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used to bridge the gap between interesting content and users lost in information
overload. One of the earliest trends in the domain was using community infor-
mation where the idea was that similar users could be used as guides towards
interesting content i.e., collaborative filtering [35]. Since then, the recommender
system domain has been constantly evolving and adapting to new trends and
needs in society which resulted in the development of many types of recommenda-
tion algorithms each focusing on specific users, data or scenarios. New categories
of recommendation algorithms included content-based systems [29], knowledge-
based systems [§], social recommender systems [21], mobile recommender systems
[36], context-aware recommender systems [2] and hybrid recommender systems
[9]. The hybrid recommender systems combine multiple individual recommenda-
tion algorithms which allows to increase recommendation quality and minimize
the individual drawbacks each of them might have [9l[1L5].

Many recommendation algorithms exploit the idea that users in a system be-
have similarly [26] but more and more research is starting to focus on the in-
dividuality of a single user and experimenting with user-specific approaches for
generating recommendations [5L[I91[28]. Assuming every user is different and given
all recommendation algorithms, each user may be best served by a different al-
gorithm, or even a different combination of algorithms (i.e., hybrid). In previous
work [I6] we pursued the ideal hybrid recommender which would be capable of
integrating all known recommendation algorithms and auto-adapting its hybrid
configuration to dynamically generate optimal recommendations for every user
specifically. A hybrid recommendation strategy was devised capable of dynam-
ically optimizing its configuration. In this work, we build on these results and
try to get the recommender out of the lab by assessing and improving its ability
towards meeting real-world requirements for an online recommendation scenario.

To define real-world requirements for such a hybrid recommender system, we
introduce a realistic recommendation use case focused on the movie domain. Imag-
ine we want to deploy an online recommender system called ‘MovieBrain’ that rec-
ommends interesting movies to users. The most important requirement for such a
system would be scalability. For online systems it is extremely difficult to pre-
dict the number of active users since online popularity is very variable. An online
system may serve a number of users ranging from just a few hundreds to many
thousands and even millions. More importantly the number of users may change
very quickly in short periods of time because of online viral effects. Therefore an
online system should be able to dynamically scale with the workload it is presented
with.

Another requirement for online systems is responsiveness. Nowadays users
have grown accustomed to fast and responsive online services. Whether they are
searching on Google, posting updates to Facebook or watching videos on YouTube,
they expect an instant response from the system they interact with. Responsiveness
in terms of a recommender system scenario would mean that user interactions have
immediate visible effects. For example a user that rates a recommended movie as
bad, does not want to see that movie in its recommendation list anymore (even
though the system may only calculate new recommendations once a day).

While recommender systems in the past often acted as black boxes where rat-
ings go in and recommendations come out [24], current-time users expect some
kind of explanation about the origin of the recommendations. Online platforms
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like IMD]{I or ArnazorEI display their recommendations with accompanying titles
as ‘People who liked this also liked...”; ‘Frequently Bought Together’ or ‘Customers
Who Bought This Item Also Bought’. Despite their simplicity, the titles succeed
in explaining the users how the recommendations are calculated. Even though the
explanation may be an oversimplification of the true recommendation calculation
process, it may still serve to inspire user trust and loyalty [41]. Therefore it is im-
portant for an online (recommender) system to be (or at least seem) transparent
to the user.

Finally, users want control. In typical popular online services as Facebook
or Google users are able to customize their experience by manipulating settings
involving notifications, privacy and many other types of configuration. Users need
to be able to interact with the system and provide preference feedback. Our online
movie recommender system ‘MovieBrain’ should therefore interactively offer some
way for users to be in control of their resulting recommendations or at least have
some way of influencing and guiding the system other than by merely providing
ratings. In conclusion, the discussed real-world challenges for an online recom-
mender system can be summarized in the following list of requirements (REQs).

— REQ1 Responsiveness

— REQ2 Scalability

REQ3 System transparency
REQ4 User in control

In this work we present a hybrid recommender system capable of optimizing
its configuration for individual users and we evaluate and improve its ability to
meet each of the discussed requirements in an online movie recommendation sce-
nario. The remainder of this work is organized as follows. In Section [2| we discuss
our previous work and the relation of this work towards the current state of the
art. Section [3] presents our hybrid optimization system and covers the optimiza-
tion architecture taking into account REQ1 and REQ2. Section [4]illustrates how
REQ3 and REQ4 can be satisfied in the user-interface of our ‘MovieBrain’ rec-
ommender. In Section [5] the results of a number of experiments are detailed aimed
at determining the actual performance and scalability of the system when deployed
on a cluster of computing nodes. Finally, Section [f] discusses the obtained results
and Section [T concludes the contributions of this work.

2 Related Work

This work builds on our previous work [16] where we focused on offline optimiza-
tion for user-specific hybrid recommender systems. Different hybrid configurations
(combining up to 10 individual recommendation algorithms) were tested and their
optimization performance was evaluated. Experiments with both hybrid switching
(i.e., choose the best algorithm) and a weighted hybrid strategy (i.e., combine re-
sults using a weighted formula) were performed, see [9] for a thorough analysis of
different hybrid strategies. Results showed that the switching strategy was highly

I http://www.imdb.com
2 http://www.amazon.com
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sensitive to which individual algorithms were integrated in the hybrid configura-
tion while the weighted approach was more robust and obtained significant better
optimization results. In this work we get our hybrid recommendation strategy
out of the lab and see how it can be modified to handle real-world challenges as
responsiveness, scalability, transparency and user control.

Responsiveness for recommender systems translates to being able to react in
almost real time to the arrival of new ratings in the system. Most recommenda-
tion algorithms need to retrain their complete model to integrate new data which
can often not be done in real time. For some specific recommendation algorithms,
online updating approaches have been developed such as SVD [7] or MatrixFac-
torization [34]. In [I0], the StreamRec recommender system was demonstrated
which allowed instant recommendation updates using an underlying item-based
collaborative filtering approach. Since the online updating approaches are usually
algorithm specific, few research focuses on realtime updating hybrid models. In [4],
the authors describe their hybrid system, called STREAM, which applies a similar
optimization approach as described in this work, but requires domain experts to
manually define runtime metrics used in their ensemble learning method. A real
time strategy for integrating new ratings in the models was not mentioned.

