39 research outputs found

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Multi-criteria group decision making with a partialranking-based ordinal consensus reaching process for automotive development management

    Get PDF
    The consensus reaching process (CRP) aims at reconciling the conflicts between individual preferences when eliciting collective preferences. The ordinal CRP based on the positional orders of alternatives in linear rankings is straightforward and robust; however, for partial rankings involving preference, indifference and incomparability relations, there is no explicit positional order but are binary relations. This study focuses on partial rankings that may occur when using the ORESTE (organısation, rangement et Synthese de donnees relarionnelles, in French) method for making decisions, and designs an ordinal CRP pertaining to the binary relations of alternatives. Concretely, we propose an enhanced ordinal consensus measure with two hierarchies to measure the agreement levels between individual partial rankings. Consensus degrees are calculated based on the frequency distribution of binary relation types, which can avoid subjective axiomatic assumptions on the relations themselves. Besides, a consensus threshold determination method close to cognitive expression is developed. A feedback mechanism is designed to aid experts to modify preferences towards group consensus. An example about the evaluation of automotive design schemes is presented to validate the proposed ordinal CRP. A ranking result that allows the incomparability relations of design schemes is obtained after the information exchange among experts

    A hierarchical integration method under social constraints to maximize satisfaction in multiple criteria group decision making systems

    Get PDF
    Aggregating multiple opinions or assessments in a decision has always been a challenging field topic for researchers. Over the last decade, different approaches, mainly based on weighting data sources or decision-makers (DMs), have been proposed to resolve this issue, although social choice theory, focused on frameworks to combine individual opinions, is generally overlooked. To resolve this situation, a novel methodology is developed in this paper based on social choice theory and statistical mathematics. This method innovates by dividing the assessment into components which provides a multiple assessment analysis, assigning weights to each source regarding their position compared to the group for each considered criteria. This multiple-weighting process maximises individual and group satisfaction. Furthermore, the method makes it possible to manage previously assigned influence. An example is given to illustrate the proposed methodology. Additionally, sensitivity analysis is performed and comparisons with other methods are made. Finally, conclusions are presented.The first author acknowledges support from the Spanish Ministry of Education, Culture and Sports [grant number FPU18/01471]. The second and third author wish to recognise their support from the Serra Hunter programme. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    Onsite/offsite social commerce adoption for SMEs using fuzzy linguistic decision making in complex framework

    Get PDF
    There has been a growing social commerce adoption trend among SMEs for few years. However, it is often a challenging strategic task for SMEs to choose the right type of social commerce. SMEs usually have a limited budget, technical skills and resources and want to maximise productivity with those limited resources. There is much literature that discusses the social commerce adoption strategy for SMEs. However, there is no work to enable SMEs to choose social commerce—onsite/offsite or hybrid strategy. Moreover, very few studies allow the decision-makers to handle uncertain, complex nonlinear relationships of social commerce adoption factors. The paper proposes a fuzzy linguistic multi-criteria group decision-making in a complex framework for onsite, offsite social commerce adoption to address the problem. The proposed approach uses a novel hybrid approach by combining FAHP, FOWA and selection criteria of the technological–organisation–environment (TOE) framework. Unlike previous methods, the proposed approach uses the decision maker's attitudinal characteristics and recommends intelligently using the OWA operator. The approach further demonstrates the decision behaviour of the decision-makers with Fuzzy Minimum (FMin), Fuzzy Maximum (FMax), Laplace criteria, Hurwicz criteria, FWA, FOWA and FPOWA. The framework enables the SMEs to choose the right type of social commerce considering TOE factors that help them build a stronger relationship with current and potential customers. The approach's applicability is demonstrated using a case study of three SMEs seeking to adopt a social commerce type. The analysis results indicate the proposed approach's effectiveness in handling uncertain, complex nonlinear decisions in social commerce adoption

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested

    Multiple attribute decision-making based on Fermatean fuzzy number

    Get PDF
    Multiple attribute decision-making concerns with production significant in our everyday life. To resolve the problems that decision makers might feel uncertain to choose the suitable assessment values among several conceivable ideals in the procedure. Fuzzy model, and its extensions are extensively applied to MADM problems. In this study, we proposed an innovative Schweizer-Sklar t-norm and t-conorm operation of FFNs, Fermatean fuzzy Schweizer-Sklar operators. They were used as a framework for the development of an MCDM method, which was illustrated by an example to demonstrate its effectiveness and applicability. Finally, a complete limitation study, rational examination, and comparative analysis of the presented approaches has been exhibited, we originate that our technique is superior in offering DMs a better decision-making choice and reducing the restrictions on stating individual partialities

    A Linguistic Group Best–Worst Method for Measuring Good Governance in the Third Sector: A Spanish Case Study

    Get PDF
    The need of Non-profit Organizations (NPOs) of generating trust and credibility, to their stakeholders by an efficient management of their resources, lead them to openly show that they develop adequate good governance practices. But this is not a simple task and few research has been done on measuring methods of good governance in this field; without achieving an agreement about the best procedure. This paper aims at facilitating the measurement of good governance practices in NPOs by a fuzzy linguistic consensus-based group multi-criteria decision-making (MCGDM) model that will provide agreed and easy-understanding weights for a list of indicators proposed by the stakeholders and entities in such good governance practices. To do that, a linguistic 2-tuple BWM method with a consensus reaching process (CRP) will be developed and then applied to a real-world case in Spain, in which a group of experts from significant Spanish NPOs will assess the list of indicators proposed by the most representative entities (the alliance between the non-governmental organizations (NGO) Platform for Social Action, and the NGO Coordinator for Development (CONGDE) to obtain a prioritization of such indicators for measuring the good governance practices in Spanish NPOs.Ministerio de Economía y Competitividad (Gobierno de España) a través del Proyecto de Investigación Nacional PGC2018-099402-B-I00, la Beca Posdoctoral Ramón y Cajal (RYC-2017-21978) y el proyecto FEDER-UJA 1380637 y ERDF

    On Dynamic Consensus Processes in Group Decision Making Problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consensus in group decision making requires discussion and deliberation between the group members with the aim to reach a decision that reflects the opinions of every group member in order for it to be acceptable by everyone. Traditionally, the consensus reaching problem is theoretically modelled as a multi stage negotiation process, i.e. an iterative process with a number of negotiation rounds, which ends when the consensus level achieved reaches a minimum required threshold value. In real world decision situations, both the consensus process environment and specific parameters of the theoretical model can change during the negotiation period. Consequently, there is a need for developing dynamic consensus process models to represent effectively and realistically the dynamic nature of the group decision making problem. Indeed, over the past few years, static consensus models have given way to new dynamic approaches in order to manage parameter variability or to adapt to environment changes. This paper presents a systematic literature review on the recent evolution of consensus reaching models under dynamic environments and critically analyse their advantages and limitations

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Full Issue

    Get PDF
    corecore