64 research outputs found

    Robot-based tele-echography: clinical evaluation of the TER system in abdominal aortic exploration

    Full text link
    OBJECTIVE: The TER system is a robot-based tele-echography system allowing remote ultrasound examination. The specialist moves a mock-up of the ultrasound probe at the master site, and the robot reproduces the movements of the real probe, which sends back ultrasound images and force feedback. This tool could be used to perform ultrasound examinations in small health care centers or from isolated sites. The objective of this study was to prove, under real conditions, the feasibility and reliability of the TER system in detecting abdominal aortic and iliac aneurysms. METHODS: Fifty-eight patients were included in 2 centers in Brest and Grenoble, France. The remote examination was compared with the reference standard, the bedside examination, for aorta and iliac artery diameter measurement, detection and description of aneurysms, detection of atheromatosis, the duration of the examination, and acceptability. RESULTS: All aneurysms (8) were detected by both techniques as intramural thrombosis and extension to the iliac arteries. The interobserver correlation coefficient was 0.982 (P < .0001) for aortic diameters. The rate of concordance between 2 operators in evaluating atheromatosis was 84% +/- 11% (95% confidence interval). CONCLUSIONS: Our study on 58 patients suggests that the TER system could be a reliable, acceptable, and effective robot-based system for performing remote abdominal aortic ultrasound examinations. Research is continuing to improve the equipment for general abdominal use

    Characterization and evaluation of a bilateral command architecture for a tele-operated system

    Get PDF
    The objective of the stage was the evaluation of a bilateral teleoperation benchmark for a tele-echography system and the ïŹnal goal was to test the effectiveness of the wave variables formulation on this architecture. When communicating over a channel that introduces a time delay we need to encode the signals in a way that helps prevent instability of the system: in this thesis we used the so called wave variables formulation applied on a real tele-echography architecture (used to perform an echography on a patient that is in a different location from the doctor performing it). As an additional aid (other than visual feedback) we realized a force feedback from the patient robot to the doctor's probe using data collected by a force sensorope

    Visual Feedback System for Ultrasound Training

    Get PDF

    Kinematic optimization for the design of a collaborative robot end-effector for tele-echography

    Get PDF
    Tele-examination based on robotic technologies is a promising solution to solve the current worsening shortage of physicians. Echocardiography is among the examinations that would benefit more from robotic solutions. However, most of the state-of-the-art solutions are based on the development of specific robotic arms, instead of exploiting COTS (commercial-off-the-shelf) arms to reduce costs and make such systems affordable. In this paper, we address this problem by studying the design of an end-effector for tele-echography to be mounted on two popular and low-cost collaborative robots, i.e., the Universal Robot UR5, and the Franka Emika Panda. In the case of the UR5 robot, we investigate the possibility of adding a seventh rotational degree of freedom. The design is obtained by kinematic optimization, in which a manipulability measure is an objective function. The optimization domain includes the position of the patient with regards to the robot base and the pose of the end-effector frame. Constraints include the full coverage of the examination area, the possibility to orient the probe correctly, have the base of the robot far enough from the patient’s head, and a suitable distance from singularities. The results show that adding a degree of freedom improves manipulability by 65% and that adding a custom-designed actuated joint is better than adopting a native seven-degrees-freedom robot

    Recent advances in robot-assisted echography: Combining perception, control and cognition

    Get PDF
    Echography imaging is an important technique frequently used in medical diagnostics due to low-cost, non-ionising characteristics, and pragmatic convenience. Due to the shortage of skilful technicians and injuries of physicians sustained from diagnosing several patients, robot-assisted echography (RAE) system is gaining great attention in recent decades. A thorough study of the recent research advances in the field of perception, control and cognition techniques used in RAE systems is presented in this study. This survey introduces the representative system structure, applications and projects, and products. Challenges and key technological issues faced by the traditional RAE system and how the current artificial intelligence and cobots attempt to overcome these issues are summarised. Furthermore, significant future research directions in this field have been identified by this study as cognitive computing, operational skills transfer, and commercially feasible system design

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed
    • 

    corecore