Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

Offline Optimization for User-specific Hybrid
Recommender Systems

Simon Dooms - Toon De Pessemier -
Luc Martens

Received: date / Accepted: date

Abstract Massive availability of multimedia content has given rise to numerous
recommendation algorithms that tackle the associated information overload prob-
lem. Because of their growing popularity, selecting the best one is becoming an
overload problem in itself. Hybrid algorithms, combining multiple individual al-
gorithmes, offer a solution, but often require manual configuration and power only
a few individual recommendation algorithms. In this work, we regard the prob-
lem of configuring hybrid recommenders as an optimization problem that can be
trained in an offline context. Focusing on the switching and weighted hybridiza-
tion techniques, we compare and evaluate the resulting performance boosts for
hybrid configurations of up to 10 individual algorithms. Results showed significant
improvement and robustness for the weighted hybridization strategy which seems
promising for future self-adapting, user-specific hybrid recommender systems.

Keywords Recommender systems - Hybrid - Algorithms - RMSE - Optimization

1 Introduction

The availability of multimedia content nowadays, is booming exponentially in a
wide variety of domains. Through the Internet, users have access to unlimited
music resources (e.g., Spotify, Pandora, etc.), video platforms (e.g., YouTube, Dai-
lymotion, etc.), image galleries (e.g., flickr, Instagram, etc.) and many more. Ac-
cessing these resources has become so easy that users are quickly overloaded with
information, and often find it hard to select relevant content. As a solution, mul-

S. Dooms - T. De Pessemier - L. Martens

Wica, iMinds-Ghent University

G. Crommenlaan 8 box 201, 9050 Ghent, Belgium
Tel.: +32-09-33-14908

Fax: +32-09-33-14899

E-mail: simon.dooms@intec.ugent.be

E-mail: toon.depessemier@intec.ugent.be

E-mail: luc.martens@intec.ugent.be

2 Simon Dooms et al.

timedia tools or applications are increasingly integrating recommender systems to
support their users.

Recommender systems are systems designed to tackle the problem of infor-
mation overload by automatically selecting interesting content for users based on
their personal preferences. The domain of recommender systems has been an ac-
tive research topic for over twenty years now, and still continues to expand. Years
of research contributions by hundreds of researchers, have led to an abundance
of recommendation algorithms that can be used to combat information overload.
Recommendation algorithms come in all sorts and sizes, from really simple ones as
SlopeOne [20] to extensive mathematical-based ones as SVD++ [18]. Algorithms
can be based on collaborative filtering principles, content-based, knowledge-based,
demographic-based, etc. More recently also context-based [2,15] and social-based
[30] algorithms are starting to show up. Each and every one of these algorithms
have their own advantages, downsides and optimal use cases and scenarios. Also
the availability of recommendation frameworks (or platforms) that offer out-of-
the-box recommendation solutions is on the rise, these include MyMedialite [13],
LensKit [12], Mahout!, Lucene?, Duine?, etc. It seems that, by eagerly tackling
the information overload problem with new methods, the recommender domain in
itself is becoming overloaded with available algorithms and thus making it more
difficult (for recommender system administrators) to select the right algorithm for
the job.

Instead of selecting one algorithm, sometimes multiple algorithms are com-
bined into a so-called hybrid recommender system. Hybrid recommender systems
have long been popular, and are widely used in many real-world applications be-
cause of their obvious advantages over individual recommendation algorithms. By
combining and integrating different types of recommendation algorithms, hybrid
recommenders are able to overcome the drawbacks associated with each of them in-
dividually [1,3,7]. A problem that most hybrid recommenders nowadays are facing,
is that they are inherent static in nature. Very often they are trained or manually
tweaked before deployment, but at runtime their configuration remains the same.
Their static nature prevents them from being deployed in other scenarios, with
other algorithms, or for other (types of) users.

Because hybrid systems are cumbersome to configure (often done manually),
the number of incorporated individual algorithms is usually rather limited to two
or three algorithms at most. Since hybrid systems inherit the properties of its
individual components, it seems more interesting however to have hybrid recom-
menders composed of dozens of algorithms instead of just a few. Ideally, a hybrid
recommender system would include all existing recommendation algorithms and
be capable of intelligently deciding what algorithm (or what combination of algo-
rithms) generates the most interesting results for any given user in a system.

In this work, we strive towards the ideal hybrid recommender system which
automatically fine-tunes itself based on given individual recommendation algo-
rithms and user input data. We focus specifically on two hybridization techniques
i.e., hybrid switching and weighted hybridization and include up to 10 individual
algorithms in our experiments. The contributions of this paper include:

1 http://mahout.apache.org
2 http://lucene.apache.org
3 http://www.duineframework.org

Offline Optimization for User-specific Hybrid Recommender Systems 3

1. Formulation of the hybrid recommendation configuration problem as an opti-
mization problem.

2. The introduction of an offline optimization procedure for a user-specific switch-
ing and weighted hybrid strategy.

3. A training and test dataset division strategy that allows both offline train-
ing, and realtime updates (on individual user-level) for online recommendation
scenarios.

4. Comparison and evaluation of the optimization potential (in terms of RMSE)
of both the switching and weighted hybrid strategies.

The remainder of the paper is organized as follows. In Section 2 we discuss
the current state of the art for hybrid recommender systems. We then present an
overview of our system’s architecture in Section 3. Section 4 details the transfor-
mation from configuring a hybrid system to solving an optimization problem and
discusses evaluation. In the two following sections 5 and 6, we show how both the
switching and the weighted hybridization techniques can be implemented so that
they allow for optimization. Section 7 presents results for both of the hybridiza-
tion techniques, using the performance of individual algorithms (and naive hybrid
systems) as baseline for comparison. Finally, the implications of the results are
put into perspective in the discussion (Section 8) and conclusion (Section 9).

2 Related Work

Burke et al. [9] was one of the first to categorize hybrid recommender systems in
function of their combining strategies: weighted, switching, mized, feature combi-
nation, cascade, feature augmentation, and meta-level. Every combining strategy
comes with its own specific properties and consequences.

