware analysis - Cuckoo Sandbox, 2012.
Available from: http://www.cuckoosandbox.org/about.
html [Accessed on 3 September 2013].

15. Seifert C, Steenson R. Capture - honeypot client
(Capture-HPC), 2006.

16. Kapravelos A, Cova M, Kruegel C, Vigna G. Escape
from monkey island: evading high-interaction hon-
eyclients. In Proceedings of the 8th International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA’11. Springer-
Verlag: Berlin, Heidelberg, 2011; 124–143.

17. Hartstein B. Jsunpack - a generic JavaScript unpacker,
2011. Available from: http://jsunpack.jeek.org/
[Accessed on 3 September 2013].

18. Rieck K, Krueger T, Dewald A. Cujo: efficient detec-
tion and prevention of drive-by-download attacks. In
Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10. ACM: New
York, NY, USA, 2010; 31–39.

19. Wepawet, 2012. Available from: http://wepawet.cs.
ucsb.edu [Accessed on 3 September 2013].

20. Ratanaworabhan P, Livshits B, Zorn B. NOZZLE: a
defense against heap-spraying code injection attacks.
In Proceedings of the 18th Conference on USENIX
Security Symposium, SSYM’09. USENIX Association:
Berkeley, CA, USA, 2009; 169–186.

21. Dell’Aera A. Thug, 2012. Available from: http://buffer.
github.com/thug/ [Accessed on 3 September 2013].

22. Nazario J. PhoneyC: a virtual client honeypot. In
Proceedings of the 2nd USENIX Conference on
Large-scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and more, LEET’09. USENIX Asso-
ciation: Berkeley, CA, USA, 2009; 6–6.

23. Likarish P, Jung E, Jo I. Obfuscated malicious
JavaScript detection using classification techniques,
2009 4th International Conference on Malicious and
Unwanted Software (MALWARE), Montreal, Quebec,
Canada, 2009; 47–54.

24. Canali D, Cova M, Vigna G, Kruegel C. Prophiler: a
fast filter for the large-scale detection of malicious web
pages. In Proceedings of the 20th International Con-
ference on World Wide Web, WWW ’11. ACM: New
York, NY, USA, 2011; 197–206.

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1253
DOI: 10.1002/sec

http://www.metasploit.com/modules/
http://d0cs4vage.blogspot.it/2011/06/insecticides-dont-kill-bugs-patch.html
http://d0cs4vage.blogspot.it/2011/06/insecticides-dont-kill-bugs-patch.html
http://d0cs4vage.blogspot.it/2011/06/insecticides-dont-kill-bugs-patch.html
http://us.norton.com/antivirus/
http://www.av-test.org/en/tests/award/2011/
http://www.av-test.org/en/tests/award/2011/
http://www.cuckoosandbox.org/about.html
http://www.cuckoosandbox.org/about.html
http://jsunpack.jeek.org/
http://wepawet.cs.ucsb.edu
http://wepawet.cs.ucsb.edu
http://buffer.github.com/thug/
http://buffer.github.com/thug/


Using HTML5 to prevent detection of drive-by-download web malware A. De Santis, G. De Maio and U. Ferraro-Petrillo

25. Heiderich M, Frosch T, Holz T. IceShield: detection
and mitigation of malicious websites with a frozen
DOM. In Proceedings of the 14th International Con-
ference on Recent Advances in Intrusion Detection,
RAID’11. Springer-Verlag: Berlin, Heidelberg, 2011;
281–300.

26. Kim HC, Choi YH, Lee DH. JsSandbox: a framework
for analyzing the behavior of malicious JavaScript
code using internal function hooking. TIIS 2012; 6(2):
766–783.

27. Curtsinger C, Livshits B, Zorn B, Seifert C. Zozzle:
fast and precise in-browser JavaScript malware detec-
tion. In Proceedings of the 20th USENIX Conference
on Security, SEC’11. USENIX Association: Berkeley,
CA, USA, 2011; 3–3.

28. Jayasinghe GK, Shane Culpepper J, Bertok P. Efficient
and effective realtime prediction of drive-by download
attacks. Journal of Network and Computer Applica-
tions Feb 2014; 38: 135–149.

