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ABSTRACT
The problem of information overload has been a relevant and
active research topic for the past twenty years. Since then,
numerous algorithms and recommendation approaches have
been proposed, which gives rise to a new type of problem:
recommendation algorithm overload. Although hybrid rec-
ommendation techniques, which combine the strengths of
individual recommenders, have become well-accepted, the
procedure of building and tuning a hybrid recommender is
still a tedious and time-consuming process. In our work,
we focus on dynamically building personalized hybrid rec-
ommender systems on an individual user basis. By means
of a dynamic online learning strategy we combine the most
appropriate recommendation algorithms for a user based on
realtime relevance feedback. Learning effectiveness of ge-
netic algorithms, machine learning techniques and other op-
timization approaches will be studied in both an offline and
online setting.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering, Relevance feedback, User-centered design

General Terms
Algorithms, Design, Human Factors

Keywords
Recommender systems, hybrid recommender system, self-
learning

1. INTRODUCTION
Since the introduction of the collaborative filtering prin-

ciple by Resnick et al. [1] in 1994, numerous algorithms and
recommendation approaches have been proposed to tackle
the information overload problem. Every one of these algo-
rithms in its own way attempts to connect users to relevant

.

content. Roughly classified, recommendation algorithms are
typically divided into categories based on the data they ex-
ploit. Collaborative algorithms use rating behavior of the
community (i.e., other users or items), content-based algo-
rithms process available content data (e.g., item features)
and knowledge-based algorithms exploit general knowledge
available in the domain of the recommendation use case.

In recent years however, rather than focussing on math-
ematically improving classic algorithms to squeeze out ev-
ery last bit of recommendation accuracy, new types of al-
gorithms are on the rise. New trends as social media and
smartphones are increasingly providing new and complexer
types of user data like social data (e.g., friend connections)
and context (e.g., location, time of day, mood, etc.), which
results in new categories of recommendation algorithms that
specifically target these kinds of data.

While recommendation algorithms used to be competing
against each other, nowadays it has been generally accepted
that every algorithm has its own focus, optimal use cases, ad-
vantages and disadvantages and that hybrid recommenders,
which combine multiple recommenders, are able to further
increase recommendation quality and overcome individual
drawbacks [2, 3, 4]. Although hybrid recommenders are
well-accepted and have shown their merits in multiple com-
petitions (such as the Netflix prize), the procedure of actu-
ally building and tweaking the hybrid recommender is still
a tedious and time-consuming process.

In our work, we focus on building a future-proof hybrid
recommendation platform that can seamlessly integrate ex-
isting recommendation algorithms and dynamically combine
them into a best-fit hybrid recommender. While most main-
stream recommendation algorithms typically start from the
notion that users in a system behave similarly [5], recent
research is turning more towards the idea that every user
is unique and (combinations of) different algorithms may
be best for different users [4, 6, 7]. Therefore, every user
would probably benefit from a uniquely tailored hybrid rec-
ommender system. A self-learning hybrid platform could
prove to be of great value for e.g., industrial use cases where
often different algorithms are experimented with simultane-
ously, and both users and industry would benefit from the
improved user experience.

We define the following research questions:

• Do (all) users benefit from personalized hybrid recom-
mender systems?

• How can a hybrid recommender be dynamically ad-
justed?



• What kind of artificial intelligence techniques can be
applied to this problem?

• What kind of evaluation metrics should be considered?

• How can we measure and take into account online user
relevance feedback?

To address the stated research questions, the problem of
building a hybrid recommender system will be reformulated
as an optimization task to which known techniques from the
domain of machine learning can then be applied.

2. RELATED WORK
Hybrid recommender systems were first categorized by

Burke et al. [2] in function of how they combine individ-
ual recommenders (e.g., weighted, cascade, mixed, etc.).
Early hybrid recommender systems often internally merged
two classical algorithms e.g. a form of collaborative filter-
ing (CF) with content-based filtering (CBF) to cope with
specific failing use cases. Cornelis et al. [8] for example
combined elements of CF and CBF to recommend time-
specific items (i.e., events), which get rated only after users
have consumed (i.e., visited) the items. Since in these types
of hybrids, specific properties of the individual algorithms
are exploited, they lack extendibility and easy integration of
more and other types of algorithms.

Hybrid recommenders regarding individual recommenda-
tion algorithms as black boxes, are more interesting because
they easily allow to extend their models with other algo-
rithms of any type. One famous example of such a system
is the winning submission to the Netflix prize. Belkor et al.
[9] blended 107 individual recommenders into one weighted
hybrid model to achieve an optimal RMSE value. Their
optimization target however was overall RMSE, and so the
weights for the individual algorithms were the same for every
user (i.e., static hybrid).

