
Idea-caution before
exploitation: the use of
cybersecurity domain
knowledge to educate
software engineers against
software vulnerabilities

Authors:

Tayyaba Nafees

Natalie Coull

Ian Ferguson

Adam Sampson

Abertay University, Dundee DD1 1HG

This is the accepted version of a chapter published in E. Boden,
M. Payer and E. Athanasopoulos, eds. 9th International
Symposium, ESSoS 2017, Bonn, Germany, 3-5 July. Lecture
Notes in Computer Science (LNCS) vol 10379. Springer, Cham.
pp.133-142.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228177972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Idea-Caution Before Exploitation: The Use of

Cybersecurity Domain Knowledge to Educate Software

Engineers Against Software Vulnerabilities

Tayyaba Nafees, Natalie Coull, Ian Ferguson and Adam Sampson

University of Abertay Dundee, School of Arts, Media and Computer Games. Dundee DD1

1HG 1405357,N.Coull,ian.ferguson,A.Sampson@abertay.ac.uk
http://www.abertay.ac.uk

Abstract—The transfer of cybersecurity domain knowledge from security ex-

perts (‘Ethical Hackers’) to software engineers is discussed in terms of desira-

bility and feasibility. Possible mechanisms for the transfer are critically exam-

ined. Software engineering methodologies do not make use of security domain

knowledge in its form of vulnerability databases (e.g. CWE, CVE, Exploit DB),

which are therefore not appropriate for this purpose. An approach based upon

the improved use of pattern languages that encompasses security domain

knowledge is proposed.

Keywords: Software development lifecycle (SDLC), Security pattern (SP),

Software Fault pattern (SFP), Attack pattern (AP), Vulnerability database

(VDB)

1 Introduction

Programmers make mistakes. There are ‘15-50 errors per 1000 lines of delivered

code’ (RW.ERROR - Unable to find reference:87). Much research effort has concen-

trated on addressing this problem (RW.ERROR - Unable to find reference:96). Of

particular concern are those software flaws that lead to security vulnerabilities. The

deliberate misuse of such a vulnerability is termed an exploitation, resulting in infor-

mation leaks, and reduce the value or usefulness of the system (RW.ERROR - Unable

to find reference:90). Generally, software developers do not understand the security as

their focus is on delivering features, rather than on ensuring the software security, so

it is often considered as something to be added to a system as a bolt-on component

into later stages of development. However, the cost of fixing bugs post software re-

lease is estimated to be 30 times pre-release cost (RW.ERROR - Unable to find refer-

ence:30). Testing has poor relation with security. It is unusual for the software devel-

oper to use testing approaches for finding vulnerabilities; this issue has not received

the research attention it requires (RW.ERROR - Unable to find reference:170). One

implication of this is that security concerns should be embedded into the software

development lifecycle (including the early phases) (RW.ERROR - Unable to find

reference:168).

90% of security incidents result from exploitation of flaws in software (RW.ERROR -

Unable to find reference:240). In reality, however, software developers struggle

against recurring and consistent software flaws (i.e. buffer overflows and integer

overflows), which are exploited daily by malicious hackers. Nonetheless, a large body

of knowledge about software vulnerabilities exists within the cybersecurity communi-

ty, in particular amongst penetration testers and ethical hackers. The term ‘Ethical

Hacker’ (EH) will be used as a shorthand to denote this community. Currently ethical

hackers put much effort into classifying discovered vulnerabilities and developing

taxonomies of these vulnerabilities. Such vulnerabilities are then catalogued in public-

ly available vulnerability databases (VDBs) (RW.ERROR - Unable to find refer-

ence:209). Software developers have worked to embed security within the software

development lifecycle (SDLC) (RW.ERROR - Unable to find reference:249) in order

to fix the deployment errors. The mechanism of knowledge transfers between the

work on vulnerability databases (VDBs), developers’ perceptions of security issues

and the security development lifecycle (SDLC) is complex, which creates a distinct

communication gap between ethical hackers and software engineers (RW.ERROR -

Unable to find reference:197). Interception of (knowledge) communication directs

software developers to repeat persistent prevalent vulnerabilities and gives rise to

software flaws exploitation. Various attempts to capture and formalize the transferring

knowledge in a manner appropriate to software engineers have been made, including

Misuse Patterns (RW.ERROR - Unable to find reference:81), Software Fault Patterns

(SFP) (RW.ERROR - Unable to find reference:69), and Security Patterns (SP)

(RW.ERROR - Unable to find reference:227). The need for a better understanding of

this mechanism and our proposed solution is the subject of remainder of this paper,

which is structured as follows: Section 2 examines previous work in this area and

leads the following hypotheses:
Table 1. –Proposed Hypotheses

H-1 Software developers lack the conscious understanding to identify recurring software flaws

during software development process due to stagnated and possibly degrading vulnerabilities’

knowledge transfer.

