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Abstract— This paper proposes a semi-autonomous navigated
master-slave system, for robot assisted remote echography for
early trauma assessment. Two RGB-D sensors are used to
capture real-time 3D information of the scene at the slave side
where the patient is located. A 3D statistical shape model is
built and used to generate a customized patient model based
on the point cloud generated by the RGB-D sensors. The
customized patient model can be updated and adaptively fitted
to the patient. The model is also used to generate a trajectory
to navigate a KUKA robotic arm and safely conduct the
ultrasound examination. Extensive validation of the proposed
system shows promising results in terms of accuracy and
robustness.

I. INTRODUCTION
A large and growing body of literature is dedicated to

investigations on robot assisted tele-echography. Most of the
studies are based on slightly different flavors of a master-
slave setup. In [1], a parallel uncoupled robot positioned
on the patients torso, was used to control an ultrasound
transducer. For surveillance of the slave side, live video
streams captured by webcams were transferred to the master
side via ISDN links. Another master-slave system using
a custom slave manipulator was presented in [2]. Here,
audio and video tele-conferencing facilities were utilized for
surveillance. Other studies, like the one presented in [3], are
investigating remote Focused Assessment with Sonography
for Trauma, commonly known as FAST, which is a stan-
dardized ultrasound examination used to detect and monitor
hemorrhage. The examination concentrates on four body
areas on the patient; right and left abdomen, pericardium
and pelvis. In [4] a robotic arm was used to combine
2D ultrasound images and reconstruct a 3D model of the
scanned anatomy in real-time. In [5], two robotic arms were
used along with a haptic manipulator for haptic feedback
at the master side. Additionally, a Kinect camera was used
for rough body skeleton tracking but without the ability to
accurately determine and track the exact location of the
human skin. What becomes apparent in existing literature
investigating remote examinations like FAST, is that they
all assume that paramedics or emergency assisting personnel
are always available at the slave side to initialize the required
body locations for the robot to scan.

In order to accurately determine and track a required
location on the human skin, several studies have attempted
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to build deformable models and flexible templates. In these
methods, the model is parameterized so that the variation of
its shape and pose can be controlled in several modes. Statis-
tical shape modeling (SSM) is a method that has been widely
applied on medical imaging segmentation and anatomical
structure reconstruction such as the brain, liver, bones, atria
and heart chambers [6][7]. In [8] a 3D deformable model was
introduced in order to provide force feedback to the medical
expert during tele-echography. However, the model required
patient specific manual calibration and registration could not
be updated on-line and according to body changes. In the
study presented here and in order to generate a customized
model of the patient we deploy SSM by extending [6] to
3D and build an on-line updated deformable model that is
able to conform the patients motion and movement based
on points collected using two Kinect sensors. This method
allows adapting the shape model in real time by tuning a
number of parameters.

In the study presented here, we present a master-slave
navigation system for robot assisted tele-echography which is
capable of semi-automating ultrasound scanning. Based on a
generic human model, our approach generates a customized
model that is able to conform to breathing motion and body
movement of any patient. For generating the patient specific
model we deploy SSM by extending [6] to 3D. The model
is deformable and can be updated on-line, according to the
3D points collected using two Kinect sensors. Adaptation of
the generic shape model is achieved by tuning a number of
parameters as will be described later.

An interface at the master side for visualization and
control is also developed. Ultrasound examination routines,
like FAST, can be preprogrammed on the generic model
and automatically adapted to any human body in real time.
Additionally, based on a generic body model, sonographer-
specific skills and examination habits could be encoded [9],
and then autonomously reproduced in the patient specific
domain. To the authors knowledge, this is the first study that
attempts to address the navigational aspects pertinent to robot
assisted tele-echography.

II. SYSTEM DESCRIPTION

The main objective of the proposed system is to create a
customized model that is compliant to the patients position
and physiological motion. With the customized model, navi-
gation of the robotic ultrasound examination can be planned
accordingly. In our setup the slave side is responsible for
collecting 3D information using RGB-D cameras while the
master side is responsible for processing the 3D information



Fig. 1: A schematic of the system describing the processes and components on both slave and master sides. For this study, the two sites are connected via
a Local Area Network.

and for creating the customized model for navigation. The
two sides communicate via a LAN or WAN connection.

