565 research outputs found

    Design of Sliding Mode PID Controller with Improved reaching laws for Nonlinear Systems

    Full text link
    In this thesis, advanced design technique in sliding mode control (SMC) is presented with focus on PID (Proportional-Integral-Derivative) type Sliding surfaces based Sliding mode control with improved power rate exponential reaching law for Non-linear systems using Modified Particle Swarm Optimization (MPSO). To handle large non-linearities directly, sliding mode controller based on PID-type sliding surface has been designed in this work, where Integral term ensures fast finite convergence time. The controller parameter for various modified structures can be estimated using Modified PSO, which is used as an offline optimization technique. Various reaching law were implemented leading to the proposed improved exponential power rate reaching law, which also improves the finite convergence time. To implement the proposed algorithm, nonlinear mathematical model has to be decrypted without linearizing, and used for the simulation purposes. Their performance is studied using simulations to prove the proposed behavior. The problem of chattering has been overcome by using boundary method and also second order sliding mode method. PI-type sliding surface based second order sliding mode controller with PD surface based SMC compensation is also proposed and implemented. The proposed algorithms have been analyzed using Lyapunov stability criteria. The robustness of the method is provided using simulation results including disturbance and 10% variation in system parameters. Finally process control based hardware is implemented (conical tank system)

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Optimal fuzzy proportional-integral-derivative control for a class of fourth-order nonlinear systems using imperialist competitive algorithms

    Get PDF
    The proportional integral derivative (PID) controller has gained wide acceptance and use as the most useful control approach in the industry. However, the PID controller lacks robustness to uncertainties and stability under disturbances. To address this problem, this paper proposes an optimal fuzzy-PID technique for a two-degree-of-freedom cart-pole system. Fuzzy rules can be combined with controllers such as PID to tune their coefficients and allow the controller to deliver substantially improved performance. To achieve this, the fuzzy logic method is applied in conjunction with the PID approach to provide essential control inputs and improve the control algorithm efficiency. The achieved control gains are then optimized via the imperialist competitive algorithm. Consequently, the objective function for the cart-pole system is regarded as the summation of the displacement error of the cart, the angular error of the pole, and the control force. This control concept has been tested via simulation and experimental validations. Obtained results are presented to confirm the accuracy and efficiency of the suggested method. © 2022 S. Hadipour Lakmesari et al

    New control strategies for neuroprosthetic systems

    Get PDF
    The availability of techniques to artificially excite paralyzed muscles opens enormous potential for restoring both upper and lower extremity movements with\ud neuroprostheses. Neuroprostheses must stimulate muscle, and control and regulate the artificial movements produced. Control methods to accomplish these tasks include feedforward (open-loop), feedback, and adaptive control. Feedforward control requires a great deal of information about the biomechanical behavior of the limb. For the upper extremity, an artificial motor program was developed to provide such movement program input to a neuroprosthesis. In lower extremity control, one group achieved their best results by attempting to meet naturally perceived gait objectives rather than to follow an exact joint angle trajectory. Adaptive feedforward control, as implemented in the cycleto-cycle controller, gave good compensation for the gradual decrease in performance observed with open-loop control. A neural network controller was able to control its system to customize stimulation parameters in order to generate a desired output trajectory in a given individual and to maintain tracking performance in the presence of muscle fatigue. The authors believe that practical FNS control systems must\ud exhibit many of these features of neurophysiological systems

    Intelligent Learning Control System Design Based on Adaptive Dynamic Programming

    Get PDF
    Adaptive dynamic programming (ADP) controller is a powerful neural network based control technique that has been investigated, designed, and tested in a wide range of applications for solving optimal control problems in complex systems. The performance of ADP controller is usually obtained by long training periods because the data usage efficiency is low as it discards the samples once used. Experience replay is a powerful technique showing potential to accelerate the training process of learning and control. However, its existing design can not be directly used for model-free ADP design, because it focuses on the forward temporal difference (TD) information (e.g., state-action pair) between the current time step and the future time step, and will need a model network for future information prediction. Uniform random sampling again used for experience replay, is not an efficient technique to learn. Prioritized experience replay (PER) presents important transitions more frequently and has proven to be efficient in the learning process. In order to solve long training periods of ADP controller, the first goal of this thesis is to avoid the usage of model network or identifier of the system. Specifically, the experience tuple is designed with one step backward state-action information and the TD can be achieved by a previous time step and a current time step. The proposed approach is tested for two case studies: cart-pole and triple-link pendulum balancing tasks. The proposed approach improved the required average trial to succeed by 26.5% for cart-pole and 43% for triple-link. The second goal of this thesis is to integrate the efficient learning capability of PER into ADP. The detailed theoretical analysis is presented in order to verify the stability of the proposed control technique. The proposed approach improved the required average trial to succeed compared to traditional ADP controller by 60.56% for cart-pole and 56.89% for triple-link balancing tasks. The final goal of this thesis is to validate ADP controller in smart grid to improve current control performance of virtual synchronous machine (VSM) at sudden load changes and a single line to ground fault and reduce harmonics in shunt active filters (SAF) during different loading conditions. The ADP controller produced the fastest response time, low overshoot and in general, the best performance in comparison to the traditional current controller. In SAF, ADP controller reduced total harmonic distortion (THD) of the source current by an average of 18.41% compared to a traditional current controller alone

    A two-wheeled machine with a handling mechanism in two different directions

    Get PDF
    Despite the fact that there are various configurations of self-balanced two-wheeled machines (TWMs), the workspace of such systems is restricted by their current configurations and designs. In this work, the dynamic analysis of a novel configuration of TWMs is introduced that enables handling a payload attached to the intermediate body (IB) in two mutually perpendicular directions. This configuration will enlarge the workspace of the vehicle and increase its flexibility in material handling, objects assembly and similar industrial and service robot applications. The proposed configuration gains advantages of the design of serial arms while occupying a minimum space which is unique feature of TWMs. The proposed machine has five degrees of freedoms (DOFs) that can be useful for industrial applications such as pick and place, material handling and packaging. This machine will provide an advantage over other TWMs in terms of the wider workspace and the increased flexibility in service and industrial applications. Furthermore, the proposed design will add additional challenge of controlling the system to compensate for the change of the location of the COM due to performing tasks of handling in multiple directions

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Soft-computing based intelligent adaptive control design of complex dynamic systems

    Get PDF

    Graphical User Interface (GUI) for Position and Trajectory Tracking Control of the Ball and Plate System Using H-Infinity Controller

    Get PDF
    In this paper, a graphical user interface (GUI) for position and trajectory tracking of the ball and plate system (BPS) control scheme using the double feedback loop structure i.e. a loop within a loop is proposed. The inner and the outer loop was designed using linear algebraic method by solving a set of Diophantine equations and  sensitivity function. The results were simulated in MATLAB 2018a, and the trajectory tracking was displayed on a GUI, which showed that the plate was able to be stabilized at a time of 0.3546 seconds, and also the ball settled at 1.7087 seconds, when a sinusoidal circular reference trajectory of radius 0.4m with an angular frequency of 1.57rad/sec was applied to the BPS, the trajectory tracking error was 0.0095m.  This shows that the controllers possess the following properties for the BPS, which are; good adaptability, strong robustness and a high control performance.   
    corecore