Two of the most commonly combined recommendation algorithms are the
content-based and the collaborative filtering approach [4,14,23], because they tend
to complement each other in various ways. Very often only two algorithms are
combined using a simple combining strategy, e.g. [27] where the predictions of two
types of collaborative filtering systems are combined linearly (weighted) using the
formula P = a X Pyg0, + (1 — @) X Paigo,-

A recent hybridization technique is feature-weighted linear stacking (FWLS)
[29], which continues on the original concept of stacking [32], where multiple rec-
ommendation models are stacked (or blended) together. The most famous appli-
cation of stacking is the winning entry of the Netflix Prize*, where the BellKor’s
Pragmatic Chaos team stacked more than hundred different models together into
one blend (in fact even a blend of blends) [19,25,31]. The advantage of the stack-
ing technique is that individual components are loosely coupled, which allows
easy integration of new algorithms and tuning of the end results by adjusting
the individual coefficients (i.e., weights) of the models. These coefficients are usu-
ally determined by taking into account so called meta-features, which are met-
rics describing some specific properties of the dataset at hand. In FWLS, the
coefficients associated with the models are parametrized as linear functions of
the meta-features. The STREAM (Stacking Recommendation Engines with Addi-
tional Meta-Features) system [5] experimented with eight different meta-features,

4 http://www.netflixprize.com

4 Simon Dooms et al.

and ultimately considered the number of user ratings and item ratings the most
interesting.

Individual weights of the models are usually determined by fitting some sort of
linear regression to optimize general recommendation metrics such as RMSE. Re-
cent research however, is moving away from generalizing users, and towards a per
user focus. Ekstrand et al. [11] showed that recommenders fail (and succeed) on
different items and users (although their focus was on switching hybrids). Hybrid
recommender systems would obviously benefit from being able to predict which
recommendation algorithm works best for which user. The importance of individ-
uality of users was also noted by the work of Kille et al. [16], in which they tried
to model the difficulty of generating recommendations for individual users.

In [21], the authors describe their system SemanticMovie which integrates
multiple recommendation approaches (recommender agents in their words) into
a single agent ensemble. Combining weights are generated by default, but can be
manually adjusted per user. Automatically adjusting weights (through a learn-
ing component) according to user feedback was however deferred to future work.
The topic of automatically adjusting user-specific weights for dynamic ensembles
has been touched by Bellogin et al. [6,7]. From an information retrieval perspec-
tive, they proposed adaptations of query performance techniques to define per-
formance predictors in recommender systems. Using these predictors, recommen-
dation strategies can then be dynamically fine-tuned. The selection of predictors
and individual recommenders to use in the ensemble is limited by specific con-
straints e.g. the predictors should correlate positively with the performance of not
all but some recommenders. Our work on the other hand, considers a machine
learning approach where the weights of the ensemble can be iteratively trained
where algorithms (considered ‘black boxes’) of any type can be combined.

In our work we integrate the most relevant ongoing topics of hybrid recom-
mender research. We focus on dynamically optimizing user-specific hybrid sys-
tems through a machine learning perspective. We compare the popular hybrid
switching approach with the weighted hybrid strategy and show how both can be
optimized, yielding a performance boost versus individual recommendation algo-
rithms or static hybrid systems.

3 General Architecture

Our general architecture corresponds to a common hybrid recommender system
layout as depicted in Fig. 1. The original ratings dataset is divided into a training
and test set, which are then respectively used as input for the hybrid recommender
and for the final evaluation of the system. The hybrid recommender system consists
of multiple recommendation algorithms which run in parallel on the provided data
and are finally aggregated into hybrid recommendation results.

In this work, we employ the MovieLens 100K dataset which is a popular and
commonly used dataset in recommender research. It contains 100K ratings by 943
users of 1682 movies. Every rating is a numerical value ranging from 1 (i.e., awful)
to 5 (i.e., must see), expressing the interest of the user in a particular movie. For
more information on this dataset we refer to recommender systems literature (e.g.
[8,24]). Working with the MovieLens dataset has the advantage that every user in
the system will have at least rated 20 items. Since we are tackling the hybridization

Offline Optimization for User-specific Hybrid Recommender Systems 5

S S

Training set Test set

| I |

1 I3 IO

{

]

{

Evaluation

Fig. 1 The high-level architecture of the hybrid system. Rating data is split in a training
and test set. Multiple recommendation algorithms then generate recommendations, which are
combined into one set of recommendations and finally evaluated based on the test set.

problem on a user-specific level, we also want to evaluate user-specific and so train
and test sets will contain all users but only a ratio of their ratings. For each user
we adopt a split-ratio of 60% (train) and 40% (test) ratings. Because every user
has rated at least 20 items, every user will have a minimum of 8 ratings in the test
set.

To serve as individual recommendation algorithms in the hybrid system, we
selected the following 10 algorithms from the rating predictors available in the
MyMediaLite® framework [13]. For each of these algorithms, default settings were
used as set in MyMediaLite version 3.09.

— BiasedMatrixFactorization

— MatrixFactorization

— FactorWiseMatrixFactorization
— SigmoidSVDPlusPlus

— BiPolarSlopeOne

— SlopeOne

— UserltemBaseline

— UserKNN

— Constant1

— Constantb

The output of each of these single algorithms is directed to the ‘Hybrid’ module,
where results are collected and aggregated. We specifically focus (and compare)
two common hybridization strategies: a switching approach, where only the best
algorithm is selected, and a weighted approach where all algorithms contribute to
the final recommendations according to a specific weight.

5 http://mymedialite.net

6 Simon Dooms et al.

In the end, the system is evaluated according to a k-fold evaluation procedure.
The training dataset is used throughout the system to calculate the individual and
finally the hybrid recommendation values. Subsequently, the results are compared
with the test set. This process is repeated 10 times (i.e., 10 folds). The specific
evaluation metric that is calculated and used throughout this work, is recommen-
dation accuracy in the form of RMSE as detailed in the next section.

4 Offline optimization for hybrid recommenders

In this work, we attempt to optimize hybrid recommender systems in an offline
setting. To be able to handle the problem of selecting or composing an optimal
hybrid recommender, we consider our problem as an optimization task.

minimize f(x)
x

Here, the goal is to minimize a defined objective function f(x) by providing it
with an optimal input x. For the hybrid recommendation use case, the objective
function could be an evaluation metric which we want to optimize (e.g., accuracy,
diversity, serendipity, etc.) and the input z the hybrid recommender. The better
the recommender, the better values the objective function will come up with.

