3,413 research outputs found

    Development of a versatile laser light scattering instrument

    Get PDF
    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments

    Research opportunities on the Space Station

    Get PDF
    Two interdisciplinary facilities that have been proposed for the Space Station, the Gas-Grain Simulation Facility and the Cosmic Dust Collector Facility, are reviewed. Both of these facilities provide opportunities for scientists interested in carbon related research to perform experiments in earth orbit

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Simulation modelling and visualisation: toolkits for building artificial worlds

    Get PDF
    Simulations users at all levels make heavy use of compute resources to drive computational simulations for greatly varying applications areas of research using different simulation paradigms. Simulations are implemented in many software forms, ranging from highly standardised and general models that run in proprietary software packages to ad hoc hand-crafted simulations codes for very specific applications. Visualisation of the workings or results of a simulation is another highly valuable capability for simulation developers and practitioners. There are many different software libraries and methods available for creating a visualisation layer for simulations, and it is often a difficult and time-consuming process to assemble a toolkit of these libraries and other resources that best suits a particular simulation model. We present here a break-down of the main simulation paradigms, and discuss differing toolkits and approaches that different researchers have taken to tackle coupled simulation and visualisation in each paradigm

    "Confinement Mechanism in Various Abelian Projections of SU(2)SU(2) Lattice Gluodynamics"

    Full text link
    We show that the monopole confinement mechanism in lattice gluodynamics is a particular feature of the maximal abelian projection. We give an explicit example of the SU(2)→U(1)SU(2) \rightarrow U(1) projection (the minimal abelian projection), in which the confinement is due to topological objects other than monopoles. We perform analytical and numerical study of the loop expansion of the Faddeev--Popov determinant for the maximal and the minimal abelian projections, and discuss the fundamental modular region for these projections.Comment: 16 pages (LaTeX) and 3 figures, report ITEP-94-6

    Concentrated Ground Plane Booster Antenna Technology for Multiband Operation in Handset Devices

    Get PDF
    The current demand in the handset antenna field requires multiband antennas due to the existence of multiple communication standards and the emergence of new ones. At the same time, antennas with reduced dimensions are strongly required in order to be easily integrated. In this sense, the paper proposes a compact radiating system that uses two non-resonant elements to properly excite the ground plane to solve the abovementioned shortcomings by minimizing the required Printed Circuit Board (PCB) area while ensuring a multiband performance. These non-resonant elements are called here ground plane boosters since they excite an efficient mode of the ground plane. The proposed radiating system comprises two ground plane boosters of small dimensions of 5 mm x 5 mm x 5 mm. One is in charge of the low frequency region (0.824-0.960 GHz) and the other is in charge of the high frequency region (1.710-2.170 GHz). With the aim of achieving a compact configuration, the two boosters are placed close to each other in a corner of the ground plane of a handset device (concentrated architecture). Several experiments related to the coupling between boosters have been carried out in two different platforms (barphone and smartphone), and the best position and the required matching network are presented. The novel proposal achieves multiband performance at GSM850/900/1800/1900 and UMTS
    • 

    corecore