Scalability is often the focus of recommender systems research, but usually
focused on tweaking recommendation algorithms to make them faster and more
able to handle large workloads rather than allowing their implementations to be
distributed over multiple computing nodes (as this work does). For neighborhood-
based recommendation algorithms for example restricting the size k of the neigh-
borhood is such a typical tweak [3[23]. When a recommender system needs dis-
tributed computing however, often a MapReduce paradigm is involved (e.g., [39]
27/43\[T11[12]). This requires computational steps to be rewritten as map and reduce
functions which is not straightforward to do and causes overhead thus reducing
parallel efficiency [13]. In this work we show how the system can embrace dis-
tributed computing without the need for MapReduce.

Providing system transparency and user control in a recommender system
should prevent users from feeling trapped inside a filter bubbleEI of tailored infor-
mation. Explanations have been known to positively increase the user perceived
system transparency [40]. User control in a system is however difficult to achieve.
Aside from processing ratings, recommendation algorithms usually do not provide
the tools for users to allow fine-grained preference feedback. In [37], a class of rec-
ommendation interface is introduced called meta-recommendation systems. They
experimented with a hybrid system called MetaLens that allowed users control
over their recommendations by means of a preference screen where a number of
item features could be filtered on. Their user-study confirmed that users preferred
the advanced level of control offered by their system.

3 An online hybrid optimization strategy

In this section we continue from previous work [16] where an offline optimization
procedure for a self-learning hybrid recommender was defined. We propose an ar-
chitecture for an online environment taking into account the defined requirements

3 http://www.thefilterbubble.com
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for online recommender systems. The hybrid recommender proposed in this work
is user-specific and so optimizes its model for each user in the system individually.

3.1 The hybrid optimization methodology
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Fig. 1 The optimization process for the hybrid recommender illustrated for one user, using 3
folds and 2 (individual) recommendation algorithms.

Fig. [1] illustrates the general optimization process for one user of the hybrid
recommender. The process starts with the concept of a rating dataset. We assume
a user has expressed an opinion about a number of items present in the system.
In this work we are developing the use case of an online movie recommender so
items are movies. In a first step, from the rating dataset multiple fold datasets are
created which are then split according to some pre-set ratio into train and test fold
datasets. Fig. [1]illustrates the situation with 3 fold datasets. Each training subset
of the fold datasets is provided as input to a number of recommendation algorithms
(2 algorithms depicted in the figure as a black square and white triangle shape). At
the same time the complete rating dataset is also provided as input to instances of
the same algorithms. Each algorithm then, in parallel, trains its models based on
the given input. In the figure, 2 algorithms are defined and so 4 instances of those
algorithms (3 for the fold datasets and 1 for the complete rating dataset) will be
trained, which results in the computation of 8 models. This computational step
can be potentially very slow depending on which recommendation algorithms are
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involved. Algorithms like MatrixFactorization are generally accepted to train fast
[31], while other algorithms like KNN methods can be very slow [25] (depending
on the parameters e.g., neighborhood size). Although this computation phase will
be very slow, it needs to be run only once in order for the system to be able to
present a user with recommendations. After this initial computation the system
will be able to incorporate new rating data and react to user responses in real time
as we will show later in this section.

When the training of the algorithm models has finished, the system uses the
output i.e., recommendations to optimize a weight vector used for the configuration
of the final hybrid recommendation list. We integrate a weighted hybrid approach
[9] and therefore such a weight vector is needed for the aggregation of the individual
recommendation list. In the figure this aggregation is presented as the vertical
trapezoid shape that takes multiple recommendation results as input and outputs
one hybrid recommendation list. In a first optimization step the outputs of the
recommendation algorithms trained on the fold datasets are aggregated using an
initial start weight vector (identical for all folds). Since the fold datasets were
split in train and test sets (and models were only trained on the train sets), the
remaining test sets can be used to evaluate the quality of the aggregated result.
We do not specify an exact method of evaluation as this will be depend on the end
goal of the recommender (e.g., user satisfaction, recommendation accuracy, item
coverage, etc.). The output of the evaluation must however be quantifiable into a
numeric value so that it can be compared and measured. Three evaluation values
result from the scenario as depicted in the figure, one for each fold. The evaluation
scores are aggregated, by some chosen aggregation function e.g., arithmetic mean,
into a single fitness value indicating the quality of the current weight vector. The
variance of the individual evaluation scores between the folds must also be taken
into account to indicate the consistency of the performance of the weight vector
over the different dataset folds.

The weight vector is then step-wise optimized by applying standard optimiza-
tion procedures borrowed from the machine learning domain until a certain number
of iterations has passed or a sufficient fitness value has been reached. In our previ-
ous work [16] we illustrated the offline optimization procedure using binary search
and RMSE as evaluation criteria. The optimization method can be any chosen
method as long as it has a fast convergence rate to the optimal value. The training
of the algorithms will not be run often, so it does not matter if it takes a long time
(i.e., hours) to complete. This step of optimizing the weight vector however will
be executed frequently and therefore should be as fast a possible (i.e., complete in
a matter of seconds). When the weight vector has been optimized, it can be used
to generate the final recommendations by applying it to aggregate the algorithm
models which were trained on the complete rating dataset (below in the figure).

When applying optimization methods, part of the data is often dedicated for
the evaluation of the objective function. Because of our proposed procedure of
training and testing on fold datasets, all of the rating data can still be integrated
in the models of the final (non-fold) recommendation algorithms. Furthermore be-
cause of the high-level structure, the hybrid optimization procedure can be applied
to different methods of recommendation strategies (e.g., rating prediction versus
item prediction).
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3.1.1 Overfitting

One potential problem of the optimization procedure as described above is overfit-
ting. Overfitting is the phenomenon that the model performs poorly on test data,
despite being able to predict the training data almost perfectly [33]. Overfitting
originates from training with too few data or optimizing a model too hard so that
the learned results are too specific to the training data and therefore not general-
izable to new data. The first problem, i.e., training on too few data, can be easily
circumvented by applying the optimization procedure only for users with a suffi-
cient number of ratings. For users with a low number of ratings the system is prone
to overfit. Say a user has provided 5 ratings to the system, and assume a train-test
split ratio of 60%. Only 3 ratings would be used to train the fold datasets and the
remaining 2 would be used for the evaluation (in the test datasets). Optimizing a
weight vector over multiple algorithms based on only 2 data points will not yield
generalizable results. Users with too few ratings could be handled in two ways:
require more ratings from the user before calculating the recommendations i.e.,
do nothing, or train the models on the few ratings available and for weights use a
default pre-computed weight vector that has shown to yield good results for many
other users of the system (i.e., non-personalized approach).