Since we are working in an offline setting, we need to select an objective func-
tion (i.e., evaluation metric) that can be evaluated offline, or in other words, with-
out requiring additional user input. For the purpose of demonstrating the offline
optimization procedure described in this work, we choose to optimize the accuracy
metric: Root Mean Squared Error (RMSE). This method is defined as

RMSE = \71| > (Fui = Tui)?

(u,3)eT

where system-predicted ratings 7,; are compared with true ratings r,; con-
tained in a certain test set T of user-item pairs (u,4) [28]. We adopt RMSE be-
cause it is one of the most popularly used evaluation metrics in the recommender
systems domain and is easily computed in an offline context. Recent research [22,
26,10,17] shows that although recommendation accuracy is principal to achieve
user satisfaction, it is not the only important metric and often metrics as diver-
sity, transparency or trust should be considered as well. We note however, that
our offline optimization strategy is not limited to RMSE, and can incorporate any
desired metric as long as it can be calculated offline on a given set of ratings.

4.1 Evaluating optimization

Aside from defining the objective function (i.e., RMSE), we also need data to
calculate f(x) given a certain x. Two available datasets are the training set and
the test set. The test set is clearly unusable since we want to avoid tuning to the test
set ; the test set should only be used in the final evaluation of the complete system
and not in intermediate optimizing iterations, to guarantee evaluation fairness. We
therefore focus on using the training set as input for our optimization task. In other

Offline Optimization for User-specific Hybrid Recommender Systems 7

words, we intend to optimize our hybrid system in terms of RMSE on the training
set. We then hypothesize that, a decrease of RMSE (lower RMSE is better) on the
training set will result in a similar decrease on the test set. This may not be the
case if the optimization that was learned from this procedure is not generalizable
i.e., too specific to the training set.

To prevent overfitting the training set, we do not train our optimization on the
full training set, but rather on 10 distinct subsets of this training set. Such a subset
divides the training set into a smaller subtraining set and subtest set, much like
the general 10-fold evaluation procedure of the system, with a user-specific ratio of
60/40 (Fig. 2). The objective function results are then averaged (arithmetic mean)
over these 10 subdatasets. A downside of this optimization procedure, is that it
requires to run the individual algorithms on 11 different datasets: 10 subfolds of
the training set (to optimize the hybrid), and once on the full training set (for the
final recommendations).

Once the individual algorithms are trained and ready, our evaluation strategy
allows very fast updating and processing of new feedback given by the user. Usu-
ally, when a user provides new ratings, the recommender needs to be retrained to
take this new data into account. Since training the algorithms can take a long time,
very often online recommender systems recalculate their models only a few times
a day. With our evaluation strategy, new ratings can be dynamically integrated
by adding them to the subtest datasets. That way the hybrid recommender can
take them into account without retraining the individual algorithms. This strategy
paves the path towards online hybrid recommender systems that respond realtime
to new user feedback.

_/ Fold 1

Fold 2
>
by, <
aining set | Supe™

Fold 10
oy

S, 2
U
_/ b"a’"’ng set | supest®

Fig. 2 The training set is split into 10-folds with a 60/40 subtraining set and subtest set,
which are then used to optimize the hybrid configuration.

raining set

\9"}
'aining set Sub\es

0

i

With a defined objective function and data to train (and evaluate) on, we can
now proceed to the optimization of our hybrid recommender system. In the next
sections we explore both the switching and weighted hybrid strategies.

5 Hybrid switching strategy

The hybrid switching technique entails the switching between different recommen-
dation algorithms by means of a switching strategy [9]. It is a very easy and
straightforward method since in the end only one algorithm will contribute to
the final recommendations. The selection of the ‘best’ recommendation algorithm

8 Simon Dooms et al.

for the situation often depends on objective metrics such as metadata availability
(e.g., content-based when item features are available), the number of total ratings
(e.g., collaborative filtering when a large number of items have been rated), etc.
However, since we are optimizing hybrid recommender systems at user-level, the
switching strategy should also be implemented at user-level so that for every user,
a single best algorithm can be selected.

Our user-specific switching selection strategy, starts with the determination
of a default algorithm. This default algorithm serves as a fallback option when
no clear ‘best’ algorithm could be detected for a user. The default algorithm is
determined by evaluating RMSE values for all algorithms over all users on the
subtest datasets, and so will be the same for every user.

Next, for every user a ‘best’ algorithm is detected among the available individ-
ual recommendation algorithms. Best in this case, is defined as providing the best
(averaged out) RMSE values on the 10 subtest datasets. Aside from best RMSE,
also the variance among the 10 (i.e., one for every subtest dataset) RMSE values
is taken into account. This variance serves as a confidence value indicating the sta-
bility of the RMSE values among the different subtest datasets. A high variance
indicates divergent RMSE values and so the average may not be a good predic-
tion of the RMSE value the algorithm will finally deliver. Our experiments have
shown that a reasonable method of coping with this situation, is imposing a cutoff
variance threshold that, when reached, automatically discards the algorithm from
the selection process (for the current user). This way only algorithms which show
good and constant RMSE values across the subtest datasets will be compared and
ranked. When all, or all but one, algorithm is discarded, the default algorithm is
selected for the current user.

Although our experiments showed good results implementing our discrete cut-
off threshold, it may be interesting to explore more continuously-based solutions.
In future work, we plan on experimenting with confidence intervals for the scores
of each algorithm to integrate variance values in a more flexible way.
Algorithm. Best Switching Selection Strategy

default_algo < determine_default_algorithm()

for user in users

algo_selection_list < {empty}

for algorithm in algorithms
RMSE, variance < evaluate_algorithm(user, algorithm)
if variance < VARITANCE_THRESHOLD

algo_selection_list < algo_selection_list + (RMSE, algorithm)

end if

end for

if length of algo_selection_list > 2
user_algorithm < select algorithm with lowest RMSE

else
user_algorithm < default_algo

end if

end for

PROCEDURE - determine_default_algorithm()
all_algo_values <+ {empty}
for algorithm in algorithms

Offline Optimization for User-specific Hybrid Recommender Systems 9

algo_values <+ {empty}
for user in users
RMSE <« evaluate_algorithm (user, algorithm)
algo_values < algo_values + (algorithm, RMSE)
end for
RMSE < average of algo_values
all_algo_values < all_algo_values + (algorithm, RMSE)
end for
algorithm < select best from all_algo_values
return algorithm

PROCEDURE - evaluate_algorithm (user, algorithm)
RMSE_list + {empty}
for subtest_set in subtest_sets
RMSE <« {RMSE of real ratings in subtest_set and predicted ratings by
algorithm}
RMSE_list < RMSE_list + RMSE
end for
RMSE <+ average of RMSE_list
variance < variance of RMSE_list
return RMSE, variance

For the experiments described in this work, we used a cutoff variance threshold
value of 0.2.