The main hardware components of the system are two
RGB-D cameras, a slave robotic arm and a master robotic
manipulator.

A. The Framework

As shown in Fig. 1, the proposed framework consists
of two main parts; the slave side for patient point-cloud
registration and processing, and the master side for model
fitting, trajectory planning and visualization. At the slave
side, two RGB-D sensors are placed opposite to each other
and facing toward the human target torso (Fig. 2a). The
reason for using two sensors is that the occlusions from the
target itself and other objects appearing in the scene, like
the robot, may lead to failing detection of the target. One-
off registration allows registering the point clouds produced
by the two RGB-D sensors into the robot coordinate frame.
For data communication between the slave and the master,
two separate network connections are used, one for the robot
control and the other for the point cloud transmission. The
real-time point cloud produced by the RGB-D sensors is
relatively dense and its processing is computationally expen-
sive. It also contains some degree of redundant information,
which is irrelevant to the shape model fitting process. For this
reason, the points are downsampled and compressed before
are transferred to the master side. In this context, a modified
octree based point cloud compression method is applied
using [10], which is capable for temporal compression as
well. Both point clouds from the sensors are downsampled
into one-tenth of their original size.

At the master side, the compressed cloud is first decom-
pressed and the bed surface is cropped-out, resulting in a
region-of-interest containing just the target torso. As the
beds relative position to the RGB-D sensors is fixed in this
scenario, the region-of-interest can be defined when setting
up the system. Next, a trained statistical shape model is
registered with the target point cloud using the point-to-
point Iterative Closest Point (ICP) algorithm [11] and initial
positions given by the user, from which a rough alignment
between shape model and point cloud is built. The registered
shape model is subsequently fine fitted to the target cloud
and a customized model is created. Based on this customized
model, a circular trajectory planning algorithm is applied and

the trajectory is sent to the slave robot which is then able to
safely approach the desired examination site(s) on the human
body.

B. RGB-D Sensor

In our setup, two Microsoft Kinect sensors (first genera-
tion) are used. They are able to capture real-time depth and
color images simultaneously at a frame rate of 30 fps and at
a maximum resolution of 640x480 pixels. The depth image
can be converted to a point cloud which is a set of 3D points
describing the observed scene. The Kinect provides for wide
working distances in a range of 0.8m to 4m (default mode)
or 0.4m to 3m (near mode). It has an angular field-of-view
of 43 vertically and 57 horizontally. Both Kinect sensors are
interfaced on a single computer using two of the available
USB ports controlled by separate USB controllers.

C. Robot

A 7 degrees-of-freedom (DoF) KUKA Light-Weight
Robotic arm (KUKA Roboter GmbH, Augsburg, Germany)
is used for echographic examination (Fig. 2). Embedded
torque sensors into all joints allow collision detection with
the environment. It is capable of a maximum 7 kg payload
while it weights about 16 kg. For this study, the robot is
controlled in Cartesian impedance control mode via the Fast
Research Interface (FRI) provided by the manufacturer. An
ultrasound probe is rigidly mounted at the robot end-effecter,
interfaced through an ATI 6DoF force/torque sensor (ATI
Industrial Automation, USA) for accurate force feedback
during tele-echography. A 7 DoF Omega.7 (Force Dimen-
sion, Switzerland) haptic manipulator (Fig. 2b) is used for
remote manipulation and interaction with the developed user
interface.

III. METHODOLOGY

At the slave side, the point cloud data produced by the
two Kinects is registered with the robot coordinate frame.
At the master side, statistical shape modeling is used to
create a deformable torso model. A customized model is
created based on the deformable model and the point cloud
data. A trajectory planning algorithm is applied for robot
navigation and a visualization tool is developed. Each of
these components is described in detail at the following
sections.



(a) Slave setup (b) Master setup

Fig. 2: a) The system setup at the slave side including two Kinect sensors and a KUKA robotic arm holding an ultrasound probe. The arrangement of the
Kinect sensors allows for both to image the torso in the middle. b) The master setup comprising an Omega.7 master manipulator and a GUI showing the
status of the model, the KUKA robot and the torso at the slave side.