The other problem, causing the models to overfit, is too train the models too
specific to the input data which again prevents generalizability. One way to prevent
this overfitting scenario is to not use all data for the optimization but instead only a
random subsample of the dataset. Creating (and optimizing for) multiple randomly
subsampled datasets at the same time is even better, and so this is implemented in
the approach described in this work. By optimizing for multiple folds at the same
time and taking into account the agreement of the evaluation of the models (i.e.,
the variance) the optimization process is forced to generalize over the complete
rating dataset as well as over random subsampled subsets. If the provided ratings
are good indicators of possible future ratings, then the system should be able to
generalize. By changing the number of fold datasets and the train-test split ratio
the process can be fine-tuned for the specific needs and properties of every use
case.

Using very few folds, say in the extreme case only 1, requires very few compu-
tational effort but may cause overfitting the sampled data. Chances are that the
sampled train rating data are all special cases or outliers which are bad indicators
for future performance. To reduce the chance of bad subsampling, the number of
folds can be increased.

The opposite extreme case where the number of folds (and train-test ratio) are
so high that every data point (i.e., rating) in a certain fold serves as the test set
while all other ratings make out the rating dataset is referred to in literature as
Leave-one-out cross-validation [30]. While this method is very thorough in using
all data, it is computationally very expensive. A well-accepted meet-in-the-middle
approach in recommender system literature is the k-fold cross validation method
where k folds are generated and used for testing, k often set to 10 for robustness
[18,42). It improves the chance of generalizability (reduces overfitting) with only
limited additional computational burden. In Fig. [[] 3-fold cross validation was
used.
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3.1.2 A responsive online recommender

In the introduction we defined our requirements for an online recommender system,
one of which was responsiveness (REQ1). For the proposed hybrid optimization
process both slow and fast components were discussed i.e., the training of the mod-
els versus the optimizing of the weight vectors. By combining both components,
the system can be made responsive, or at least seem responsive to the user.

As most recommender systems, the proposed system in this work suffers from
the cold start syndrome [38]. Without any data no models can be trained, no
weights optimized and therefore no recommendation can be generated. Two com-
mon ways of dealing with the cold start problem is either by presenting the user
with a list of default non-personalized recommendations (e.g., most popular items),
or not presenting any recommendations at all and requiring (more) data from the
user before presenting any results.

As soon as data (i.e., user ratings) are available, the models can be trained.
Since the optimization process requires the output of trained models, the initial
training step must be completed first. While the initial training of the models
may be slow, it will block the recommendation process only once i.e. when the
models are trained on a new user for the first time. With the models trained, the
optimization step is designed to complete almost instantly which can be leveraged
to making the system feel responsive. For a system to feel responsive it must
react to user input in almost real time. In the recommender system use case this
translates to having the system react in real time to new ratings and so for every
new item the user rates, the system must be able to present a new (or updated)
recommendation list.

If we were to add new ratings to the training sets and require the models to
be recomputed, the system would be too slow to react to new ratings in real time.
Instead we propose to add new ratings to the test fold datasets. As shown in Fig. [2]
by adding new rating directly to the test datasets, they affect the optimization
of the weight vector which in its turn influences the final recommendation list.
So by adding newly provided ratings to the test fold datasets and instantly re-
optimizing the user’s weight vector, the new rating can trigger changes in the final
recommendation list.

Every now and then the individual models can be retrained offline (incorporat-
ing the new ratings since last training) and then be inserted back into the online
system, all of this completely transparent to the user. That way, the system is
capable of calculating powerful and complex models and at the same time respond
in real time to provided user feedback (which was requirement REQ1).

3.2 Server-clients structure

An important requirement for online recommenders is scalability (defined as REQ2
in the introduction). For online systems it is very hard to predict a realistic number
of engaged users. There might be thousands of users or even millions depending on
the popularity. Therefore, for online recommenders, scalability will be even more
important than for closed environment recommenders. For a recommender to be
scalable, its underlying model must be scalable i.e., able to handle a growing num-
ber of users or data without exponentially taking more time to calculate. When
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Fig. 2 The optimization process, detailing how new ratings are added to the test fold datasets
where they can have an instant affect on the final recommendations without the need for
retraining the individual models.

considering our hybrid model which integrates multiple fold datasets and various
individual recommendation algorithms, it may seem like some compromise to scal-
ability will have to be made. In this section however, we show that by adopting
a client-server architectural design, our hybrid system parallelizes extremely well,
which allows it to scale naturally to available hardware and large user bases.

Fig. [3] illustrates the architectural design applied to the scenario from Fig.
There are 3 fold datasets and 2 individual recommendation algorithms (the sym-
bolical black square and white triangle). For each of the training fold datasets,
instances of both algorithms are trained in addition to the instances trained on
the complete ratings dataset, bringing the total number of algorithm instances for
this scenario to 8. The main principle of the client-server approach is to isolate
parts of the system that can run in parallel into their own separate processes.
The figure shows the main server process i.e., the Hybrid Model, which stores
the test fold datasets, has the functionality to optimize weight vectors (Optimizer
component) and combine the final recommendations (Combiner component), and
communicates with the instances of the individual algorithms.

Instead of running the client instances in the same process as the server (and
thus limiting their ability to parallelize), they are executed in separate processes
and communication is handled by Algorithm Proxy components. Communicating
by means of proxy components allows the Hybrid Model to interact with the al-
gorithm instances transparent of their true location, which may be on the same
computation node, another node in the local network, or a random PC across the
Internet.

The main control flow of the recommendation process is depicted in Fig. [
When the system is first started, the proxies are initialized by the Proxy Generator
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Fig. 3 The Client-server architectural design, illustrating how each individual algorithm ex-
ecutes in a separate process (potentially on a different machine) and communicates with the
Hybrid Model by means of proxy objects.

component. This component initializes the processes of the individual recommen-
dation algorithms across available computing nodes. If multiple computing nodes
are available, the component attempts to distribute the processes over the nodes
as equally as possible. A link to the proxy objects is provided back to the Hybrid
Model to allow future communication. When the model is initialized, ratings can
be provided, which are processed in train and test datasets and passed through
the appropriate algorithm proxies (train fold datasets to the fold algorithms, full
rating dataset to the non-fold algorithms).

When the Train() command is provided, the command is delegated to all the
algorithm proxies in parallel, which causes all of them to start training at the same
time in their separate processes. Since the total time will be equal to the maximum
execution time over all trained algorithms, this phase may take long (i.e., hours)
to complete. When all algorithms have completed training, the Hybrid Model is
notified and may start accepting recommendation requests for specific users.