6 Weighted hybrid strategy

Another hybridization technique we employ in this work, is the weighted hybrid
recommendation technique. With this method the scores of individual recommen-
dation algorithms are combined together into a single hybrid recommendation
score [9]. Individual algorithms can be associated with different weights to allow
fine-grained control over the contribution of the individual algorithms to the final
score. Weights can be set in such a way that this weighted technique produces
the same results as hybrid switching (i.e., if only one algorithm contributes to the
final score). The real power of the weighted technique however, lies in the ability to
join multiple algorithms together and form a new hybrid algorithm. We therefore
hypothesize that this technique may yield better or at least equal results as the
hybrid switching technique.

An additional advantage of the weighted hybrid strategy towards other strate-
gies like Meta-Level or Feature Augmentation is its black box approach. Individual
algorithms are considered black boxes, which are served input data and produce
output data without revealing any internal processing information. Since the final
score takes only the output of the algorithms into account, new algorithms can
easily be added to the system without the need for structural changes. In this
work, we intend to optimize a hybrid system built on many (i.e., 10) different
algorithms, and so the black box approach seems a valuable advantage.

The core challenge of the weighted hybrid technique is to find appropriate
weights for the individual algorithms. We define this problem in the form of an

10 Simon Dooms et al.

optimization task. We adopt the notation from related work [6] where a dynamic
ensemble recommender was defined as

9(u, %) = Ya, * gas (U, 9) + Yay * Gas (U, 9) + .. + Ya, * ga, (u,7)

where v is the weighting factor for the individual algorithms a that weighs the
recommendation values gq(u,?) for a user w and item 4. Since our approach is a
user-specific one, we want to optimize the weights of the algorithms specifically for
every user so that every user may benefit from a personalized hybrid recommender
system. User-specific weights can be added to the optimization task in the following
way.

9(u, 1) = Ya, () * gay (U,) + Yaz (U) * gas (s 1) + ... + Ya,, (W) * ga,, (u, 1)

We can now denote the objective function as

f(y(w)

where
FY(U’) = (,—yal (u)v Yaz (u)7 wo Yan (u))

with n the total number of recommendation algorithms. Through an optimization
process we seek to minimize the objective function (i.e., RMSE). This metric can
again be measured offline by evaluating the subtest sets and averaging out the
values as was done to optimize the hybrid switching strategy.

We limit possible weight values to the interval [0,1] so that values can be easily
interpreted and compared. A final recommendation score for a user u and item
i, given the weight vector and individual recommendation scores, can then be
calculated by means of an average weighted formula.

— Yasx (u) * Ya, (ua Z) + Yas (u) * YGay (u7 7’) + ...+ Yan (u) * Jan (ua Z)
Yay () + Yas (u) + - + 7a, ()

In our weighted hybrid optimization procedure, v(u) will be optimized such that
g(u, 1) minimizes RMSE on the subtest datasets. In this procedure we iteratively
try to improve the individual weights of the weight vector. To reduce the number
of iterations required for this optimization, we start the procedure by selecting the
best start vector out of a number of randomly generated weight vectors. Together
with the random vectors, we compare all the individual weight vectors for every
single recommendation algorithm in the system. We define an individual weight
vector as a vector that allows only a single algorithm to contribute to the final
score e.g, v(u) = (1,0,0,0,0,0,0,0,0,0). Doing so, forces the hybrid to take also
individual algorithms into account.

After the selection of the start vector, this weight vector will be improved one
weight at a time. Since this optimization procedure must run for every user in the
system, we want an optimization procedure that produces qualitative results in a
very short time frame (almost realtime). For this, we have implemented a standard
binary search procedure where improved weight values will be searched in itera-
tively diminishing intervals both upwards and downwards as Fig. 3 illustrates. We
have experimented with other optimization procedures such as a custom genetic
algorithm and publicly available optimization tools (such as SciPy®), but found

g(u, 1)

6 http://docs.scipy.org/doc/scipy /reference/optimize.html

Offline Optimization for User-specific Hybrid Recommender Systems 11

our standard binary search procedure to produce the best or equal results in less
time. To reduce the risk of ending up in locally-optimal RMSE solutions, instead
of selecting only one start vector (from the randomly generated ones), multiple
vectors could be optimized simultaneously. We experimented with different set-
tings and even implemented a back-tracking mechanism to allow the optimization
procedure to escape locally-optimal solutions. We found that this approach did
not yield significantly improved results and therefore we did not include this in
our algorithm presented below. We hypothesize that the randomization of the
start vector in itself already prevents ending up in the most obvious local RMSE
solutions.

min = 0.0
max = 1.0

Downwards weight = ... Upwards

max = weight min = weight
weight = (min + max) / 2 weight = (min + max) / 2

weight better? weight better?

min = weight max = weight max = weight min = weight
weight = (min + max) / 2 weight = (min + max) / 2 weight = (min + max) / 2 weight = (min + max) / 2

Fig. 3 The binary search procedure to improve the weights in the weight vector.

We note that although the procedures searches for an improvement one weight
at a time, the evaluation (i.e., is the new weight value better?) will be performed
on the weight vector as a hole. If for example, the start weight vector is vy(u) =
(0.5,0,0,0,0,0,0,0,0,0) and we seek an improvement of the first weight in upwards
direction, we will evaluate if the weight vector v(u) = (0.75,0,0,0,0,0,0,0,0,0)
yields improvement. Improvement, as stated earlier, is defined here as yielding
a reduced RMSE value on the subtest datasets. We again take the variance of
the generated RMSE values into account to model for confidence. When a cutoff
threshold for variance is reached, the evaluation discards the weight vector and
the weight suggestion is considered ‘not better’.