H-2 Patterns (anti-patterns, security patterns and attack patterns) are an appropriate means of com-

municating knowledge of vulnerabilities from ethical hackers to software engineers. However,

existing applications of these pattern languages fail to do so.

In section 3, shortcomings of previous attempts are analyzed and in section 4, pro-

posals for a pattern-based approach (Vulnerability Anti-Pattern) to the problems are

presented.

2 Background and Related Work

2.1 Building Security by Software Engineers

Other researchers had attempted addressing software developers’ security concerns as

part of the software development process. For example, earlier attempts have been

conducted based upon improving libraries, implementation languages, and language

processors (RW.ERROR - Unable to find reference:116, RW.ERROR - Unable to

find reference:19). Approaches based on static and dynamic code analysis have been

proposed by providing different guidelines, such as SDL banned functions

(RW.ERROR - Unable to find reference:188). Software engineers have attempted

early exclusion of the vulnerabilities by considering security issues at all phases of the

SDLC. Examples of these approaches are considered in Table 2: (RW.ERROR - Una-

ble to find reference:218, RW.ERROR - Unable to find reference:227)
Table 2.Approachs To Embed Security In Software Development Processes

Name Description

Security

Development

Lifecycle

(SDL)

SDL is proposed to reduce software maintenance costs and increase reliability of software

with regards to software security related bugs. Cybersecurity standards, such as ISO

27001 are incorporated into the SDL to ensure that any software produced with this pro-

cess complies with industry recognized standards. However, compliance with standards

does not necessarily lead to all vulnerabilities being eliminated from software. The lack-

ing of this model is discussed in section 4.2.

OWASP

CLASP

OWASP Comprehensive, Lightweight Application Security Process includes a set of

guidelines for web security requirements, cheat sheets, a development guide, a code

review and a testing guide, tools and information about top web security vulnerabilities.

This is explored further in section 4.2.

Security

Patterns (SP)

It defines as a solution to stop or mitigate a set of specified threats through certain securi-

ty mechanisms, and designing to assist software developers who are not security experts

with embedding security in their systems. It can also be a useful tool for teaching security

concepts (RW.ERROR - Unable to find reference:174). This is explored further in (4.2).

However, they are not based directly on the vulnerability knowledge stored in VDBs,

which is necessary for achieving currency and a timely response to new threats

(RW.ERROR - Unable to find reference:107).

2.2 Attempts by Ethical Hacker to Catalogue and Use Patterns to

Communicate Vulnerabilities

The National Vulnerability Database (NVD) comprises CWE, CVE and CAPEC,

which are the three most comprehensive vulnerability databases (VDBs). They are

open-source and maintained by MITRE (RW.ERROR - Unable to find reference:22)

as shown in Table 3. Table 3.Attempts to Catalogue vulnerabilities

Name Description

CWE The Common Weakness Enumeration database (CWE) catalogues weaknesses that can occur

in software. These weaknesses are described as software bugs that can lead to vulnerabilities.

CVE The Common Vulnerabilities Enumeration database (CVE) catalogues specific examples of

publicly known vulnerabilities that exist in software.

CAPEC The Common Attack Pattern Enumeration and Classification database (CAPEC) provides

formal attack patterns, while considering the CVE examples and CWE information.

In addition to the above VDBs, security experts have also endeavored to embed their

knowledge of vulnerabilities in the form of patterns (as shown in Table-4) such as

SFP, AP and Misuse pattern. This will be explored further in section 4.4.

Table 4. Attempts to use patterns to communicate vulnerabilities

Name Description

Software SFP is aligned with the CWE database, whose contains a formal specification of weaknesses

Fault

Patterns

(SFP)

(vulnerabilities) and will be explored further in Section 4.4. However, a lack of detailed

information about the structure and format of SFP presents a considerable obstacle for soft-

ware developers.

Attack

Patterns

(AP)

AP is derived from CAPEC database, which describes a procedure of a particular vulnerabil-

ity attack format. However, it is not intended as a source of design patterns (like standard

software pattern) Generally, the complicated structure and understanding difficulty restrain

developers in their usage. There is not much research done on usage of attack pattern by

software developers due to their inherent complexity.