The request for recommendations for a specific user triggers a chain of events
eventually leading to the final recommendations. First the weight vector for that
user must be calculated (if not already available) by the optimization procedure
in the Hybrid Model. The optimization requires the test fold datasets (which are
available in the Hybrid Model) and the recommendations for the algorithms trained
on the train fold datasets. With the weight vector available, all that remains is to
apply it in the final phase which is the combination of the results of the individual
recommendation algorithms trained on the complete rating dataset.

The main advantage of our client-server architecture is the deployment flexi-
bility. Because the principal calculating components are decoupled and running in
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Fig. 4 Sequence diagram illustrating the execution flow of the complete recommendation
process from initialization to returning the recommendation results.

their separate processes controlled by one server (i.e., the Hybrid Model), they can
be distributed across severs as desired. This allows to take into account the spe-
cific properties of the individual algorithms. Algorithms that require a lot of RAM
memory may be deployed on dedicated machines, while disk-intensive algorithms
may be deployed on machines with specially equipped hard drives. Furthermore all
of the algorithms execute in parallel which reduces the main scalability of the sys-
tem to the scalability of the least scalable integrated individual recommendation
algorithm. The only computations affected by the number of integrated individual
recommendation algorithms are the optimizing and combining processes in the
Hybrid Model. In Section [5| however, we show how the impact of these effects on
the general scalability of the system is rather limited.

3.2.1 Performance optimization: prefetching

Implementing the above described approach requires some optimization to avoid
bottlenecks as network speed compromising the performance of the system. To il-
lustrate the effect of network speed on overall performance, consider the following
Python code fragment. Assume we are in a rating prediction scenario and are eval-
uating the quality of a weight vector using the popular RMSFE metric as objective
function.
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def eval_weights(user, weights, algorithm_proxies, test_fold_dataset):
rmse = 0.0
count = 0.0
for (rating, item) in test_fold_dataset[user]:
prediction = predict(user, item, weights, algorithm_proxies)
error = prediction - rating
rmse += error * error
count += 1
rmse = math.sqrt(rmse / count)

def predict(user, item, weights, algorithm_proxies):

numerator = 0.0

denominator = 0.0

for algorithm_proxy in algorithm_proxies:
weight = weights[algorithm_proxy]
prediction = algorithm_proxy.get_recommendation(user, item)
numerator += prediction * weight
denominator += weight

weighted_prediction_value = numerator / denominator

return weighted_prediction_value

The code fragment displays two functions which are needed for the evaluation of
a given weight vector weights. Here the RMSE value serves as fitness value allowing
to compare (and therefore optimize) the quality of different weight vectors. RMSE
is calculated by comparing all the ratings of the given user in the test fold dataset
with the predicted score of the algorithms. The predicted score is calculated using
a simple weighted average formula to aggregate the individual prediction scores of
the recommendation algorithms.

Although this naive code fragment functions correctly, it will not be very effi-
cient considering our client-server architecture. The reason for this is the following
line of code.

prediction = algorithm_proxy.get_recommendation(user, item)

While the eval_weights and predict functions will run in the server process of
the Hybrid Model (in the Optimizer component), the above line of code requests
the prediction value for a certain user and item from an algorithm proxy, triggering
the request to be passed to the actual process of the recommendation algorithm
which may be running on an other computer. So every time the above line of code
is called, in the background (transparently to the Hybrid Model) a network con-
nection may be set up and teared down for the required communication between
the algorithm proxies and the actual algorithm processes. Individually such a re-
quest is considerably fast, but in the above code example the request would be
called for every rating in the test fold dataset and for every algorithm proxy which
will limit the performance of the optimization method in the Hybrid Model. We
implemented the proposed approach in Python using the XML-RPCE] package for
the communication between the algorithm proxies and the actual algorithm pro-
cesses. The XML-RPC package wraps every request as an XML document that

4 http://docs.python.org/2/library /xmlrpclib.html
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is transported over HTTP. While the overhead of one request is small, the accu-
mulated overhead of many such requests greatly influenced the end performance
of our system. Since the performance of the optimizing part of the Hybrid Model
should be very high to meet our REQ1 requirement, a prefetching strategy was
devised.

Instead of requesting the prediction values at the moment they are needed in
the calculation, it proved better to request them all at once before the start of the
calculations. By implementing the following function in the algorithm instances,
only one data request per recommendation algorithm needs to be called which
transfers larger (but fewer) chunks of data over the network connection.

def get_recommendation_multiple_items(user, items)

Implementing a prefetching approach proved necessary to guarantee both the
performance of the Optimizer and Combiner components of the Hybrid model.

3.2.2 Limitations

While the proposed model aims for flexibility and performance, its complexity
imposes heavy constraints on underlying hardware configurations. For the client-
server architecture to be truly effective, every process should be able to run on
a dedicated processor core. Since data is replicated in multiple folds and over
multiple instances, the available RAM memory of the system will also be a lim-
iting factor. Although our proposed approach in theory can be deployed on any
hardware configuration, an optimal hardware configuration would be a cluster of
computing nodes with a total number of dedicated processors of at least the num-
ber of spawned processes (equation , linked together with a high-speed network
connection.

required processor cores = 1+ ((#folds + 1) x #algorithms) (1)

4 Online user-interface for movie recommendations

Previous sections addressed the online requirements of responsiveness (REQ1)
and scalability (REQ2), which were both focused on the system side of the recom-
mender. The remaining requirements are the transparency of the system (REQ3)
and user control (REQ4), both of which directly affect the user side of the recom-
mender and thus need to be integrated in the interaction process between user and
system i.e., the user-interface (UI). In this section we propose a Ul for our online
hybrid optimized movie recommender system called ‘MovieBrain’, we illustrate
how users can browse through a movie collection, provide ratings, inspect their
recommendations and most importantly interact with their recommendations (i.e.,
take control) in a transparent way. Since focus is on online systems, the Ul was
constructed with web based technologies as HTML, PHP, MySQL and Javascript,
all of which are common in an online setup. The UI source code has been made
available on the Github platfornﬂ

5 https://github.com/sidooms/Recsys-frontend
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4.1 Browsing and rating

The first and most basic function the front-end of a recommender system needs to
provide, is browsing through the collection of items and allowing user preferences
to be indicated. Collecting user feedback is an often neglected but very important
part of the recommender system process. Users need sufficient information about
the items at hand and require an intuitive method of expressing their opinions.