A. Point Cloud Registration

To produce a complete view of the human torso, reg-
istration between the point clouds captured from the two
Kinect sensors is required. For this, we use three markers
with different colors whose position and hue can be detected
by both Kinect sensors. Each marker is represented by a
cluster of points and its geometric center is considered as
the position of this markers. To identify the markers based
on their colors, different thresholds are set in the HSV color
space.

In addition to the Kinect-to-Kinect registration, the point
clouds are also register with the robot frame for trajectory
planning and navigation. The position of the markers in this
frame can be retrieved directly by placing the robot end-
effecter onto each one of the markers. Both registrations are
only performed once, after the robot and the Kinect sensors
are setup and fixed.

B. Statistical Shape Modeling

The statistical shape model can be used to analyze and fit a
new shape with the existing model. For this paper, a training
set of 17 human models (9 females and 8 males) was used
to build a statistical shape model of the torso [12]. Fig. 3
shows examples of the 3D meshes making up the models. As
only the torso needs to be tracked, the shapes in the training
set were cropped so that they are close to the final target
shape. Since point correspondences were already established
across the training set, this was a matter of removing the
same points and facets in each mesh. A shape in 3D can be
arranged as a column vector:

x = [x1, x2, · · · , xn, y1, y2, · · · , yn, z1, z2, · · · , zn]
T (1)

where n is the number of points defining the torso.
Therefore, the training set can be represented as a 3n-by-
k matrix in which each column is a shape and is the size of
the training set.

To make two different shapes comparable, all training
shapes must be aligned into a common coordinate system.
For this paper, Procrustes Analysis [13] is used to align the

Fig. 3: Two training shapes produced from MRI scan (upper: female, lower:
male).

training shapes. The method iteratively minimizes the sum of
distance of each shape to the current mean of all shapes until
the result has converged. The mean shape can be calculated
as:

x̄ =
1

k

k∑
i=1

xi (2)

In order to extract main variations within the training
data, principal component analysis (PCA) was applied to a
covariance matrix of the training shapes, defined as:

Σx =
1

k − 1

k∑
i=1

(xi − x̄) (xi − x̄)
T (3)

The principal variations of the training shapes were found
by calculating the eigenvectors P and the corresponding
eigenvalues b of the covariance matrix. As 3n variables exist
in each shape while only k (k � 3n) samples are available
for training, the number of principal components with non-
zero variance cannot exceed k−1. The size of the eigenvalues
indicates the amount of variance in the corresponding modes
of variation; the largest eigenvalues representing the most
significant variation is shown in Table I. The first few rows
of the table also show that main variations in the training
shapes are available. In this paper, 10 modes of variation
are used retaining 95% of the shape variation, the rest was
treated as noise. To this end, the t largest eigenvalues can be
chosen so that certain proportion (fv) of total variance (VT )



is retained. If the eigenvalues are sorted in descending order,
then the above process can be formulated as [6]:

t∑
i=1

bi ≥ fvVT (4)

Afterwards, a shape y can be created using [6]:

y = x̄ + Pl, (5)

where l is a column vector containing t shape parameters
and P is the remaining t eigenvectors. If all entries of l are
zero, then the created shape is equal to the mean shape in the
model. By tuning different values in b, the shape will have
different variations from the mean shape at the corresponding
axes. As shown in Fig. 4, the main modes of variation of the
human torso (leg cropped) model can be interpreted as: (a)
global changing of body size, (b) local variation of chest and
(c) local variation of breast.

For a new shape ynew, its parameters can be estimated
using [6]:

lnew = PT (ynew − x̄) (6)

Another functionality of SSM is to constrain the new
created shape so that it is similar to those in the original
training set. To this end, we can apply limits of ±c

√
bi

to the i-th element of shape parameter l in which bi is
the corresponding eigenvalue calculated from the training
shapes. The constant c is a factor to control the allowable
variation in each axis. It should not be very large or this may
result in an arbitrary shape that is different from the range
of the training set.

