553 research outputs found

    Dynamic generation of personalized hybrid recommender systems

    Get PDF

    Offline optimization for user-specific hybrid recommender systems

    Get PDF
    Massive availability of multimedia content has given rise to numerous recommendation algorithms that tackle the associated information overload problem. Because of their growing popularity, selecting the best one is becoming an overload problem in itself. Hybrid algorithms, combining multiple individual algorithms, offer a solution, but often require manual configuration and power only a few individual recommendation algorithms. In this work, we regard the problem of configuring hybrid recommenders as an optimization problem that can be trained in an offline context. Focusing on the switching and weighted hybridization techniques, we compare and evaluate the resulting performance boosts for hybrid configurations of up to 10 individual algorithms. Results showed significant improvement and robustness for the weighted hybridization strategy which seems promising for future self-adapting, user-specific hybrid recommender systems

    Hybrid Recommender Systems: A Systematic Literature Review

    Get PDF
    Recommender systems are software tools used to generate and provide suggestions for items and other entities to the users by exploiting various strategies. Hybrid recommender systems combine two or more recommendation strategies in different ways to benefit from their complementary advantages. This systematic literature review presents the state of the art in hybrid recommender systems of the last decade. It is the first quantitative review work completely focused in hybrid recommenders. We address the most relevant problems considered and present the associated data mining and recommendation techniques used to overcome them. We also explore the hybridization classes each hybrid recommender belongs to, the application domains, the evaluation process and proposed future research directions. Based on our findings, most of the studies combine collaborative filtering with another technique often in a weighted way. Also cold-start and data sparsity are the two traditional and top problems being addressed in 23 and 22 studies each, while movies and movie datasets are still widely used by most of the authors. As most of the studies are evaluated by comparisons with similar methods using accuracy metrics, providing more credible and user oriented evaluations remains a typical challenge. Besides this, newer challenges were also identified such as responding to the variation of user context, evolving user tastes or providing cross-domain recommendations. Being a hot topic, hybrid recommenders represent a good basis with which to respond accordingly by exploring newer opportunities such as contextualizing recommendations, involving parallel hybrid algorithms, processing larger datasets, etc

    OMUS : an optimized multimedia service for the home environment

    Get PDF
    Media content in home environments is often scattered across multiple devices in the home network. As both the available multimedia devices in the home (e.g., smartphones, tablets, laptops, game consoles, etc.) and the available content (video and audio) is increasing, interconnecting desired content with available devices is becoming harder and home users are experiencing difficulties in selecting interesting content for their current context. In this paper, we start with an analysis of the home environment by means of a user study. Information handling problems are identified and requirements for a home information system formulated. To meet these requirements we propose the OMUS home information system which includes an optimized content aggregation framework, a hybrid group-based contextual recommender system, and an overall web-based user interface making both content and recommendations available for all devices across the home network. For the group recommendations we introduced distinct weights for each user and showed that by varying the weights, the coverage (i.e., items that can be returned by the recommender) considerably increases. Also the addition of genre filter functionality was proven to further boost the coverage. The OMUS system was evaluated by means of focus groups and by qualitative and quantitative performance assessment of individual parts of the system. The modularity of internal components and limited imposed hardware requirements implies flexibility as to how the OMUS system can be deployed (ranging from e.g., embedded in hardware devices or more software services based)

    Power to the Learner: Towards Human-Intuitive and Integrative Recommendations with Open Educational Resources

    Get PDF
    Educational recommenders have received much less attention in comparison with e-commerce- and entertainment-related recommenders, even though efficient intelligent tutors could have potential to improve learning gains and enable advances in education that are essential to achieving the world’s sustainability agenda. Through this work, we make foundational advances towards building a state-aware, integrative educational recommender. The proposed recommender accounts for the learners’ interests and knowledge at the same time as content novelty and popularity, with the end goal of improving predictions of learner engagement in a lifelong-learning educational video platform. Towards achieving this goal, we (i) formulate and evaluate multiple probabilistic graphical models to capture learner interest; (ii) identify and experiment with multiple probabilistic and ensemble approaches to combine interest, novelty, and knowledge representations together; and (iii) identify and experiment with different hybrid recommender approaches to fuse population-based engagement prediction to address the cold-start problem, i.e., the scarcity of data in the early stages of a user session, a common challenge in recommendation systems. Our experiments with an in-the-wild interaction dataset of more than 20,000 learners show clear performance advantages by integrating content popularity, learner interest, novelty, and knowledge aspects in an informational recommender system, while preserving scalability. Our recommendation system integrates a human-intuitive representation at its core, and we argue that this transparency will prove important in efforts to give agency to the learner in interacting, collaborating, and governing their own educational algorithms

    Online optimization for user-specific hybrid recommender systems

    Get PDF
    User-specific hybrid recommender systems aim at harnessing the power of multiple recommendation algorithms in a user-specific hybrid scenario. While research has previously focused on self-learning hybrid configurations, such systems are often too complex to take out of the lab and are seldom tested against real-world requirements. In this work, we describe a self-learning user-specific hybrid recommender system and assess its ability towards meeting a set of pre-defined requirements relevant to online recommendation scenarios: responsiveness, scalability, system transparency and user control. By integrating a client-server architectural design, the system was able to scale across multiple computing nodes in a very flexible way. A specific user-interface for a movie recommendation scenario is proposed to illustrate system transparency and user control possibilities, which integrate directly in the hybrid recommendation process. Finally, experiments were performed focusing both on weak and strong scaling scenarios on a high performance computing environment. Results showed performance to be limited only by the slowest integrated recommendation algorithm with very limited hybrid optimization overhead

    Dynamic generation of personalized hybrid recommender systems

    Get PDF

    A Survey of Recommendation Systems and Performance Enhancing Methods

    Get PDF
    With the development of web services like E-commerce, job hunting websites, movie websites, recommendation system plays a more and more importance role in helping users finding their potential interests among the overloading information. There are a great number of researches available in this field, which leads to various recommendation approaches to choose from when researchers try to implement their recommendation systems. This paper gives a systematic literature review of recommendation systems where the sources are extracted from Scopus. The research problem to address, similarity metrics used, proposed method and evaluation metrics used are the focus of summary of these papers. In spite of the methodology used in traditional recommendation systems, how additional performance enhancement methods like machine learning methods, matrix factorization techniques and big data tools are applied in several papers are also introduced. Through reading this paper, researchers are able to understand what are the existing types of recommendation systems, what is the general process of recommendation systems, how the performance enhancement methods can be used to improve the system's performance. Therefore, they can choose a recommendation system which interests them for either implementation or research purpose
    • …
    corecore