Fig. [5| shows a screenshot of the user-interface (UI) that was developed for
the system described in this work. The UI allows to browse through a collection
of movies and for each movie presents detailed information e.g., director, cast,
genre, etc. Movies are presented as a list that can either be ordered randomly or
by year. The option to browse the list in a random manner is important to avoid
presentation bias to influence the user ratings. If only very recent and popular
movies would be displayed, users would be more inclined to rate those movies
which would bias their final recommendations. The MovieBrain front-end also
allows to directly search for movies by entering (a portion of) their title in the
search form displayed on the top of the website.

Users can express their preferences towards the movies in the collection by
using the thumbs up/down feedback system provided on the right hand side of
every movie information panel. A 5-star rating system is more commonly used in
recommender system scenarios but often fails to produce more fine-grained ratings
than a simple thumbs up/down system because users mostly use the extreme rating
values [I4]. Therefore in the interface we integrated a thumbs up/down system, but
ultimately the type of feedback system will mostly depend on the input required
by the algorithms that are actually integrated in the recommender system.

4.2 Recommendation list
4.2.1 Individual recommendation lists

When a user has provided a sufficient amount of ratings, the system can start
training its underlying models (see previous sections). Our Ul integrates an option
to inspect the individual recommendation results in a similar way as the original
movie collection was displayed (Fig. @ A select box allows to choose any of the
algorithms integrated in the system (3 in the figure). When a specific algorithm is
selected, the movie collection is shown as a list but this time ordered according to
the recommendation output of the algorithm. Every movie in the list can also be
rated to allow users to fine-tune their preferences.

4.2.2 Hybrid recommendation list

The most interesting recommendation list in the MovieBrain system is however
the hybrid recommendation list, which is the final result of the MovieBrain sys-
tem after having optimized a user’s weight vector and combined the individual
recommendation lists. Fig. [7] shows the presentation of one item in the hybrid
recommendation list. The presentation of a recommended movie is again almost
identical to that of a movie while browsing the movie collection. The only difference
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MovieBrain Movies Recommendation Algos ~ Hybrid Stats Vi
Sort b Random = Year Search = Clear
Home Pre 1 2 3 4 5 Next End 3 ¥ resulis per page
Flirt (1995)
Imdb: 6.3 (1,439 voies) Lie

Director: Hal Hartley

Casi: Paul Austin, Robert John Burke, Martin Donovan, Erica Gimpel Don't like

Genre: Drama, Romance
Runtime: 85 min
Plot: The same situation is played out in different cities (New York, Berlin and

Tokyo). A lover has o choose whether 1o commit to a pariner who is
returning home. In each case there are other

Imdb: 6.5 (61,817 voies) Like
Director: Jesse Peretz
Casi: Paul Rudd, Nick Sullivan, Francesca Papalia, Bob Stephenson
Genre: Comedy, Drama
Runtime: 90 min
Plot: A comedy centered on an idealist who barges into the lives of his three

sisters.

Naked Gun 33 1/3: The Final Insult (1994)

Imdb: 6.4 (58,991 voies) Like
Director: Peter Segal

Cast: Leslie Nielsen, Priscilla Presley. George Kennedy, O_J. Simpson

Genre: Action, Comedy, Grime
Runtime: 83 min
Plot: Frank Drebin comes out of retirement 1o help Police Squad infilirate a

gang of terrorists planning fo detonate a bomb at the Academy Awards.

ome e 1 2 3 4 5 Next End 3 v resulis per page

Fig. 5 A screenshot of the MovieBrain user-interface allowing users to browse through a
collection of movies, inspect detailed movie information and express their movie preferences
by means of a thumbs up/down feedback system.

is the addition of the ‘Rec value’ property which indicates the final recommenda-
tion score calculated by the hybrid system for the concerning movie. At the end
of the recommendation score label there is a Show ezxplanation link which triggers
information about the hybrid calculation process to become visible (Fig. El bottom
image). The provided information details the weight vector of the user together
with the individual scores for each of the recommendation algorithms and the
applied aggregation function (weighted average in this case). While this kind of
information is not fit to show to normal users of the system, it does illustrate an
option to provide transparency (requirement REQ3) in to the recommendation
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MovieBrain Movies Recommendation Algos + Hybrid Stats F
LatentFeaturel ogl inearModel
Home MatrixFactorization axt  End 3 ¥ results per page
SlopeOne |

Fig. 6 A screenshot of the MovieBrain user-interface illustrating the selection feature of the
individual recommendation algorithms.

process which could for example be used by system administrators to inspect and
configure the hybrid model.

The Shawshank Redemption (1994)

Rec value:
Imdb:
Director:
Cast:
Genre:
Runtime:
Plot:

4.95438798268667 (hybrid) Show explanation Like
9.3 (1,144,952 votes)
Frank Darabont

Tim Robbins, Morgan Freeman, Bob Gunion, William Sadler

Crime, Drama

142 min

Two imprisoned men bond over a number of years, finding solace and
eventual redemption through acts of common decency.

The Shawshank Redemption (1994)

Rec value:

Imdb:
Director:
Cast:
Genre:
Runtime:
Plot:

4.95438798268667 (hybrid) Hide explanation
Algorithm Value Weight

SlopeOne 50 1.0 m
LatentFeatureLoglLinearMaodel 4.863 10

MatrixF actorization 50 10

3" algo_rec_value * algo_weight

= 4.954
3" algo_weight

rec_value = maz (1, rec_value)
rec_value = min(5, rec_value)

9.3 (1,144,952 votes)

Frank Darabont

Tim Robbins, Morgan Freeman, Bab Gunton, William Sadler

GCrime, Drama

142 min

Two imprisoned men bond over a number of years, finding solace and
eventual redemption through acts of commaon decency.

Fig. 7 A screenshot of the MovieBrain user-interface illustrating one movie item in the hybrid
recommendation list. The bottom image shows the expanded text after clicking on the Show
explanation link in the above image.

4.3 User control and transparency

The final requirement for online recommenders as defined in the introduction is to
allow users control over their recommendations (REQ4). For most recommender
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systems, the internal process of calculating the recommendations is shielded from
the users (i.e., black box approach) or at least oversimplified (e.g., People who
liked this also liked...) and users have no means of controlling or influencing the
process other than by providing ratings. The MovieBrain system however, is based
on a weighted hybrid strategy which by its very nature offers the components al-
lowing user control: the weight vectors. The weights in the weight vector, model
the contribution of each individual recommendation algorithm to the final hybrid
recommendation output and thus can be used as proxies for the importance of the
algorithm for a specific user. By allowing users not only to inspect their weight vec-
tor but also to modify the individual weights manually, users can directly influence
and fine-tune their recommendation lists to their specific (and maybe contextual)
interests.