TABLE I: Eigenvalue of the Covariance Matrix Derived from
a Training Set of the Human Torso

Eigenvalue (bi/VT )× 100%
b1 27%
b2 16%
b3 12%
b4 8%
b5 7%
b6 5%

C. Customized Model Generation

After the shape model of the torso is generated, it is used
to create a customized model according to the target point
cloud of the torso. First, the mean shape of the trained model
is roughly aligned to the target torso in the scene, based
on manual intervention. Next, points of the mean shape are
registered with the points collected from the target torso
using ICP, leading to an initial alignment between the shape
model and the target points.

To produce a customized model which adapts to the cur-
rent target, the mean shape is updated by its correspondences
in the target points captured by the sensors. For each point
in the mean shape, its correspondence is determined by the
point in the target cloud that has the nearest distance to its

normal. To this end, the normal of each point in the shape
model is calculated based on nearby face vertices. The update
is achieved by replacing each point with its correspondence.
Using such an updating strategy, the shape is able to fit
convex as well as concave target clouds. Since the back of
the torso is occluded and invisible to both Kinects, in order to
improve robustness of the model only points from the front
of the torso are updated.

The new updated shape can be deformed and must be
constrained by limiting its shape parameters with the SSM.
To this end, the new shape is aligned to the shape model
using Procrustes Analysis [13] and subsequently projected
to the shape parameters using (6). In this paper, the limit for
the shape parameters is set to ±3

√
bi which enables a wide

range of variations while still being able to restrict the shape
reasonably. So far, we have generated a well fitted shape
which is customized for the target torso in the scene. This
customized model will be updated iteratively based on the
live point cloud arriving from the slave side using the same
procedure.

Fig. 4: Variability of a statistical model of the human torso built from 17
training sets (9 females and 8 males): in the left column the principal mode
with the largest variance l1 is varied between ±3

√
b1 while in the second

and third column the parameter is varied between ±3
√
b2 and ±3

√
b3

respectively.

D. Trajectory

For navigating the robot to conduct an ultrasound scan, it
is necessary to create a smooth trajectory which is able to
avoid collision with the human torso. For this, the method
presented in [14] is applied, which allows creating a circular
trajectory only based on start, middle and end waypoints.
The starting point is the current robot position which is
read from the slave side. The goal point can either be a
pre-determined anatomical position on the model (e.g., one
of the standard FAST scan points) or selected by the user
using haptic manipulator and the visual interface which is
presented in the next section. The selection of the middle
point is important as it defines the trend of the trajectory.
In this context, the middle point is always located above
the torso model so that the trajectory never intersects with
the torso or the table within the scene. After determining the
three waypoints, we can define a unique circle and interpolate
the rest of the points on the circular trajectory.

E. Visualization

In order to provide the user with a tool for surveillance
and interaction, the user interface is developed based on the
visualization API in PCL [15]. In addition to displaying the



shape model and point cloud received from the slave, the
interface also displays a rendered ultrasound probe and a
sphere cursor whose positions are updated according to the
current positions of the KUKA and the Omega.7. Based on
the position of the sphere cursor in the virtual environment,
the user can select the initial position for the coarse shape
alignment and the goal point for the robot. Finally, the
resulting planned trajectory can be displayed within the
interface as well.

IV. EXPERIMENTAL METHODOLOGY

In order to assess the performance of the proposed system,
two experiments are considered. The first experiment is used
to validate the deformability of the virtual shape model
(VSM). For this, a respiration task is carried out using a
human subject whose customized model is used for the
validation. We use the NDI Polaris Vicra tracker to record the
actual breathing motion of the subject. The systems stated ac-
curacy is 0.35mm within its valid working volume. The first
step of the experiment is to register the tracker with the robot
coordinate frame, based on 18 calibrated correspondences.
Next, an optical marker that can be detected by the tracker is
attached to the torso of the subject, as shown in Fig. 5. In the
experiment, the positions of the marker and its approximately
corresponding point in the customized model are recorded.
As the model is updated at each iteration using the real-time
points representing the subject, the performance of the shape
model can be evaluated by comparing the spatial variation
between the actual motion (from tracker) and the estimated
motion (from shape model). In total, we have carried out 3
trials for three anatomical positions (left and right chest and
belly) that are mostly affected by breathing.