The AdaRec system [10] proposed a dynamic hybrid strat-
egy that modifies its prediction strategy at runtime to cope
with unique domains, trends and user interests. Focus how-
ever, is on a switching strategy that selects the most suit-
able recommendation algorithm rather than composing a
dynamic weighted hybrid that incorporates input from all
algorithms.

Closely related to this work, is the work of Bellogin et
al. [4] where the problem of dynamic weighting of ensemble
recommenders was analyzed from an information retrieval
(IR) perspective. They proposed adaptations of query per-
formance techniques from ad-hoc IR to define performance
predictors in recommender systems. These performance pre-
dictors could then be used to dynamically adapt the rec-
ommendation strategy to the situation at hand. Our work
differs from theirs, in that we do not adapt our system to
predicted accuracy, but rather to realtime relevance feed-
back collected through a user-system interaction process.
We furthermore investigate the dynamic ensemble weight-
ing problem from a machine learning perspective and ob-
serve a black box approach for individual recommendation
algorithms allowing easy integration of numerous algorithms
regardless of complexity or type.

3. DYNAMIC FRAMEWORK
To be able to empirically experiment with various strate-

gies and settings, we built a dynamic framework that pro-
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Figure 1: The layout of our dynamic framework.
Data is fed to multiple recommendation algorithms
in parallel, which are then combined into one hy-
brid set of recommendations by a self-learning on-
line module that processes user relevance feedback.

vides some basic recommendation functionality. Figure 1
visualizes the conceptual layout of our framework. In our re-
search we focus on movies as recommendable items because
of the wildly available datasets and easily interpretable do-
main. To avoid any cold start problems, we start from the
MovieLens (1M) dataset but integrate also rating data col-
lected from popular social media platforms to also feature
new and relevant items (the most recent movie in the Movie-
Lens 1M dataset is from the year 2000). The rating data is
then provided to multiple recommendation algorithms which
run in parallel and isolated from each other. Individual al-
gorithms are considered black boxes, and so only their in-
puts and outputs are being taken into account. Because the
system does not rely on any internal properties of the al-
gorithms, new algorithms can easily be ‘plugged in’. This
approach even allows to add all sorts of hybrid algorithms
e.g. cascading algorithms to be integrated without any addi-
tional effort (displayed as the ‘×’ algorithm in Figure 1). We
currently integrated over 20 algorithms from the recommen-
dation framework MyMediaLite [11] but plan on integrating
more from other recommendation frameworks (like LensKit
[12], Duine [13] and Mahout1) as well.

The output (i.e., predictions) of the algorithms serve as
input to the learning module of the system, which then gen-
erates final predictions for a user. Interactively a user is
able to provide relevance feedback (i.e., how good are these
recommendations?) while providing new ratings. The rel-
evance feedback is propagated back to the learning module
which adapts in realtime and new results can be made avail-
able to the user. New ratings in their turn are propagated to
the backend of the system where they are merged with the
original dataset and provide new data for the recommenda-
tion algorithms.

4. LEARNING APPROACH
1http://mahout.apache.org



The learning approach, or module as referred to in the
previous section, is the very heart of this research. We want
to dynamically combine predictions made by multiple algo-
rithms and use reinforcement learning strategies to adapt in
realtime to user feedback. To do so, we will be redefining
our problem as an optimization task. We adopt the notation
from [14] to define a dynamic ensemble recommender as:

g(u, i) = γa1(u) ∗ ga1(u, i) + ...+ γan(u) ∗ gan(u, i)

where γ is a weighting factor indicating the importance value
of the contribution for every algorithm a to the final predic-
tion score g for a user u and item i. We now define an
objective function:

f(γ(u))

where

γ(u) = (γa1(u), ..., γan(u))

with n the total number of algorithms. By choosing an ob-
jective function f , we can now minimize (or maximize) f by
creating an appropriate vector of algorithm weights γ(u).
Interesting choices for objective functions are for example
typical evaluation metrics in the recommendation domain
like RMSE, MAE, etc. When the objective function is se-
lected, known optimization techniques can be applied to gen-
erate good choices for the weight vector γ(u). The implied
research challenge for the learning module will be twofold.
First, we must define what we want to optimize. Do we
want minimal RMSE? Maximum precision or recall? Or
even other metrics as ‘number of user clicks’, as long as they
are measurable, can be optimized for. Secondly, an appro-
priate optimization technique must be selected to generate a
good solution in an appropriate time frame. Since we want
to update the hybrid recommendations for a user dynami-
cally while user feedback is provided, the appropriate time
frame in this context is ‘almost realtime’.

We are currently investigating the applicability of genetic
algorithms which, according to our earliest experiments, are
able to rapidly provide near-optimal solutions to our prob-
lem when properly tuned.