At the top of the MovieBrain user-interface there is a menu item Stats which
directs users to a webpage where their weight vectors can be visually inspected
and manipulated in a very intuitive interaction process i.e., sliders (Fig. .

LatentFeatureLoglLinearModel

SlopeOne

MatrixFactorization

LatentFeatureLogL inearviodel 04735

MatrixFactorization 0.5647
SlopeOne 0.6382

Fig. 8 A screenshot of the MovieBrain user-interface illustrating the control over the weight
vector for a single user. Users can manually override their system-calculated weight vector
using designated weight sliders.

For increased comparability, weights are scaled to the interval [0, 1]. The pie
chart in Fig. [§] visualizes the normalized end result taking all weights into account.
Modifying a weight value by interacting with the slider component will cause the
pie chart to be redrawn in real time. This allows users to easily estimate the effect
of a single algorithm, because the more algorithms are integrated in the system,
the less their individual influence on the end result.
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In the previous sections we detailed how the hybrid system can automati-
cally optimize the weight vector for a specific user. This optimization will however
be based on some measurable evaluation metric e.g., RMSE which might not
correspond to the users’ expectations (maybe users prefers serendipity instead
of recommendation accuracy). By allowing to tweak the weight vector manually
and thereby overriding the automatically determined weight vector, users are able
to fine-tune their recommendations to their own specific expectations. Note that
in Section [3| we explained how the process of calculating the weight vector and
combining the final recommendations could (and should) be computed very fast.
Therefore when a user overrides the weight vector, new hybrid recommendations
can be generated instantly which provides the user-system interaction process a
very natural feel.

4.4 System experts versus normal users

While inspecting and manipulating the weight vector for the individual algo-
rithms is indeed a way of introducing control and transparency to the system,
the above approach would fail for normal non-technical users. For system experts
or researchers who are installing the recommender system, direct control over the
weight vector will be very interesting, but for normal users who are oblivious to
the technicalities of the recommender system, manually adapting the weights may
be a too technical task.

What is possible however, is to simplify the algorithms to the users e.g., instead
of saying ‘content-based recommender’ we could say ‘movies similar to the ones
you liked’. By translating algorithms to their most defining feature, the effect of
changing the weights could be made understandable for normal users. In Fig. [9| this
scenario is illustrated for three recommendation algorithms. Nowvelty could refer
to an algorithm focusing on (i.e., predicting more) novel movies and the same for
Popularity and Similarity.

Novelty
Popularity 0.5618
Similarity

Fig. 9 A screenshot of the MovieBrain user-interface illustrating how algorithms can be trans-
lated to their most defining features to make changing the weights more interpretable by
non-technical users.

Recommendation algorithms that are not easily translated to an understand-
able concept for normal users e.g., MatrixFactorization could simply be referred
to as ‘Best system guess’ or ‘Determined by magic’ as used sometimes in Google
services (e.g. Fig. which was a sort option in the former Google Reader plat-
form).

As an extension, the system could offer various post-recommendation filters like
genre filters (often demanded by users for movie recommendation scenarios [I7])
which can be easily implemented in the user-interface without any modifications
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Sort by newest
Sort by oldest
v Sort by magic
Translate into my language
Create a bundle
Delete folder
Unsubscribe from all

Fig. 10 Popup on the former Google Reader platform providing the option to Sort by magic.

to the underlying recommender system. Ultimately, the combination of both using
filters and manipulating the weight vector through the user-interface provides users
with the necessary tools to interactively tailor their recommendations to their own
interest in a transparent way.

5 Results

In previous work [16], which focused on offline optimization, we evaluated the
quality of our hybridization approach and experimented with different optimiza-
tion techniques. In this work, since focus is on online optimization, we evaluate
the scalability and performance of the system. The concept of scalability can focus
on two scenarios: strong scaling or weak scaling [22]. In a strong scaling scenario,
the amount of work stays constant while the number of workers (e.g., computing
nodes, processor cores, etc.) varies. The term weak scaling refers to the oppo-
site scenario where the number of workers is constant while the amount of work
changes. So when a system is referred to as ‘scalable’ it could mean two things.
Either the system is capable of scaling across multiple computing nodes thereby
reducing the total execution time through parallel computing (i.e., strong scal-
ing), or the system is capable of processing increasingly bigger workloads without
exponentially increasing the execution time (i.e., weak scaling). Either scenario is
interesting for our online system and so in this section we investigate both.

All the experiments detailed in this section were run on the High Performance
Computing (HPC) infrastructure available for researchers at our universityﬂ The
computing nodes deployed in the experiments have the following specifications.

— CPU: dual-socket quad-core Intel Xeon L5420 (Intel Core microarchitecture,
2.5 GHz, 6 MB L2 cache per quad-core chip), thus 8 cores / node
— memory: 16 GB RAM (DDR2 FB-DIMM PC-5300 CL5)

Computing nodes are interconnected by an Infiniband (i.e., high-speed) net-
work and each dispose of a local hard disk (private storage) and have access to
shared storage (GPFS) as well.

In the experiments, the complete recommendation process (from initialization
to the generation of the final recommendations) is deployed in various experimental
configurations. We used the MovieTweetings dataset [I5] as simulation data for
these configurations. The MovieTweetings dataset is a collection of movie ratings

6 http://www.ugent.be/hpc/en
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presented in a similar form as the MovieLens dataset [23][6L[32], but focuses more on
present-day popular and recent movies. The dataset extracts ratings from posts
(i.e., tweets) on the popular Twitter platfornﬂ and continues to grow in size.
For the experiments in this section, the 200K snapshot was used which includes
200, 000 ratings by 25,011 users for 14,732 movies. A split ratio of 6:4 was set for
the train-test fold datasets. For more information on the MovieTweetings dataset
we refer to our previous work ([15]).

Our hybrid optimized approach integrated individual recommendation algo-
rithms as black boxes i.e., only the input and output of the algorithms are taken
into account by the system without knowledge of the internal recommendation
calculation process. Because of this approach there are no restrictions towards the
type of recommendation algorithms that can be integrated. To illustrate this be-
havior, in the following experiments we use (rating prediction) recommendation
algorithms from the open source MyMediaLiteﬁ library [20] which provides imple-
mentations for the most common recommendation algorithms used in research. As
evaluation function for the optimization process (see section , RMSE was im-
plemented. The StochasticHillClimber method (parameter MazEvaluations=1000)
from PyBrairEl, a modular machine learning library for Python, was integrated as
optimization function.