A second experiment is performed for evaluating the
accuracy and robustness of the overall navigation system.
For this, a series of robot navigation tasks are considered.
For the creation of our customized model, a torso phantom
is used as shown in Fig. 6. A layer of plasticine is applied on
the torso. Using the methods discussed earlier, a customized
model of the torso phantom is created and a trajectory to an
anatomical position on the torso is generated. The robotically
controlled probe is then navigated according to the generated
trajectory. At the end of the executed trajectory, the minimum
distance between the probe and the surface is recorded and
used as an error measure, while the closest point on the
torso is marked. If the probe comes in contact with the
torso, the contacting point is imprinted on the plasticine
layer and recorded. Additionally, the force applied to the
probe is recorded by the force sensor. For each position on
the torso, three trials are carried out for different poses of
the phantom. The Polaris Vicra system is used to measure
the orientation between the poses. The poses used for the
experiment are: normal lie low, 12 degrees deviated to left
and 14 degrees deviated to right. In accordance with the
FAST examination, a total of three anatomical positions
(right abdomen, pericardium and pelvis) are tested and the
results are recorded for later analysis.

V. EXPERIMENTAL RESULTS

A. VSM validation

A right chest example is shown in Fig. 7 where the
position data from the optical tracker and the ones from the
corresponding shape model are manually aligned in time.
The baselines of the two datasets are aligned according to
their means. By comparing the position of the optical marker
and the corresponding point on the shape model, we found
that the shape model is able to track all respiration cycles
along the z-axis perpendicular to the table, with only a few
millimeters of error on average. The results for the left chest
are similar to the right chest while the shape model is less
sensitive to variation on the belly. As shown in Fig. 8, the
true amplitude of variation on the z-axis for the belly is
about 20mm while only about 6mm can be captured by
the shape model. In addition, the shape model is not very
capable in capturing variation on the plane parallel to the
table, as the signal to noise ratio on the x and y axes is very
small. There are a number of reasons that could explain this
asymmetry of our system. First, only a limited number of
shapes were available for training and the modes of variation
exhibited by the shapes are not sufficient. Second, the main
variations expressed by the shape model are primarily on the
z-axis, as shown in the Fig. 4. Therefore, any deformation
occurring on x and y axes will be constrained by the shape
model. Lastly, the shape-updating strategy using normals
may exhibit preference in selecting correspondences in the z
direction, since the point normals are usually pointing in the z
axis. The noise on x-y plane may be the result of the iterative
shape registration which can be slightly jittery. To minimize
this problem, we can set a threshold for the transformation
at the ICP step for every iteration. Transformations between
adjacent frames that are lower than the a threshold can be
ignored.

Fig. 5: Experimental setup for validation of the shape model. An optical
marker attached to the subject is detected by the Polaris Vicra system. Two
Kinects generate point cloud of the subject and a customized model is
created correspondingly.

Since the data were not collected at the same time,
manual alignment of the two datasets is required. To evaluate
accuracy of the respiratory compliance of the shape model,
we compare the amplitude in the data between shape model
and tracker. The amplitude is defined as the difference of



Fig. 6: The image shows the equipment used for validation. A 6-DOF force
sensor is attached between the probe and the end-effecter of the robot. A
layer of plasticine is applied on the torso to avoid hard collisions of the
robot with the hard-plastic phantom and also for validation purposes. The
green circles indicate the target areas of FAST scan for the validation.

two adjacent extreme points in the dataset, corresponding
to the fully exhaling or fully inhaling breathing motions.
Fig. 9 shows the amplitude on the right chest for 9 respiratory
cycles. As can be seen from the figure, the overall trend of the
amplitude derived by the shape model is correct. The shape
model can fairly accurately track the phase and amplitude
of the breathing cycle, with a maximum amplitude error
of 11.4mm. Overall, the shape model amplitude is lower
than the actual one which may be caused by the constrained
parameters of the shape model. It is also worth noting that
the depth error reported by the Kinect is around 8mm for
our setup [16].

Fig. 7: Comparison of the motion in the z-axis of the optical marker on
the subjects right chest and the motion captured by the shape model. The
baselines of two datasets are aligned for better visualization.