Misuse

Patterns

It describes the malicious hacker generic prospect while considering sub-dimensions, which

classifying into set of attack actions and enumerating with possible security patterns as a

countermeasure (RW.ERROR - Unable to find reference:80). Although, the misuse pattern

groundwork clearly evidences the no usage of cybersecurity knowledge sources (i.e. VDBs)

in defining attack action. Thus far, misuse patterns have certain construction deficiencies and

lack considerable usage for developers.

3 Analysis

3.1 Potential Causes of Poor Knowledge Sharing

The lack of a shared understanding between the Software Engineering and Ethical

Hacking communities is well documented (RW.ERROR - Unable to find refer-

ence:153, RW.ERROR - Unable to find reference:181). Although there are excep-

tions, security testing typically takes place as an activity during the SDLC. Ethical

Hackers communicate with and report to system administrators and IT managers.

Although, there is some crossover between the ground knowledge and skill-set of a

software engineer and an ethical hacker, they own some very distinct technical do-

mains, with different educational paths, different technical languages and different

professional bodies. Generally, a malicious hacker does not work under the same

constraints of project schedules and deadlines as a software engineer does. If they

wish to spend six months examining in minute detail of the state of stack under a

particular attack condition, they will not have employers pressurizing employees, to

deliver. Thus, they have the advantage of time. This coupled with the extensive

knowledge sharing that takes place amongst the hacking community (RW.ERROR -

Unable to find reference:180) means that a hacker may be more familiar with the

weaknesses in a particular piece of software than those who created it.

3.2 Software Engineering Problems

The approaches from section 3.1 are attempts by the software engineering community

to enable the integration of security concerns into the process of developing software.

The approaches, such as SDL, OWASP CLASP and SP, focus only on fulfilling secu-

rity guidelines and standards rather than raising awareness of vulnerabilities. SDL

does not embed any knowledge from cybersecurity experts and are challenging for

those software developers who have limited awareness and understanding of the secu-

rity vulnerabilities in order to apply the security guidelines effectively. The organiza-

tional emphasis of SDL may also be of limited applicability in the informal world of

cross platform application deployment. OWASP CLASP implementation is limited to

web-based systems. Furthermore, the value of SPs in order to provide usable and

understandable documentation for developers is questionable due to their complexity

(RW.ERROR - Unable to find reference:285), and they are generally not adopted by

developers due to their poorly described implementation (RW.ERROR - Unable to

find reference:41). This can be attributed to the lack of an accepted standard catalogue

and a lack of methodological support.

3.3 Cyber Security Problems

The various databases described are maintained by cybersecurity professionals to

keep track of known vulnerabilities in the different versions of released software. It is

clear that the intended audience for these databases is not software engineers involved

in developing software but rather systems administrators looking to secure their exist-

ing systems. It might be possible that the information contained therein is simply not

generalized enough to be directly relevant for software developers to use in the devel-

opment process. Some of the difficulties that software developers face are enumerated

in Table-5: Table 5. VDBs issues

No standardi-

zation

No standard taxonomy/classification scheme for existing VDBs, thus each of them use

their own approach, none of which were explicitly designed to use during SDLC. As

such, these VDBs can typically appear complex and ambiguous to the software devel-

oper (RW.ERROR - Unable to find reference:142, RW.ERROR - Unable to find refer-

ence:150, RW.ERROR - Unable to find reference:134).

Limited

knowledge

Closed source VDBs, such as the Carnegie-Mellon US Cert database and Secunia, are

of necessity limited in the information that they can show concerning code-level errors.

Complexed

knowledge

It is clearly shown by many research studies, which have compared vulnerability in-

formation across the multiple VDBs that these repositories are deficient in providing

interoperability, knowledge consistency and are not following standard classification

schemes (RW.ERROR - Unable to find reference:207, RW.ERROR - Unable to find

reference:208).

3.4 Addressing Shortcomings of Previous Pattern-Based Attempts

Section 3.3 discussed previous attempts to use patterns/pattern languages in the cy-

bersecurity context. These attempts highlighted the following shortcomings: a distinct

communication gap between software developers and ethical hackers; software devel-

opers lack conscious understanding about prevalent vulnerabilities because of unusa-

ble and complicated knowledge sources, SDLC does not adequately address software

security practices, and finally there are limited efforts from both the cybersecurity and

software engineering communities to work together to address software vulnerabili-

ties. It is clear that the use of patterns can only succeed in the context of an appropri-

ate software development process, which must include knowledge from the VDBs.