Figure 2 shows the results of a small experiment where we
test our dynamic hybrid approach on 10 randomly selected
users from the MovieLens 1M dataset. For these users, we
trained our genetic algorithm to optimize their algorithm
weight vectors (optimizing for RMSE) for 25 individual rec-
ommendation algorithms. We compared our dynamic hy-
brid recommender with a baseline switching strategy that
for each user selects the best algorithm (i.e., lowest RMSE).
While the difference varies from user to user, an overall ad-
vantage of our weighted hybrid approach (over the switching
approach) can be observed.

When we manually inspect the generated algorithm weight
vectors, we find them to be very different for each user and
so our early results seem to confirm that it makes sense to
personalize these weights on an individual user level.

We plan on expanding our experiments to other machine
learning techniques and to do more formal evaluations, first
focusing on offline testing, where user data is simulated or
replayed, but gradually moving to online testing where ac-
tual users can become involved in the evaluation process.
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Figure 2: RMSE comparison of our dynamic hybrid
recommender, optimized by a genetic algorithm,
and a baseline hybrid switching strategy for 10 ran-
dom MovieLens users.

5. AVOIDING FILTER BUBBLES
In 2011, Eli Pariser caused a stir in the recommender sys-

tems domain when he introduced the concept of the Filter
Bubble2. He claimed that, because of personalization, more
and more users of online platforms will be trapped in their
own separate, filtered bubbles of information. Such a bubble
would virtually surround users with content tailored to their
interests and therefore at the same time also keeps them
from thinking outside the ‘bubble’. They are no longer able
to learn new things, evolve and change interests. A panel
in the RecSys 2011 conference discussed the topic, and the
take-away message was that personalization is fine as long as
users can be given a certain amount of control (e.g., choose
to disable personalized results) and recommender systems
can be made as transparent as possible (e.g., explain the
origin of a recommendation).

In our work, we intend to avoid bubble issues by allow-
ing users to take control of their recommendations. In the
context of dynamic ensembles, being in control could mean
for example being able to manipulate the weight vector that
controls the importance of underlying algorithms. Trans-
parency can also be easily provided by allowing users to
inspect their weight vector. Whether these functionalities
should be available for all users, or for power users only
(e.g., recommendation administrators) may differ, and de-
pends largely on the intended use case.

6. DISCUSSION
We aim for our work to be a usable blue print for real-

life recommender system applications. Especially in indus-
try, content providers are not so much interested in what
recommendation algorithm is deployed as long as it deliv-
ers the expected quality. Therefore, a self-learning system
that automatically assemblies good hybrids from individ-
ual ‘plugged-in’ algorithms could be of great value. Fur-
thermore, it allows to introduce new trending algorithms at
production time without fundamentally disrupting previous
user experience. If newly introduced algorithms turn out to

2http://www.thefilterbubble.com/ted-talk



deliver good predictions, their importance weights can grad-
ually increase and thereby also their contribution to the final
user recommendations.

Some recommendation algorithms, such as neighborhood-
based algorithms, can be run with a variety of different set-
tings such as different neighborhood sizes, different similar-
ity metrics, etc. Our hybrid approach, makes it very easy to
empirically test appropriate settings, by plugging in multiple
versions of the same algorithm in the system, each time with
different settings. The best settings will then automatically
prevail.

Scalability issues are avoided in the system by the decou-
pling of the individual recommendation calculation and the
final hybrid visualization of the results to users. While a
slow calculation backend can periodically re-run the indi-
vidual recommendation algorithms in batch, a fast online
learning module on the frontend can provide users with an
interactive and realtime feeling by instantly adapting to user
feedback. Finally, we note that because the vector of algo-
rithm weights can be made manipulable to the user, the sys-
tem is able to account for some very user-specific situations.
By for example including a recommendation algorithm that
predicts ratings proportional to how recent movies are, the
manipulation of the weight of this algorithm allows users to
choose for themselves how much they want the recentness of
movies to contribute their recommendations. Another inter-
esting example is the random recommender. By including
the random recommender as one of the individual recom-
mendation algorithms, users may introduce an appropriate
value of randomness thereby manipulating the serendipity
(and diversity) of their recommendations.

7. CONCLUSIONS AND PLANNED WORK
In this work, we wish to solve the problem that emerged

from solving the information overload problem: the recom-
mendation algorithm overload problem. Instead of focus-
ing on quality improvement of individual algorithms, we
turn towards hybrid recommendation to combine the advan-
tages and surpass the quality of its individual components.
We propose a future-proof, dynamic weighted ensemble ap-
proach that allows to generate hybrid recommenders on an
individual user basis. To aid our research task, we have im-
plemented a basic recommendation platform that integrates
numerous and widely differing algorithms and supports a
self-learning strategy to dynamically combine them in an
optimal way. We are currently experimenting with genetic
algorithms, but plan on involving and comparing multiple
types of optimizing techniques like neural nets and other
machine learning strategies.

In ongoing work we intend to explore an evaluation strat-
egy, both in an offline and online context, to assess the qual-
ity of developed methods and eventually address the research
questions proposed in this work.
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