5.1 Strong scalability

To investigate the strong scaling ability of our system, we experiment with de-
ploying the system on a varying number of computing nodes while keeping the
workload constant. The experimental setup is defined in the following list.

— Dataset: 200K MovieTweetings snapshot

— Algorithms: MatrizFactorization, SlopeOne, LatentFeatureLogLinearModel
— Computing nodes: 1, 2, 3, 4, 5 (8 cores per node)

Fold datasets: 2, 4

The 3 MyMediaLite algorithms were selected based on their divergent prop-
erties regarding complexity, execution time and RAM consumption as detailed
by Table [} Default initialization parameters where used as set in MyMediaLite
version 3.10.

Complexity Time RAM
MatrixFactorization complex fast low
SlopeOne simple fast low
LatentFeatureLogLinearModel complex slow high

Table 1 The divergent properties regarding complexity, execution time and RAM consump-
tion for 3 rating prediction algorithms from the MyMediaLite recommendation library.

The experiment begins with the startup of the system: computing nodes are
initialized and algorithm proxies (see Section are constructed. When the system

7 http://www.twitter.com
8 http://www.mymedialite.net
9 http://pybrain.org
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is ready to accept ratings, the rating dataset MovieTweetings is provided and
the individual algorithm models are trained on their (fold) datasets. Then for
100 randomly selected users (each having more than 20 ratings) the system is
sequentially requested to predict the recommendation value for one fixed item.
Doing so, triggers the system to calculate (i.e., optimize) the weight vectors for
these users and combine their final hybrid recommendation lists.

The experiment was repeated with 1, 2, 3, 4, and 5 computing nodes and for
two fold dataset settings: 2 and 4. For each of these configurations, the execution
times of the individual phases of the recommendation process were measured and
displayed in Fig. (exact numbers available in Table . The 4 fold, 1 PC
configuration failed to complete because the required amount of RAM exceeded
the available RAM in a single computing node (16GB).

Time recommendation process, 2 fold datasets Time recommendation process, 4 fold datasets

E Predict for 100 users E Predict for 100 users
S Train models S Train models
W Add ratings W Add ratings
B2 Initialization B2 Initialization

400
I
400
I

300
I
300
I

Time (s)

200

100
I
100
I

1 2 3 4 5 1 2 3 4 5

Number of computing nodes (PCs) Number of computing nodes (PCs)

Fig. 11 The execution times of the individual phases of the complete recommendation process
deployed on hardware configurations ranging from 1 to 5 computing nodes and for 2 (left) or
4 (right) fold datasets.

From the figure the initialization time for the different configurations seems
identical, but closer inspection reveals a small increase for configurations of more
than 1 computing node. This increase in time is caused by the required extra net-
work communication overhead that is needed to signal the other computing nodes.
For the same reason also the time for the adding of the ratings increases (although
very limited). The time to train the models and the final prediction time interest-
ingly remain unchanged for an increasing number of computing nodes (both for
the 2 fold and 4 fold results). This observed behavior supports our claim that when
all processes in the system are able to run in parallel (each on its own dedicated
processor core), the end performance would only be limited by the slowest inte-
grated individual recommendation algorithm. Table [3 lists for every experimental
configuration the consequential number of parallel spawned processes versus the
number of available processors. Only the single computing node configurations
require more processors than available, and so for these conditions the execution
times may be suboptimal. The effect is very limited visible in the training time
which is increased by a few seconds. Among the three chosen algorithms for this
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# Folds = 2
# PCs 1 2 3 4 5
Start time 21.6 24.5 26.8 25.4 25.7
Rating time 3.4 3.4 3.9 4.7 5.2

Train time | 153.5 152.8 152.2 148.1 151.3
Predict time 95.0 95.2 95.0 95.9 94.6
Total time | 273.5 | 275.9 | 277.8 | 274.1 | 276.8

# Folds = 4
#PCs | 1 2 3 1 5
Start time FkrE 27.9 25.4 27.7 28.0
Rating time FkrE 3.4 3.4 3.3 5.0

Train time Hokrok 158.0 154.5 152.0 153.4
Predict time ook 141.0 140.3 141.2 142.2
Total time Fkkok 330.3 | 323.6 | 324.2 | 328.6

Table 2 The execution times of the individual phases of the complete recommendation process
deployed on hardware configurations ranging from 1 to 5 computing nodes and for 2 or 4 fold
datasets.

experiment, 2 of them finish fast, which means that 6 out of the 10 parallel com-
puting processes will finish fast, allowing the 2 extra processes to start with only
a few seconds delay. For the other (more than 1 PC) configurations the total
training time will be equal to the time it takes for the slowest algorithm (i.e.,
LatentFeatureLogLinearModel) to complete.

Folds \PCs 1 2 3 4 5
2 10/8 10/16 10/24 10/32 10/40
4 16/8 16/16 16/24 16/32 16/40

Table 3 The number of spawned parallel processes versus the number of available processor
cores (each PC has 8 cores) for the different experimental configurations.

While the total system execution time does not decrease with an increased
number of computing nodes (as expected), it is also interesting to note that it does
not increase. Scaling a software system over multiple computing nodes may often
increase the communication overhead required to manage the running instances
and therefore introduce some form of delay linked with the number of computing
nodes. Thanks to a high-speed network infrastructure and some implementation
optimizations (see prefetching in Section we were able to reduce the parallel
overhead to an absolute minimum.

When comparing the 2 fold configuration with the 4 fold results, very similar
graphs can be noted. The time to train the models for a 4 fold configuration is
equal to the time for the 2 fold configuration, again illustrating how the training
time is independent of the number of folds, algorithms or available computing
nodes. When a sufficient number of parallel processors are available, the training
time will equal the time for the slowest individual recommendation algorithm to
complete its work. The main difference between the 2 and 4 fold configurations is
the difference in prediction time. Because the 4 fold configuration has more fold
datasets, the optimizer will have to take more data into account to optimize the
user weight vectors, which explains the increase in execution time.
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5.2 Weak scalability

To experiment with the weak scaling ability of our system, we perform a similar
experiment but this time the number of computing nodes (i.e., workers) stays
constant while varying the dataset size (i.e., amount of work to be processed).
The following list describes the experimental setup.