The author’s future work will examine the way in which patterns can be used to cap-

ture VBDs knowledge in a usable format, the need to provide understandable vulner-

abilities’ awareness to developers is emphasized by Fahl et.al and Acar et.al work

(RW.ERROR - Unable to find reference:286, RW.ERROR - Unable to find refer-

ence:287) . The desirability of a methodology and tool is also support by McGraw

(RW.ERROR - Unable to find reference:150) and Borstad (RW.ERROR - Unable to

find reference:196).

4 Practical Proposition: Our Solution

To address these issues, our research has led to the creation of a set of ‘Vulnerability

Anti-Patterns’, based on the OWASP Top 10 Vulnerabilities. Our anti-patterns have

been constructed following two main stages: knowledge extraction (1-knowledge

pulling process sourced from VDBs and security patterns) and knowledge provision

(2-knowledge pushing process to educate developers through anti-patterns).

4.1 The Knowledge Extraction (1-Knowledge Pulling Process)

The knowledge pulling process sourced by cybersecurity community such as VDBs

(CWE, CVE), security patterns and attack pattern databases (CAPEC), and collected

essential information of the vulnerability. For example, general information, root-

causes and attack procedures. This is the first step towards addressing the communi-

cation gap. The knowledge pulling process comprises two sub-parts: 1) Creating a

taxonomy of vulnerabilities. The taxonomy includes vulnerability info, vulnerability

footprints or characteristics and mitigation categories; 2) generating a decision tree

which describes the vital VDBs information, and shows safeguard and injury paths

that map security incidents with their low-level and high-level root-causes of vulnera-

bilities in respective phase of software development life cycle (SDLC).

4.2 Knowledge Provision (2-Knowledge Pushing Process)

Extracted knowledge passed to the knowledge pushing process, which captures previ-

ous process formalized information in the form of patterns, known as Vulnerability

Anti-Patterns that is most appropriate mechanism to communicate knowledge of vul-

nerabilities to software developers.

4.2.1 The Notion of Vulnerability Anti-Pattern (VAP)

A recurring error or vulnerability initiates an anti-pattern, which can occur due to any

poor software design or implementation errors. Same in the case of vulnerabilities,

which are, commonly reoccurring flaws, so why does not capture and address the

fundamental problems of cybersecurity through anti-patterns. A VAP describes a

problem, i.e. poor practice that negatively causes a security flaw, and a solution, i.e. a

set of refactoring actions that can be carried out to mitigate or stop flaws. In contrast

to SP, which are only designed to perceive a threat, not to repair a vulnerability, and

VDBs that appear complicated for developers’ understanding and are generally not

considered as a part of developers’ security practices. It has been argued

(RW.ERROR - Unable to find reference:172) that the prevalent software errors oc-

curred because of established software practices that actually have negative impact

during SDLC. Such poor practices generally cause prevalent vulnerabilities. It can

thus be suggested that these poor practices need to be identified and refactored so safe

solutions can be generated (RW.ERROR - Unable to find reference:9). The use of

anti-patterns for finding and understanding vulnerabilities is understudied, particularly

for software developers. VAP can describe poor practices or solutions, which aid in

reasoning about and communicating unsuccessful design intent, and introduce refac-

tored solutions, which suggests safe alternative procedures. The advantage of adopt-

ing VAP during software development process is that it bridges the knowledge gap

between software developers and security experts about commonly occurring soft-

ware flaws. This finding has important implications for developing security training

methods. Therefore, an anti-pattern is suggested for the vulnerability that includes

necessary vulnerability information in a well-defined and usable format for those

inexperienced and naive developers who do not understand security and can be an

effective way of communicating vulnerable poor practices, so developers can learn

valuable lesson from other fellows’ successes and failures. Without this wisdom, anti-

patterns of prevalent vulnerabilities will continue to persist.

Vulnerability Anti-Pattern: A Proposed Solution.