The binary search procedure is repeated for every weight in two directions until
no more improvements can be found or a fixed number of iterations have passed.
Algorithm. Weighted Average Strategy

weights_vectors < {random weight vectors, and all individual weight vectors}

wetghts_vector < select the best from weights_vectors

iterations <— 0

current_RMSE <+ evaluate_weights_vector(weights_vector)

previous-RMSE < current_.RMSE + 1 //start worse than current_RMSE

while (iterations < MAX ITERATIONS) and (previous_lRMSE > current_RMSE)

12 Simon Dooms et al.

previous_.RMSE <+ current_RMSE
weight_vector < optimize_weights_vector(weights_vector)
current_RMSE <+ evaluate_weights_vector(weights_vector)
tterations < iterations + 1

end while

PROCEDURE - optimize_weights_vector(weights_vector)
old_.RMSE <+ evaluate_weights_vector(weights_vector)
for weight in weights_vector
new_RMSE, new_weight < upwards binary search for improved weight
if new_ RMSE < old_RMSE
return weights_vector with new_weight
end if
new_RMSE, new_weight < downwards binary search for improved weight
if new_ RMSE < old_RMSE
return weights_vector with new_weight
end if
end for
return weights_vector

PROCEDURE - evaluate_weights_vector(weights_vector)
RMSE_list <+ {empty}
for subtest_set in subtest_sets
RMSE + {RMSE of real ratings in subtest_set and predicted ratings by
calculating the weighted avarage score with weights_vector}
RMSE_list <+ RMSE_list + RMSE
end for
RMSE <« average of RMSE_list
variance <— variance of RMSE_list
if variance > VARIANCE_THRESHOLD
return worst case RMSE, so this weights_vector will be discarded
else
return RMSE, variance
end if

For the experiments described in this work, we used the same variance cutoff
threshold value as for the hybrid switching strategy (i.e., 0.2). The maximum
number of iterations was set to 500 and 1000 random weight vectors were used to
boost the start weight vector.

7 Results

In this section, we evaluate the performance of the offline optimization of the two
hybridization techniques discussed in this work. We first evaluate the performance
(in terms of rating prediction accuracy) of the 10 individual recommendation algo-
rithms that were selected from the MyMediaLite framework. We then continue to
evaluate and compare the hybrid switching and weighted hybrid strategies. While

Offline Optimization for User-specific Hybrid Recommender Systems 13

evaluations for the sake of our optimization procedures used the subtest datasets,
all the results in this section have been calculated on the true test set.

7.1 Individual algorithms

We evaluated the RMSE values of the 10 individual algorithms, averaged over all
users (and 10 folds). Default parameter settings where applied as set in MyMedi-
aLite version 3.09. Table 1 shows the results of the RMSE evaluation.

Method RMSE
UserKNN 0.9458
UserltemBaseline 0.9473
SlopeOne 0.9476
BiasedMatrixFactorization 0.9576
BiPolarSlopeOne 0.9759
MatrixFactorization 0.9767
FactorWiseMatrixFactorization | 0.9817
SigmoidSVDPlusPlus 1.2808
Constanth 1.7420
Constant1 2.7912

Table 1 The RMSE values for the individual algorithms averaged out over all users according
to a 10-fold evaluation on the test set. Results are sorted from low to high RMSE.

As the table shows, many of the individual algorithms show a similar perfor-
mance. Exceptions to this are the SigmoidSVDPlusPlus, Constant5 and Constantl
algorithms, which perform considerably worse. Closer inspection of the results of
SigmoidSVDPlusPlus, revealed high variance in results so that for some users the
algorithm performed considerably worse than for others (a result we have already
encountered in our previous work [10]). We hypothesize the SigmoidSVDPlusPlus
algorithm needs more data to increase its relevancy or needs at least better fine-
tuned parameters. For the Constant algorithm (which predicts a constant value of
1 or 5), poor RMSE results were to be expected.

To observe the relationships of the algorithms among each other, we plot-
ted the RMSE values for the 7 most similar algorithms showing their respective
95% confidence intervals in Fig. 4. From the figure it now more clearly shows
that UserKNN, UserltemBaseline and SlopeOne can be considered to have equal
performance as well as BiPolarSlopeOne, MatrizFactorization and Factor WiseMa-
trizFactorization. The BiasedMatrizFactorization resides somewhere in between.
These results are confirmed as we calculate the statistical significant differences
among the algorithms with a Wilcoxon Signed-Rank Test (Table 2).

14 Simon Dooms et al.
RMSE individual recommendation algorithms
1.00
T
0.98 T T T
1 1
5
0.96 — T 2
u = N
S S
: [b i | :
T 1 o ¢
0.94 o 2 o) 5 =
2 2 2 g 5
© LL % N S
(2] x =
oo £ Q o Q
1] T o & 2
0.92 Z = g S 7 @ =
< 2 e |13 £ = S
g 2 s |8 e 5 g
> -} 7 o @ = L
0.90 T T T T T T T

Fig. 4 The RMSE values for the 7 most similar individual recommendation algorithms,

eraged out over all users according to a 10-fold evaluation on the test set.

av-

1 2 3 4 5 6 7 8 9 10
1: UserKNN - 302 .864 Fx Kk EX3 EE3 T I T
2: UserltemBaseline - 396 kx kX Hk *ok wok ko kok
3: SlopeOne _ Kk ko *x Kk sk okk kek
4: BiasedMatrixF... - Hk *k *k *% Kk Kk
5: BiPolarSlopeOne - 589 255 Kk Rk ok
6: MatrixFactorization - 551 Rk Rk kk
7: FactorWiseMatrixF'... _ kk okk kK
8: SigmoidSVD-++ _ *% k%
9: Constanth _ ok
10: Constant1 (**: p < .05) _

Table 2 Pair-wise p-values of the null hypothesis, that the two systems have an equal perfor-
mance, as computed by a Wilcoxon Signed-Rank Test.

7.2 Hybrid switching

For the evaluation of the hybrid switching strategy, we performed multiple exper-
iments, each time increasing the number of individual algorithms that were used
in the hybrid recommender. The algorithms are added in order of their individual
performance, from good (low RMSE) to bad (high RMSE). We define the following
hybrid systems in the experiment:

Offline Optimization for User-specific Hybrid Recommender Systems 15

BS2 :=UserKNN + UserltemBaseline
BS3 := BS2 + SlopeOne
BS4 := BS3 4 BiasedM atrizFactorization
BS5 := BS4 4+ BiPolarSlopeOne
BS6 := BS54+ MatrixFactorization
BST := BS6 + FactorWiseM atrixFactorzation
BS8 := BST+ SigmoidSV D + +
BS9 := BS8 4+ Constantb
BS10 := BS9 + Constantl

BS stands for ‘Best Switching’ and the index refers to the number of individual
algorithms participating in the hybrid recommender. For every one of these setups,
we optimize the hybrid into selecting the best individual algorithm for every user
specifically. The results, as calculated on the test set, are shown in Fig. 5.

