327 research outputs found

    RFID systems in medical environment: EMC issues

    Get PDF
    RFID is a promising technology in the healthcare area in order to improve patient safety and increase efficiency and reduce costs in the daily healthcare work. This paper analyzes the available literature regarding both interference of RFID systems in medical equipment and the interferences of medical equipment on RFID systems. The conclusion of this analysis is that is necessary to develop standards in order to protect medical equipment from RFID interferences, and standards to plan the deployment of RFID installations taking into account electromagnetic compatibility issues.Postprint (published version

    Using Radio Frequency Identification Technology In Healthcare

    Get PDF
    In the healthcare industry, medical treatment can be a matter of life and death, so that any mistakes may cause irreversible consequences. As hospitals have sought to reduce these types of errors, Radio Frequency Identification Technology (RFID) has become a solution in the healthcare industry to address these problems. Since 2005, RFID has generated a lot of interest in healthcare to make simpler the identification process for tracking and managing medical resources to improve their use and to reduce the need for future costs for purchasing duplicate equipment. There are rising concerns linked to the privacy and security issues, when RFID tags are used for tracking items carried by people. A tag by its design will respond to a reader\u27s query without the owner\u27s consent and without the owner even noticing it. When RFID tags contain patients\u27 personal data and medical history, they have to be protected to avoid any leaking of privacy-sensitive information. To address these concerns, we propose an Intelligent RFID System which is a RFID card system that embeds smart tags in insurance cards, medical charts, and medical bracelets to store medical information. Patient data is sent to the insurance providers by way of a clearinghouse that translates the information from the healthcare facility into a format that the insurance company can process. To ensure data protection, an additional security layer was added to secure the communication between the tags and the readers. This security layer will allow only authorized readers to poll tags for the patient\u27s medical tags and prevent unauthorized access to tag data. It will simplify the maintenance and transfer of patient data in a secure, feasible and cost effective way

    Visible Light Communications for Industrial Applications—Challenges and Potentials

    Get PDF
    Visible Light Communication (VLC) is a short-range optical wireless communication technology that has been gaining attention due to its potential to offload heavy data traffic from the congested radio wireless spectrum. At the same time, wireless communications are becoming crucial to smart manufacturing within the scope of Industry 4.0. Industry 4.0 is a developing trend of high-speed data exchange in automation for manufacturing technologies and is referred to as the fourth industrial revolution. This trend requires fast, reliable, low-latency, and cost-effective data transmissions with fast synchronizations to ensure smooth operations for various processes. VLC is capable of providing reliable, low-latency, and secure connections that do not penetrate walls and is immune to electromagnetic interference. As such, this paper aims to show the potential of VLC for industrial wireless applications by examining the latest research work in VLC systems. This work also highlights and classifies challenges that might arise with the applicability of VLC and visible light positioning (VLP) systems in these settings. Given the previous work performed in these areas, and the major ongoing experimental projects looking into the use of VLC systems for industrial applications, the use of VLC and VLP systems for industrial applications shows promising potential

    Textile UHF-RFID antenna sensors based on material features, interfaces and application scenarios