Dataset: 40K,80K,120K, 160K, 200K MovieTweetings snapshots
Algorithms: MatrizFactorization, SlopeOne, LatentFeatureLogLinearModel
Computing nodes: 5

— Fold datasets: 2, 4

The algorithms used in this experiment are identical to those of the previous
experiment, again using their default initialization parameters as set in MyMedi-
aLite version 3.10. The properties of the specific MovieT'weetings snapshots are
detailed in Table @

40K 80K 120K 160K 200K
# Ratings | 40,000 80,000 120,000 160,000 200,000
# Users 9,063 14,180 19,337 22,250 25,011
# ITtems 6,798 9,419 11,595 13,445 14,732

Table 4 The basic properties of the different MovieTweetings snapshots used in this experi-
ment.

Just as before, the system was instructed to run through the consecutive phases
of initialization, adding ratings, training models and predicting for 100 randomly
selected users with more than 20 ratings. The experiment was repeated for iter-
atively growing dataset sizes and for 2 and 4 fold datasets. The execution times
of the individual phases were measured and displayed in Fig. and detailed in
Table. [

Time recommendation process, 2 fold datasets Time recommendation process, 4 fold datasets

= Predict for 100 users = Predict for 100 users
B Train models B Train models
W Add ratings W Add ratings
B Initialization B Initialization

\ s
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NN\ |

, &\7 8 -

400
I
400
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300
I
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I
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V2222 4 02222 -

Dataset size Dataset size

Fig. 12 The execution times of the individual phases of the complete recommendation process
for different sizes of the rating dataset (40K to 200K’) and for 2 (left) or 4 (right) fold datasets.
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# Folds = 2
Dataset size 40K 80K 120K | 160K | 200K
Start time 24.9 25.1 24.9 25.0 24.9
Rating time 1.6 2.0 2.5 2.8 3.2
Train time 69.2 89.4 110.2 130.6 149.4
Predict time 85.0 88.1 89.7 87.5 91.4
Total time | 180.7 | 204.5 | 227.3 | 245.9 | 268.9
# Folds = 4
Dataset size 40K 80K 120K | 160K | 200K
Start time 23.8 24.3 25.8 23.8 23.8
Rating time 2.2 3.7 4.1 6.0 6.8
Train time 70.7 91.7 113.4 132.5 152.8
Predict time | 124.5 130.3 133.8 128.9 139.5
Total time | 221.3 | 250.0 | 277.1 | 291.3 | 322.9

Table 5 The execution times of the individual phases of the complete recommendation process
deployed on 5 computing nodes for varying dataset sizes (40K to 200K) and for 2 or 4 fold
datasets.

For the weak scaling experiment every configuration was run on 5 computing
nodes each featuring 8 processing cores and so this time the number of spawned
processes did not exceed the number of available cores. Since all processes could
be divided over 5 different computing nodes no RAM issues occurred and every
configuration was able to complete.

The initialization time follows the same patterns as in previous results, but
the time to add the ratings increases more. This makes perfect sense as the in-
creasing datasets will require more time to process. While the time to train the
models remained the same in previous results, here the training time increases
linearly with the increasing dataset size. This was again to be expected since the
end performance of the system will be depending on its slowest component, the
LatentFeatureLogLinearModel algorithm, which takes linearly more time to train
for increasing rating dataset sizes. The time to train for the 2 fold dataset config-
uration is again equal to the 4 fold dataset configuration as was observed in the
strong scaling scenario.

Two observations can be noted regarding the prediction times. The time it
takes to sequentially predict for 100 random users is again higher for the 4 fold
configuration than the 2 fold, which is caused by the increased complexity in opti-
mizing the user weights vector over multiple fold datasets. Secondly, the prediction
time also seems to increase as the dataset size grows larger. The reason for this is
linked with the selection of the random users for each dataset. While in previous
experiment the 100 random users were selected and then re-used for the differ-
ent configurations, here the random selection process had to be repeated for every
dataset size (a user selected in the 200K snapshot might not be present in the 40K
snapshot). We counted for each selection of 100 random users per dataset size the
total number of ratings for those users and found it to be highly correlated with
the final prediction execution time. More ratings will lead to larger cardinalities of
the test fold datasets used for the optimization of the user weight vectors, which
again increases the complexity of the prediction task. Because in the larger dataset
sizes there are more users with >20 ratings, the chance of randomly selecting users
with more ratings in total is larger than for the small dataset sizes.
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6 Discussion

By means of the experimental evaluations in the previous section we tried to get
the recommender of out of the lab and see how it performs in a real-world scenario
by feeding it a real dataset and actually deploying it on multiple computing nodes.
We have shown that the performance and scalability of the system can indeed be
reduced to the performance of the slowest integrated individual recommendation
algorithm as long as the underlying hardware configuration provides sufficient
parallel processing power. In Section [3.2.2] equation [1| was provided to determine
the number of needed parallel processor cores taking into account the number of
fold datasets and individual recommendation algorithms.

The complexity of the hybrid optimizer did however turn out to be influenced
by the number of used fold datasets. Because of this, a trade-off will have to be
made between having many folds (e.g., 10) to reduce the chance of overfitting the
model and having a small number of folds to reduce the complexity (i.e., increas-
ing the speed) of the optimizer component. The number of fold datasets should
therefore be sufficiently large while making sure the performance of the optimizer
component can still be considered fast enough to guarantee instant responsiveness
to new ratings (REQ1 in Section .

In the end, the hybrid optimizing system presented in this work offers sufficient
flexibility for a customized configuration for any specific use case. Configurable
components include the individual recommendation algorithms, the number of
folds, the evaluation metric (i.e., what should the system optimize for?) and the
optimization method itself.

7 Conclusion

With this work, we tried to take another step towards deploying automated self-
learning hybrid recommender systems in real-world scenarios. We discussed the
architectural design of our hybrid optimization strategy and detailed realistic
implementation issues to assure the system meets the proposed online require-
ments for a movie recommendation scenario: responsiveness (REQ1), scalability
(REQ?2), system transparency (REQ3) and user control (REQ4). By adopting
a server-client architecture we showed how the system can be distributed across
multiple computing nodes in a very flexible and transparent way, allowing mul-
tiple recommendation algorithms to run in parallel for optimal performance. We
illustrated how the results and internal processes of the system could be visualized
to users in the form of a responsive web user-interface allowing user an advanced
and intuitive level of control over their recommendation lists.

Through experimental evaluation we validated the architectural design and our
claim that the performance and scalability of the system can be reduced to the
performance and scalability of the worst (i.e., slowest) individual recommendation
algorithm integrated in the hybrid system. The added overhead of the hybrid opti-
mization was shown to be very limited as long as a sufficient number of computing
nodes (or parallel processor cores) are available.

In future work we plan on making the system available to users in either an
experimental or live online environment to evaluate the perceived user satisfaction
and usability of our user-specific hybrid movie recommender system.
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