RMSE hybrid switching

0.960

0.955

0.950 —
LU

L0.945
@

]
|—
—

0.940

]
|—
—_—d

0.935

e E—

0.930

UserkKNN —
BS2
BS3
BS4
BS5
BS6
BS7
BS8
BS9

BS10 —

Fig. 5 The RMSE results for multiple experiments with a hybrid switching setup. The index
in the x-axis labels refers to the number of individual algorithms participating in the hybrid
recommender.

16 Simon Dooms et al.

The result of the best individual algorithm (i.e., UserKNN) was added to the
plot as a baseline for comparison. The figure demonstrates how each of the hybrid
recommenders in the experiment achieves better results (i.e., lower RMSE values)
in comparison with the best individual algorithm. Adding individual algorithms
improves the result of the hybrid up to a number of 4 algorithms (i.e., BS4), results
then slightly deteriorate and finally stabilize in the end.

From the results it is clear that our user-specific hybrid switching strategy
performs better than simply selecting the best individual algorithm and using that
for every user. It is however interesting that the results do not continue to improve
when additional algorithms are added. The reason for this, is that the systems BS9,
BS6 and BS7 add variations of already included algorithms (i.e, SlopeOne and
BiasedMatrizFactorization) rather than adding completely new algorithms as is
the case for BS2, BS3 and BS/. These variations perform considerably worse than
their original algorithm, and so adding them only brings noise into the system.
The performance of the last systems BS8, BS9 and BS10 remains stable because
for these hybrid recommenders the performance of the added algorithms (i.e.,
SigmoidSVD++, Constantl, and Constant5) is so bad (or their variance so high)
that they will never be selected as ‘best’ algorithm for a user. When we inspect,
for BS10, the number of times each algorithm was chosen (Fig. 6), we find our
argument confirmed.

Hybrid switching algorithm counts for BS10

SlopeOne - 20%

Constant5 - 0%

BiasedMatrixFactorization - 11%

Constantl - 0%

UserltemBaseli 279 FactorWiseMatrixFactorization = 4%
serltemBaseline — o

MatrixFactorization = 7%

BiPolarSlopeOne - 6%

SigmoidSVDPIusPlus — 1% UserkKNN - 23%

Fig. 6 The number of times each algorithm was selected as ‘best’ algorithm, counted over all
users for hybrid setup BS10.

When comparing the RMSE results for the hybrid switching systems, only
two systems were found to have a statistical significant difference with p < 0.05:
the UserKNN algorithm and the BS/ hybrid system, although on average all
hybrid systems seem better than UserKNN. In conclusion we state that, the best
performing hybrid switching strategy (i.e., BS4) yields a significant improvement

Offline Optimization for User-specific Hybrid Recommender Systems 17

towards the individual algorithms approach, but the participating algorithms in
the hybrid must be carefully chosen in order to obtain good results.

7.3 Weighted hybrid

For the evaluation of the weighted hybrid strategy, experiments were iteratively
performed with an increasing number of individual recommendation algorithms
participating in the hybrid system. Every hybrid now optimizes the weight vectors
indicating the importance of the individual algorithms on a user-specific basis.
The final prediction scores for every user are compared against the true ratings in
the test set.

RMSE weighted hybrid

0.96

0.95
|

RMSE
0.94
]
—t—
|_
——
——

1

w n
B

0.93
|
—
|—

0.92

I I I I I I I I I I
BS4 W2 w3 w4 W5 W6 W7 w8 W9 W10

Fig. 7 The RMSE results for multiple experiments with a weighted hybrid setup. The index
in the x-axis labels refers to the number of individual algorithms participating in the hybrid.

Fig. 7 shows the RMSE results for multiple hybrid configurations with a vary-
ing number of participating individual algorithms. Table 3 depicts the statistical
significance of the difference between the algorithms. Algorithms are added in the
same order as detailed in the previous subsection (e.g., W3 = W2 + SlopeOne).
As a comparison baseline, the best result of the hybrid switching strategy (i.e.,
BS4) was added to the plot.

The results show that most of the weighted hybrid configurations (except for
W2) perform better than the BS/ baseline. Moreover, the performance increases
(or at least remains stable) when new algorithms are added. Exceptions are the W9

18 Simon Dooms et al.

BS4 W2 W3 W4 W5 W6 W7 W8 W9 WI0
BS4 - 327 .781 105 114 o Hox X Hox .622
W3 - 177 192 Hx oK Hx K .831
W4 - 967 331 150 122 222 257
W5 - 311 138 112 207 277
W6 - 636 562 .799 oK
W7 - 913 .829 *x
W8 - .746 oK
W9 - %k
W10 (**: p < .05) -

Table 3 Pair-wise p-values of the null hypothesis, that the two systems have an equal perfor-
mance, as computed by a Wilcoxon Signed-Rank Test.

and W10 configurations, which show a decreased performance (increased RMSE)
towards the previous configurations. This is caused by the algorithms that are
added in those configurations, namely Constant5 and Constantl. The Constant
algorithm predicts always the same recommendation score (i.e., here either 1 or
5). When considering the weighted average formula used for this hybrid strategy
(Section 6), adding a Constant algorithm in the equation will function as a gen-
eral weighting factor for the final prediction value. This weighting factor can either
boost or decrease the final recommendation score. When the Constant5 algorithm
is used in the calculation of the final prediction score, all predicted scores (for that
user) will be slightly increased or similarly decreased when applying Constantl.
The reason that Constant! has a bigger (negative) impact on performance be-
comes clear when we inspect the distribution of the rating values for our dataset.
Fig. 8 shows how this distribution is slightly skewed towards the higher values of
the rating scale and therefore decreasing the final recommendation score will (on
average) worsen performance more than increasing the score.

To continue the evaluation of the weighted hybrid strategy discussed in this
paper, we take a closer look at the weight vectors produced by our optimization
procedure. Specifically, we are interested in how the algorithms (on average) con-
tribute to the final prediction scores, what algorithms are used, and how many
algorithms (i.e., algorithms with non-zero weights) are usually combined. We fo-
cus on the weights generated by the W7 hybrid configuration, which showed the
best performance.