    Get PDF
    Tesi en modalitat de compendi de publicacions, amb una secció retallada per drets de l'editor. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Universitat Politècnica de Catalunya's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Radio frequency identification over measurable ultra-high frequency textile substrates (UHF-RFID) is a promising technology to develop new applications in the field of health and the Internet of Things (IOT), due to the massive use of fabrics and the technological maturity of embroidery techniques. This thesis is the result of a compendium of publications on this topic. First, as a result of the analysis of the state of art, a systematic review entitled 'Wearable textile UHF-RFID sensors: A systematic review' has been published. The thesis aims to improve research on UHF-RFID textile-based sensor technology. Thanks to the analysis of the state of art, three novel research objectives have been set that are worth exploring. The first is to study novel detection functions for textile UHF-RFID based sensor technology; the second is to find a connection/interface solution between textile antennas and integrated circuit (IC) chips and the third is to reduce the costs of such technology to promote future commercial applications. To contextualize the thesis, it includes the necessary theoretical fundamentals and the manufacturing and characterization methods used during it. As a result of the work derived from the first objective, a scientific article entitled “Textile UHF-RFID Antenna Sensor for Measurements of Sucrose Solutions in Different Levels of Concentration” has been published. In this work, a textile UHF-RFID tag with two detection positions is proposed for sucrose solution measurements. The two detection positions with the different detection functions show good performance and can offer two options for future full applications. In addition, another scientific article entitled “ Textile UHF-RFID Antenna Embroidered on Surgical Masks for Future Textile Sensing Applications” has been published to support the first objective. The inspiration for this work came from the current pandemic situation. This work develops three progressive designs of textile UHF-RFID antennas over surgical masks due to the current global epidemic situation. Reliability testing demonstrated that the proposed designs can be used for human healthcare focused applications. As a result of the second objective, a research article entitled 'Experimental Comparison of Three Electro-textile Interfaces for Textile UHF-RFID Tags on Clothes' has been published. This work proposes three electro-textile interfaces integrated with the corresponding textile UHF-RFID antennas and provides the chip-textile connection solutions (through sewing, push buttons and insertion). As a result of this objective, an electro-textile interconnect system has been proposed together with its electrical model, which allows the correct adaptation of impedances between the RFID antennas and the integrated circuit. It is worth noting that the mixed-use feasibility of the proposed electro-textile interfaces and the designed textile UHF-RFID antennas has been verified, reducing the cost in the design procedure in applications where the read range requirements of the order of 1 meter. The third objective has been achieved and exposed by a scientific article entitled 'Electro-textile UHF-RFID Compression Sensor for Health-caring Applications'. It proposes a single UHF-RFID based compression textile sensor that can be used simultaneously in two different healthcare application scenarios, which directly impacts on cost reduction.La identificación por radiofrecuencia sobre substratos textiles de ultra alta frecuencia (UHF-RFID) con capacidad de medida es una tecnología prometedora para desarrollar nuevas aplicaciones en el campo de la salud y el Internet de las cosas (IOT), debido a la masiva utilización de los tejidos y a la madurez tecnológica de las técnicas de bordado. Esta tesis es el resultado de un compendio de publicaciones sobre dicha temática. En primer lugar, como resultado del análisis del estado del arte se ha publicado una revisión sistemática titulada 'Wearable textile UHF-RFID sensors: A systematic review'. La tesis tiene como objetivo mejorar la investigación sobre la tecnología de sensores basada en textiles UHF-RFID. Gracias al análisis del estado del arte se han fijado tres objetivos de investigación novedosos que vale la pena explorar. El primero es estudiar funciones de detección novedosas para la tecnología de sensores basada en UHF-RFID textiles; el segundo es encontrar una solución de conexión/interfaz entre antenas textiles y chips de circuito integrado (IC) y el tercero es la reducción de costes de dicha tecnología para promover futuras aplicaciones comerciales. Para contextualizar la tesis, ésta incluye los fundamentos teóricos necesarios y los métodos de fabricación y caracterización utilizados durante la misma. Como resultado del trabajo derivado del primer objetivo, se ha publicado un artículo científico titulado “Textile UHF-RFID Antenna Sensor for Measurements of Sucrose Solutions in Different Levels of Concentration”. En este trabajo, se propone una etiqueta UHF-RFID textil con dos posiciones de detección para mediciones de solución de sacarosa. Las dos posiciones de detección con las diferentes funciones de detección muestran un buen rendimiento y pueden ofrecer dos opciones para futuras aplicaciones completas. Además, se ha publicado otro artículo científico titulado "Textile UHF-RFID Antenna Embroidered on Surgical Masks for Future Textile Sensing Applications" para respaldar el primer objetivo. La inspiración para este trabajo vino de la actual situación de pandemia. En este trabajo se desarrollan tres diseños progresivos de antenas UHF-RFID textiles sobre mascarillas quirúrgicas debido a la situación epidémica mundial actual. Las pruebas de fiabilidad demostraron que los diseños propuestos se pueden usar para aplicaciones centradas en el cuidado de las personas. Como resultado del segundo objetivo, se ha publicado un artículo de investigación titulado 'Experimental Comparison of Three Electro-textile Interfaces for Textile UHF-RFID Tags on Clothes'. En este trabajo se proponen tres interfaces electro-textiles integradas con las correspondientes antenas UHF-RFID textiles y se aportan las soluciones de conexión chip-textil (mediante costura, botones a presión e inserción). Como resultado de este objetivo, se ha propuesto un sistema de interconexión electro-textil junto con su modelo eléctrico, lo que permite la correcta adaptación de impedancias entre las antenas RFID y el circuito integrado. Vale la pena señalar que se ha verificado la viabilidad de uso mixto de las interfaces electro-textiles propuestas y las antenas UHF-RFID textiles diseñadas, lo que reduce el coste en el procedimiento de diseño en aplicaciones donde los requerimientos de rango de lectura del orden de 1 metro. El tercer objetivo se ha alcanzado y expuesto mediante un artículo científico titulado 'Electro-textile UHF-RFID Compression Sensor for Health-caring Applications'. En él, se propone un único sensor textil de compresión basado en UHF-RFID que puede ser utilizado a la vez en dosPostprint (published version