29. Gadaleta F, Younan Y, Joosen W. Bubble: A
JavaScript engine level countermeasure against heap-
spraying attacks. In Engineering Secure Software and
Systems, vol. 5965, Massacci F, Wallach D, Zannone
N (eds), Lecture Notes in Computer Science. Springer:
Berlin Heidelberg, 2010; 1–17.

30. Shacham H, Page M, Pfaff B, Goh EJ, Modadugu
N, Boneh D. On the effectiveness of address-space
randomization. In Proceedings of the 11th ACM Con-
ference on Computer and Communications Security,
CCS ’04. ACM: New York, NY, USA, 2004; 298–307.

31. Kolbitsch C, Livshits B, Zorn B, Seifert C. Rozzle: de-
cloaking internet malware, IEEE Symposium on Secu-
rity and Privacy, San Francisco Bay Area, California,
2012; 443–457.

32. Lu L, Yegneswaran V, Porras P, Lee W. Blade: an
attack-agnostic approach for preventing drive-by mal-
ware infections. In Proceedings of the 17th ACM
Conference on Computer and Communications Secu-
rity, CCS ’10. ACM: New York, NY, USA, 2010;
440–450.

33. Hsu FH, Tso CK, Yeh YC, Wang WJ, Chen LH.
Browserguard: a behavior-based solution to drive-by-
download attacks. IEEE Journal on Selected Areas in
Communications August 2011; 29(7): 1461–1468.

34. Zhang J, Seifert C, Stokes JW, Lee W. Arrow: gen-
erating signatures to detect drive-by downloads. In
Proceedings of the 20th International Conference on
World Wide Web, WWW ’11. ACM: New York, NY,
USA, 2011; 187–196.

35. W3C Consortium. HTML5: a vocabulary and asso-
ciated apis for HTML and XHTML, 2013. Available
from: http://dev.w3.org/html5/spec/ [Accessed on 3
September 2013].

36. WHATWG Group. HTML: the living standard,
2013. Available from: http://developers.whatwg.org/
[Accessed on 3 September 2013].

37. W3C Consortium. File API, 2012. Available from:
http://www.w3.org/TR/FileAPI/ [Accessed on 3
September 2013].

38. W3C Consortium. Web storage, 2012. Available from:
http://dev.w3.org/html5/webstorage [Accessed on 3
September 2013].

39. W3C Consortium. Web database API, 2010. Available
from: http://www.w3.org/TR/webdatabase/ [Accessed
on 3 September 2013].

40. W3C Consortium. Indexed database API, 2012.
Available from: http://www.w3.org/TR/IndexedDB/
[Accessed on 3 September 2013].

41. W3C Consortium. WebSocket API, 2012. Available
from: http://www.w3.org/TR/websockets/ [Accessed
on 3 September 2013].

42. Hanna S, Chul E, Akhawe D, Boehm A, Saxena P. The
emperor’s new APIs: on the (in) secure usage of new
client-side primitives. csberkeleyedu 2010.

43. Newsome J, Song D. Dynamic taint analysis for auto-
matic detection, analysis, and signature generation of
exploits on commodity software, Proceedings of the
Network and Distributed System Security Symposium
(NDSS 2005), 2005.

44. Jovanovic N, Kruegel C, Kirda E. Pixy: a static anal-
ysis tool for detecting web application vulnerabilities,
2006 IEEE Symposium on Security and Privacy, 6,
Oakland, California, 2006; 263.

45. Tamayo JM, Aiken A, Bronson N, Sagiv M. Under-
standing the behavior of database operations under
program control. SIGPLAN Not Oct 2012; 47 (10):
983–996.

46. Ganai M, Lee D, Gupta A. DTAM: dynamic taint
analysis of multi-threaded programs for relevancy. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineer-
ing, FSE ’12. ACM: New York, NY, USA, 2012;
46:1–46:11.

47. Sifakis E, Mounier L. Offline taint prediction for multi-
threaded applications, 2012. Available from: http://
www-verimag.imag.fr/TR/TR-2012-8.pdf [Accessed
on 3 September 2013].

48. Egele M, Scholte T, Kirda E, Kruegel C. A survey
on automated dynamic malware-analysis techniques
and tools. ACM Computer Surveys Mar 2008; 44 (2):
6:1–6:42.

49. Matrosov A. Nuclear Pack Exploit Kit plays with
smart redirection, April 2012. Available from:
http://www.welivesecurity.com/2012/04/05/blackhole-
exploit-kit-plays-with-smart-redirection/ [Accessed
on 3 September 2013].