B. Overall System Validation

For all trials, the final position of the probe tip was close
to the surface of the phantom. The error is the distance
between the tip of the probe and the surface and ranges from
0 to 2.7cm as shown in Table II. The corresponding surface
point is marked. For same target positions, the relative
error indicates the displacement between the marked points
produced by the first and the other two poses. The relative
error shows the stability of the system in different pose con-
figurations. Based on visual observation of the model fitting,

Fig. 8: Comparison of the z-axis motion of the optical marker and the shape
model, demonstrating the lower sensitivity of the model on the belly.

Fig. 9: Comparison of amplitude of z-axis motion on right chest for 9
cycles.

the customized model cannot perfectly adapt to the point
cloud in some local areas which results in different variance
of error at different anatomical positions. A maximum error
of 2.7cm is still acceptable for the sonographer to initiate the
examination.

The probe touched the surface of the pelvis area for all
poses of the phantom, which resulted in an exerted force of
around 10N. It is worth noting that even when plasticine is
used, the surface is still harder than a human subject where
the force would be lower and within reasonable safety limits.

Throughout the experiments, the occlusion problem is
successfully addressed due to the use of a dual Kinect setup.
The customized model keeps been correctly updated while
the robot arm is moving across the body targets. For more
results on the customized model and trajectory, please refer
to the supplementary video of this paper.

VI. DISCUSSION AND CONCLUSIONS

The main objective of the proposed framework is to create
a patient specific model which can adaptively fit to a real-
time updated point cloud of the patient. The model is used
as a guide for trajectory planning during robot assisted tele-
echography. The experimental results show that the frame-
work generates a customized model able to accurately fit
the subjects body. The current performance is approximately



TABLE II: System Validation Results

Trial
Error
(cm)

Force
(N)

Relative Error
(cm)

Pose 1 2 N/A 0
Right abdomen Pose 2 1.1 N/A 0.3

Pose 3 1.2 N/A 0.8
Pose 1 2.7 N/A 0

Pericardial Pose 2 1.5 N/A 1
Pose 3 2.5 N/A 1.2
Pose 1 0 8.1 0

Pelvis Pose 2 0 1.2 3
Pose 3 0 11.3 1.5

0.2 seconds for each iteration while the ideal real-time
performance should be around 10 to 15 Hz in order to capture
smooth motion of the patient. Although the shape fitting
process is not taking place in real-time yet, the model is able
to track respiratory motion of the subject with relatively high
spatial accuracy.

The proposed system is promising but there are a number
of limitations to be overcome before it can be adopted in
practice. To address the mentioned real-time problem, we
need to parallelize the processes at both slave and master
sides. For example, the point cloud received by the master
only has an update rate of 7 Hz which is mainly the result
of the sequential processing of the point cloud at the slave
side. Moreover, the process of correspondence search and
update during model fitting is also time-consuming for serial
computation. The reason why the data need to be processed
at the master side is that the user at the master side needs to
be able to overlook and approve the result of the registration
and shape model fitting for safety. The second reason is that
processing at the slave site is not desirable for the sake of
keeping the remote setup as basic and low cost as possible.
This is important when multiple remote sites are required
(i.e., a number of ambulances).

The current model fitting algorithm can only deal with
whole body movement as whole human shapes were used
to build the shape model. Therefore, if the target shape is
very different from the training set (e.g., people in different
poses, very young subjects, people with disabilities), the
shape model may fail to register correctly. To address this
issue, we can introduce a dividable human model which
represents the body as a set of articulated body parts, such
as in [9]. For each body part, we can train a deformable
shape model based on the statistical shape model. During
registration, each body part is registered with the target point-
cloud while constraints that ensure kinematically reasonable
postures and the connection to neighbor body part are applied
subsequently. Moreover, the skeleton provided by the Kinect
can also be used to initialize postures of each body part.
The current model may also be improved by including
further models of subjects while at full exhalation and full
inhalation.

Another deficiency of the system is that it cannot differen-
tiate clothes with wrinkles from skin. Although the echogra-
phy requires direct contact with the patients skin, the rest of
the torso can be partially covered by clothes. To address this
problem to some extent, computer vision techniques could
be exploited to differentiate between clothing and skin.

To our knowledge this is the first study that attempts to
address semi-autonomous navigation of a robot for perform-
ing a remote ultrasound examination and repositioning of the
robot without direct human intervention. It is a preliminary
study that represents a paradigm shift towards automation in
ultrasound examination and further validation is required.
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