    Electromagnetic Wave Propagation for Industry and Biomedical Applications

    Get PDF
    This book highlights original research and high-quality technical briefs on electromagnetic wave propagation, radiation, and scattering, and their applications in industry and biomedical engineering. It also presents recent research achievements in the theoretical, computational, and experimental aspects of electromagnetic wave propagation, radiation, and scattering. The book is divided into three sections. Section 1 consists of chapters with general mathematical methods and approaches to the forward and inverse problems of wave propagation. Section 2 presents the problems of wave propagation in superconducting materials and porous media. Finally, Section 3 discusses various industry and biomedical applications of electromagnetic wave propagation, radiation, and scattering

    Methodologies and Applications Review

    Get PDF
    Funding Information: The Authors acknowledge Fundação para a Ciência e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI). Pedro M. Ferreira also acknowledges FCT-MCTES for funding the PhD grant UI/BD/151055/2021. Publisher Copyright: © 2022 by the authors.Sensing Technology (ST) plays a key role in Structural Health-Monitoring (SHM) systems. ST focuses on developing sensors, sensory systems, or smart materials that monitor a wide variety of materials’ properties aiming to create smart structures and smart materials, using Embedded Sensors (ESs), and enabling continuous and permanent measurements of their structural integrity. The integration of ESs is limited to the processing technology used to embed the sensor due to its high-temperature sensitivity and the possibility of damage during its insertion into the structure. In addition, the technological process selection is dependent on the base material’s composition, which comprises either metallic or composite parts. The selection of smart sensors or the technology underlying them is fundamental to the monitoring mode. This paper presents a critical review of the fundaments and applications of sensing technologies for SHM systems employing ESs, focusing on their actual developments and innovation, as well as analysing the challenges that these technologies present, in order to build a path that allows for a connected world through distributed measurement systems.publishersversionpublishe

    Magnetics in Smart Grid

    Get PDF
    This journal issue contain selected papers from the Asia-Pacific Data Storage Conference (APDSC'13)A revolution in power transmission and distribution, driven by environmental and economic considerations, is occurring all over the world. This revolution is spearheaded by the development of the smart grid. The smart grid is bringing profound change to both the power systems and many related industries. This paper reviews the development of the smart grid and its correlation with magnetics, including electromagnetic compatibility issue, magnetic-field-based measurement/monitoring, and magnetic energy storage/conversion. The challenge to the field of magnetics and the usage of the cutting edge magnetics technology in the development of the smart grid are discussed. This paper enables researchers in the magnetics community to be acquainted with the progress in the smart grid and inspires innovative applications of state-of-the-art magnetics technologies in the smart grid.published_or_final_versio

    Passive Wireless Sensor Technology (PWST) 2012 Workshop Plan

    Get PDF
    No abstract availabl
    corecore