Inspecting the complete set of weights produced by our optimization procedure
for all users, we logged for each algorithm the number of times a non-zero weight
was generated. Fig. 9 shows a pie chart detailing the normalized (percentage)
counts for the individual recommendation algorithms.

The figure shows an approximately even distribution of the values, which in-
dicates that the system involves every algorithm about the same number of times
in the final prediction score. It seems that the weighted hybrid strategy is able to
make use of all given algorithms, without degrading the performance when varia-
tions of the same algorithm are present (as was the case for the hybrid switching
strategy).

Aside from how much the algorithms are used, it is also interesting to know
how many algorithms usually contribute to the final prediction score for a user.
Again inspecting the complete set of weight vectors produced for all users, we

Offline Optimization for User-specific Hybrid Recommender Systems 19

Rating values histogram for MovieLens 100K dataset

30000
|

25000
1

20000
1

Number of ratings
15000
I

10000
1

5000
1

0
L

1 2 3 4 5

Rating value

Fig. 8 The distribution of the ratings for the MovieLens 100K which shows a slight skew
towards higher rating values.

Weighted hybrid, algorithms used in final score for W7

BiasedMatrixFactorization — 14%

SlopeOne - 14%

FactorWiseMatrixFactorization - 17%

UserltemBaseline — 12%

MatrixFactorization = 17%

BiPolarSlopeOne - 13%

UserKNN - 12%

Fig. 9 The distribution of the usage of each algorithm in the weight vectors for all users. The
results are normalized in percentage.

logged the amount of non-zero weights in each weight vector. Fig. 10 shows the
resulting histogram for the W7 hybrid configuration.

20 Simon Dooms et al.

Number of algorithm used in final score for w7

30
|

20
1

15
1

% of all predictions

—

1 2 3 4 5 6 7

Number of algorithms used

Fig. 10 The histogram of the number of non-zero algorithms used for all weight vectors for
all users (normalized in percentage).

From the histogram we learn that the weighted hybrid strategy is usually
combining multiple algorithms together. For some users, the results of as many
as 6 algorithms are combined into the final recommendation score. For others, on
the other hand, only a single algorithm is used. It is interesting to see that the
weighted hybrid strategy does indeed revert to a hybrid switching strategy when
it seems appropriate.

A final interesting aspect of the generated weight values, is the value itself.
Table 4 displays for every algorithm (used in W7) the average weight value over
all weight vectors for all users without counting the zero weights.

Algorithm Average Weight
UserKNN 0.426
UserltemBaseline 0.421
SlopeOne 0.389
BiasedMatrixFactorization 0.282
BiPolarSlopeOne 0.257
MatrixFactorization 0.249
FactorWiseMatrixFactorization 0.201

Table 4 The average weight values (in range [0,1]) over all users for every algorithm used by
the weighted hybrid configuration W7.

The order of the averaged out weights for the algorithms, matches the order
of the performance results for the individual algorithms. This confirms that the
results of our offline optimization strategy do in fact correlate with the final results
as obtained by the test set.

Offline Optimization for User-specific Hybrid Recommender Systems 21

In conclusion, Fig. 11 overviews the final results of our hybrid strategy eval-
uation. The three result values indicate the results as obtained by the three re-
spective recommendation strategies: best individual algorithm (same for all users),
user-specific best switching, and user-specific weighted hybrid. For each of these
systems the best results are shown in the graph i.e., UserKNN (best individual),
BS/ (best switched), and W7 (best weighted). The differences between the results
(all of which are found to be statistical significant p < 0.05) confirm the original
hypothesis that a user-specific hybrid switching strategy will yield better results
than an individual algorithm and a weighted hybrid system will outperform even
the hybrid switching strategy.

RMSE strategies comparison

0.96

RMSE

0.93
|

|
|

T T T
Best individual Best switched Best weighted

0.92

Fig. 11 A comparison of the best RMSE results obtained by the three systems compared in
our evaluation: individual algorithms, a switching approach and a weighted hybrid approach.
All of the differences were found to be statistical significant.

7.4 Computational performance and user requirements

Although all of the experiments described in this work were carried out by a su-
percomputer infrastructure, the presented hybrid recommender could run on com-
modity computers as well. The main computational burden lies with the training
of the individual recommendation algorithms. Once they are trained, the hybrid
optimization procedure can optimize the specific weights for a user in a matter
of seconds. Training the individual algorithms can be done in the background,
or even repeated in timed intervals while the hybrid recommender is capable of
delivering realtime responses to user feedback.

Before starting the optimization process for a user, the available data of the
user must be carefully considered. If a user has provided only a few ratings, then
the evaluation procedure might optimize too hard on too few ratings which will
badly influence the perceived recommendation quality. Ratings are split with a
60/40 ratio in subtraining and subtest sets, so a total of 20 ratings (i.e., 8 in
the subtest sets) for a user should be considered a minimum. Even the individ-
ual recommendation algorithms would fail at recommending interesting items for

22 Simon Dooms et al.

users with less than 20 ratings. In that case, a default set of weights for the hy-
brid recommender could be used, or the users could be served non-personalized
recommendation lists like ‘popular items’.

8 Discussion

This work aims to be a step in the direction of modern hybrid recommender sys-
tems that automatically fine-tune themselves to fit users on a individual basis. In
this work, we have provided a way in which two hybrid systems (best switching and
weighted average) can be user-specifically optimized in an offline setting. Although
the evaluation of our methods focused on the popular accuracy metric RMSE,
other offline calculable metrics can be optimized for. The evaluation intended to
show the success of the optimization procedure, and the specific advantages of the
weighted hybrid procedure over a hybrid switching approach. Implementing the
weighted average strategy in a hybrid recommender allows for easy adding new
algorithms or variations of existing algorithms without fundamentally disrupting
user experience. The quality of offline optimization depends however on the quality
of the available data and will therefore always be fundamentally limited in poten-
tial. In future work, we intend to expand our optimization to incorporate online
user interactions and thereby unlock the true potential of dynamically adapting
hybrid recommender systems.

9 Conclusion

We started this work by noting the existence of vast numbers of recommendation
algorithms available to tackle the information overload problem. Combining mul-
tiple algorithms together, seemed a sensible approach to harvest the union of their
merits. However, combining algorithms into hybrid recommender systems can be
cumbersome, often manual configuration is required such that the recommender
can not be easily re-used for other scenarios.