1254 Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://dev.w3.org/html5/spec/
http://developers.whatwg.org/
http://www.w3.org/TR/FileAPI/
http://dev.w3.org/html5/webstorage
http://www.w3.org/TR/webdatabase/
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/websockets/
http://www-verimag.imag.fr/TR/TR-2012-8.pdf
http://www-verimag.imag.fr/TR/TR-2012-8.pdf


A. De Santis, G. De Maio and U. Ferraro-Petrillo Using HTML5 to prevent detection of drive-by-download web malware

50. Brumley D, Hartwig C, Liang Z, Newsome J,
Song D, Yin H. Automatically identifying trigger-
based behavior in malware. In Botnet Detection,
Advances in Information Security, Vol. 36, Lee
W, Wang C, Dagon D (eds). Springer: US, 2008;
65–88.

51. Fleck D, Tokhtabayev A, Alarif AA, Stavrou A,
Nykodym T. Pytrigger: a system to trigger & extract
user-activated malware behavior, Proceedings of the
8th ARES Conference, Regensburg, Germany, 2013;
92–101.

52. Regenrecht. Firefox 8/9 AttributeChildRemoved()
Use-After-Free, 2011. Available from: http://
packetstormsecurity.com/files/112664/Firefox-8-9-
AttributeChildRemoved-Use-After-Free.html
[Accessed on 3 September 2013].

53. Sberry. Mozilla Firefox 3.5 (font tags) remote
buffer overflow exploit, 2009. Available from: http://
www.exploit-db.com/exploits/9137/ [Accessed on 3
September 2013].

54. Obied A. Internet Explorer Aurora Exploit, 2010.
Available from: http://www.exploit-db.com/exploits/
11167/ [Accessed on 3 September 2013].

55. Memelli M. Internet Explorer 6, 7, 8 memory cor-
ruption 0day exploit, 2010. Available from: http://
www.exploit-db.com/exploits/15421/ [Accessed on 3
September 2013].

56. VirusTotal Team. VirusTotal - free Online virus,
malware and URL scanner, 2013. Available
from: https://www.virustotal.com/ [Accessed on 3
September 2013].

57. Saunders R. Snake in HTML5 canvas, a tutorial –
Ralph Saunders ? designer & developer, 2011. Avail-
able from: http://ralphsaunders.co.uk/blogged-about/
snake-in-html5-canvas-a-tutorial/ [Accessed on 3
September 2013].

58. W3C Consortium. Html canvas 2D context, level
2 nightly, 2013. Available from: http://www.w3.org/
html/wg/drafts/2dcontext/html5_canvas/ [Accessed on
3 September 2013].

Security Comm. Networks 2015; 8:1237–1255 © 2014 John Wiley & Sons, Ltd. 1255
DOI: 10.1002/sec

http://www.exploit-db.com/exploits/9137/
http://www.exploit-db.com/exploits/9137/
http://www.exploit-db.com/exploits/11167/
http://www.exploit-db.com/exploits/11167/
http://www.exploit-db.com/exploits/15421/
http://www.exploit-db.com/exploits/15421/
https://www.virustotal.com/
http://ralphsaunders.co.uk/blogged-about/snake-in-html5-canvas-a-tutorial/
http://ralphsaunders.co.uk/blogged-about/snake-in-html5-canvas-a-tutorial/
http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas/
http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas/

	Using HTML5 to prevent detection of drive-by-download web malware
	Introduction
	Organization of the paper

	Anatomy of the Drive-by-Download Attacks
	Detecting Malicious JavaScript Code
	HTML5 and the Next Generation Web
	Local storage API
	Web SQL storage API
	IndexedDB API
	File API
	Web workers API
	Canvas API
	Cross-origin client communication
	WebSocket API

	Fooling Malware Detection Systems
	Delegated preparation
	Comment
	Countermeasures

	Distributed preparation
	Comment
	Countermeasures

	User-driven preparation
	Comment
	Countermeasures


	Implementation and Experiments
	Testing environment
	Experiment 1: evasion through delegated preparation
	Experiment 2: evasion through distributed preparation
	Experiment 3: evasion through user-driven preparation
	Analysis and reports

	Conclusions