Authors propose a new refactored solution called ‘Vulnerability Anti-Patterns’ that

are intended to provide the developers’ security necessary awareness. Since the vul-

nerability anti-patterns’ core objective is to highlight the entire software exploitation

potential, each pattern has been written to describe the following: general practices of

the anti-pattern (i.e. how it could be misused), examples such as CVE (real-world

exploitation) and sample vulnerable code, and finally the footstep of risk patterns

within SDLC, the refactored solution and related solutions in the form of security

patterns. Ultimately, the anti-patterns should enable the developers to realize the root-

cause of the vulnerability. In regards to the proposed solutions (or countermeasures to

the vulnerabilities), we anticipate that the anti-patterns will encourage the developers

to retain a deep understanding and conscious alertness of vulnerabilities in their future

development practices. Our template for an anti-pattern is presented below. We have

utilized this template and produced complete anti-patterns for 10 vulnerabilities to

date. In addition to the complete pattern data outlined below, we have also produced

an abridged version of each pattern, which describes, using languages from various

different programming languages how each vulnerability can be exploited. Vulnera-

bility Anti- Pattern Template. Table 6.
Pattern Main-Division Pattern Sub-Division

1. Vulnerability Anti-

Pattern General info

1.1. Anti-Pattern Name:

1.2. Also Known as:

1.3. Most Frequent Scale in SDLC: Requirement Specification, Design, Im-
plementation/Coding-Phase

1.4. Problem Description:

1.5. CWE Mapping: CWE-ID, General Name

1.6. Related CWEs:

1.7. CVE Example:

2. Anti-Pattern (Prob-

lematic Solution)

2.1. Refactored Solution Name:

2.2. Refactored Solution Type: Software Pattern, Technology Pattern,
Process Pattern, Role Pattern

2.3. Root Causes (Context): Unbalanced Forces related to meeting require-
ments, controlling technology changes, controlling use and implemen-

tation of people. 

2.4. Risk patterns and Consequences:

2.5. Typical Causes

3. Problem Fingerprints 3.1. Software Fault Pattern (SFP)

4. Known Exploitation 4.1. Attack Pattern (Attack patterns-CAPEC)

5. Mitigation (Refactors

the problem)

5.1. Refactored Solutions:
5.1.1. Solution Steps SDLC, Description

5.2. Examples: (Real-world Patch Example)

5.3. Pen Testing Techniques

5.4. Related Solutions(SP):
5.4.1. General Solution (All in one solution)

5.4.2. Language Solution

4.3 Evaluation

To evaluate the effectiveness of ‘Vulnerability Anti-Patterns, we are in the process of

conducting a series of experiments with software developers from two international

organizations and computing students from our own university. Stage-1: Pre-

assessment evaluation to measure participants’ actual awareness about poor develop-

ment practices. Stage-2: Participants are trained while using informal versions of the

vulnerability anti-patterns. Stage-3: Post assessment evaluation to how much partici-

pants able to improve their understanding of vulnerabilities accompanied by the for-

mal version of vulnerability anti-patterns. Stage-4: Comparative analysis performed

between trained and untrained developers to measure the progression in developers’

abilities to identify and understand the most commonly persistent software flaws re-

garding the efficiency of vulnerability anti-patterns.

5 Conclusion

Secure software development is one of the most challenging areas of cybersecurity.

Although, the cybersecurity industry is mature and generates a wealth of resources on

discovered software vulnerabilities in the form of VDBs, software developers are

continuing to produce recurring and persistent software flaws at an alarming rate. The

software engineering community has also worked to embed security into the SDLC;

however, these independent efforts fail to provide effective solutions against prevalent

vulnerabilities. Hackers on a daily basis exploit a large number of fatal development

errors. Software developers are largely unaware of the design and implementation-

level security flaws (poor development practices) which generally turn into fatal secu-

rity weaknesses (vulnerabilities). There exists a big communication gap between the

software developers and security experts, which does not help them to solve this prob-

lem. The research proposes a methodology to use a pattern for transferring a neces-

sary vulnerabilities knowledge to software developers through ‘Vulnerability Anti-

Pattern’, and considers the use of patterns to communicate knowledge of software

vulnerabilities in usable format with the best means of avoiding their creation. It

bridges the communication gap between them with assistance of classified cybersecu-

rity knowledge sources such as VDBs, which ultimately share essential information

about common errors and help to identify software developers’ secure ideas to build

secure software. We propose that one solution to this problem lies in the use of pat-

terns languages (with appropriate methodological, tool and training support) to better

capture and communicate the information currently held in VDBs to create a ‘Safe

Development Environment’. Therefore, knowledge of vulnerabilities can bridge the

communication gap between cybersecurity and software engineering communities. It

is toward this goal that our future work, based upon this initial study will be directed.

References Reference list