In this work, we considered the configuration of a hybrid system as an optimiza-
tion problem which generates hybrid recommender systems that are automatically
fine-tuned towards individual users. Focus was on the commonly used switching
and weighted hybridization techniques. We demonstrated an evaluation approach
that allowed the hybrid recommender system to optimize recommendations offline,
while allowing realtime integration of new user feedback which can be very useful
for online recommendation scenarios. Results showed that the switching strategy
was highly sensitive to the used individual algorithms i.e., best results when most
different algorithms are used. The weighted strategy, on the other hand, was more
robust and, even with the simple binary search optimization procedure, it obtained
significantly better results by blending the individual algorithms into complex and
improved user-specific ensembles.

Acknowledgements The described research activities were funded by a PhD grant to Simon
Dooms of the Agency for Innovation by Science and Technology (IWT Vlaanderen). This work
was carried out using the Stevin Supercomputer Infrastructure at Ghent University, funded by
Ghent University, the Hercules Foundation and the Flemish Government - department EWI.

Offline Optimization for User-specific Hybrid Recommender Systems 23

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering,
IEEE Transactions on 17(6), 734-749 (2005)

. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender

systems handbook, pp. 217-253. Springer (2011)

. Aksel, F., Birturk, A.: An adaptive hybrid recommender system that learns domain dy-

namics. In: Int. workshop handling concept drift in adaptive information systems: impor-
tance, challenges and solutions (HaCDAIS-2010) at the european conf. machine learning
and principles and practice of knowledge discovery in databases, p. 49 (2010)

. Balabanovi¢, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Com-

munications of the ACM 40(3), 66-72 (1997)

. Bao, X., Bergman, L., Thompson, R.: Stacking recommendation engines with additional

meta-features. In: Proc. 3rd ACM conf. recommender systems, pp. 109-116. ACM (2009)

. Bellogin, A.: Predicting performance in recommender systems. In: Proc. 5th ACM conf.

Recommender systems, pp. 371-374. ACM (2011)

. Bellogin, A.: Performance prediction and evaluation in recommender systems: an informa-

tion retrieval perspective. Ph.D. thesis, Universidad Autonoma de Madrid (2012)

. Bobadilla, J., Serradilla, F., Bernal, J.: A new collaborative filtering metric that improves

the behavior of recommender systems. Knowledge-Based Systems 23(6), 520-528 (2010)

. Burke, R.: Hybrid recommender systems: survey and experiments. User modeling and

user-adapted interaction 12(4), 331-370 (2002)

Dooms, S., De Pessemier, T., Martens, L.: A user-centric evaluation of recommender algo-
rithms for an event recommendation system. In: Workshop on human decision making in
recommender systems (Decisions@RecSys’11) and user-centric evaluation of recommender
systems and their interfaces - 2 (UCERSTI 2) affiliated with 5th ACM conf. recommender
systems, pp. 67-73 (2011)

Ekstrand, M., Riedl, J.: When recommenders fail: predicting recommender failure for
algorithm selection and combination. In: Proc. 6th ACM conf. recommender systems, pp.
233-236. ACM (2012)

Ekstrand, M.D., Ludwig, M., Konstan, J.A., Riedl, J.T.: Rethinking the recommender
research ecosystem: reproducibility, openness, and lenskit. In: Proc. 5th ACM conf. rec-
ommender systems, pp. 133-140. ACM (2011)

Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: MyMediaLite: A free
recommender system library. In: Proc. 5th ACM conf. recommender systems (2011)
Han, E.H.S., Karypis, G.: Feature-based recommendation system. In: Proc. 14th ACM
int. conf. information and knowledge management, pp. 446-452. ACM (2005)

Hussein, T., Linder, T., Gaulke, W., Ziegler, J.: Hybreed: A software framework for de-
veloping context-aware hybrid recommender systems. User Modeling and User-Adapted
Interaction pp. 1-54 (2012)

Kille, B., Albayrak, S.: Modeling difficulty in recommender systems. In: Workshop on
recommendation utility evaluation: beyond RMSE (RUE 2011), p. 30 (2012)
Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the
user experience of recommender systems. User Modeling and User-Adapted Interaction
22(4-5), 441-504 (2012)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In: Proc. 14th ACM int. conf. knowledge discovery and data mining (SIGKDD),
pp. 426-434. ACM (2008)

Koren, Y.: The bellkor solution to the netflix grand prize. Netflix prize documentation
(2009)

Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative
filtering. Society for Industrial Mathematics 5, 471-480 (2005)

Lommatzsch, A., Kille, B., Kim, J.W., Albayrak, S.: An adaptive hybrid movie recom-
mender based on semantic data. In: Proc. 10th conf. open research areas in information
retrieval, pp. 217-218. centre de hautes etudes internationales d’informatique documen-
taire (2013)

McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics
have hurt recommender systems. In: extended abstracts on Human factors in computing
systems (CHI), pp. 1097-1101. ACM (2006)

24 Simon Dooms et al.

23. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review 13(5-6), 393-408 (1999)

24. Peralta, V.: Extraction and integration of movielens and imdb data. Tech. rep., Technical
Report, Laboratoire PRiSM, Université de Versailles, France (2007)

25. Piotte, M., Chabbert, M.: The pragmatic theory solution to the netflix grand prize. Netflix
prize documentation (2009)

26. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems.
In: Proc. 5th ACM conf. recommender systems, pp. 157-164. ACM (2011)

27. Salehi, M., Pourzaferani, M., Razavi, S.A.: Hybrid attribute-based recommender system
for learning material using genetic algorithm and a multidimensional information model.
Egyptian Informatics Journal (2013)

28. Shapira, B.: Recommender systems handbook. Springer (2011)

29. Sill, J., Takécs, G., Mackey, L., Lin, D.: Feature-weighted linear stacking. arXiv preprint
arXiv:0911.0460 (2009)

30. Song, Y., Zhang, L., Giles, C.L.: Automatic tag recommendation algorithms for social
recommender systems. ACM Transactions on the Web (TWEB) 5(1), 4 (2011)

31. Toscher, A., Jahrer, M., Bell, R.M.: The bigchaos solution to the netflix grand prize.
Netflix prize documentation (2009)

32. Wolpert, D.H.: Stacked generalization. Neural networks 5(2), 241-259 (1992)

