
South Dakota State University
Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange

Electronic Theses and Dissertations

2017

Intelligent Learning Control System Design Based
on Adaptive Dynamic Programming
Naresh Malla
South Dakota State University

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Part of the Controls and Control Theory Commons

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and
Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE:
Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

Recommended Citation
Malla, Naresh, "Intelligent Learning Control System Design Based on Adaptive Dynamic Programming" (2017). Electronic Theses and
Dissertations. 1742.
https://openprairie.sdstate.edu/etd/1742

https://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=openprairie.sdstate.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/1742?utm_source=openprairie.sdstate.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu

BY

NARESH MALLA

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Electrical Engineering

South Dakota State University

2017

INTELLIGENT LEARNING CONTROL SYSTEM DESIGN BASED ON ADAPTIVE

DYNAMIC PROGRAMMING

iii

ACKNOWLEDGEMENTS

I would first like to express my gratitude to my thesis advisor, Dr. Zhen Ni for the

inspiring guidance and support during the thesis tenure. Without his continuous support

and feedback, I would not have been able to stand in this position in a short span of time. I

would like to take this opportunity to thank Dr. Reinaldo Tonkoski for his

problem-solving suggestions, continuous support, and encouragement during the joint

project. I would like to thank Dr. Timothy M. Hansen, Dr. Robert Fourney, and Mr. Jason

Sternhagen for their insightful comments and constructive criticism at different stages of

my research. Moreover, I would like to thank Dr. Qiquan Qiao as a graduate coordinator

for his support in pursuing my Master’s degree by believing in me.

I would like to thank all professors and committee members for providing me

valuable suggestions and encouragement. My special thank goes to Ujjwol and Dipesh for

their cooperation in the joint project. Without their support in developing benchmark,

validation of intelligent learning controller in the smart grid was not possible. Also, I

would like to thank Lekhnath, Avijit, Tamal, Venkat, Abhilasha, Prateek, Rupak, Shuva,

Fernando, Ayush, Bijen, Labi, Surendra, Prabin, Shiva, Prajina, and Maneesha for their

valuable insight into my research work, and to all my friends who made this two years

pass with joy.

iv

CONTENTS

ABBREVIATIONS . ix

LIST OF FIGURES . xiv

LIST OF TABLES . xvi

ABSTRACT . xvii

CHAPTER 1 INTRODUCTION . 1

1.1 Background . 1

1.2 Reinforcement Learning and Adaptive Dynamic Programming 3

1.2.1 Markov Decision Process . 3

1.2.2 Reinforcement Learning . 5

1.2.3 Adaptive Dynamic Programming 6

1.3 Computational Intelligence Techniques in Online Learning and Optimal

Control . 8

1.3.1 Autoencoder and Deep Autoencoder 8

1.3.2 Convolutional Neural Networks 10

1.3.3 Deep Q Network . 11

1.3.4 Experience Replay . 12

1.4 Discussion of Opportunities for Deep Learning Enabled Adaptive Dynamic

Programming . 13

1.4.1 Feasibility for Integration of Experience Replay for RL Structure . . 14

v

1.4.2 Maze Navigation Problem . 15

1.4.3 Human Level Control . 17

1.4.4 Future Directions . 19

1.5 Contributions and Organization of This Thesis 20

1.5.1 Contributions . 20

1.5.2 Thesis Outline . 21

CHAPTER 2 Design of History Experience Replay for Model Free Adaptive Dy-

namic Programming Controller . 23

2.1 Background of History Experience . 28

2.1.1 Batch Learning . 28

2.1.2 Benefits of History Experience . 29

2.1.3 Discussion of Time Complexity 30

2.2 Proposed ADP Controller and Implementation 31

2.2.1 Overall Framework . 31

2.2.2 Design of Model-Free History Experience 33

2.2.3 Design of Critic Network . 34

2.2.4 Design of Action Network . 35

2.3 Online Learning Alogrithms . 36

2.4 Simulation Results . 41

2.4.1 Cart-pole Balancing Problem . 41

2.4.2 Triple-link Inverted Problem . 45

2.5 Summary . 48

vi

CHAPTER 3 Integration of Prioritized Experience Replay Design for Model Free

Adaptive Dynamic Programming with Stability Analysis 50

3.1 Design of Experience Replay . 53

3.2 Prioritized Sampling in Experience Replay and Integration Into ADP Design 54

3.2.1 Prioritized Sampling of Experience Replay 56

3.2.2 Integration of Prioritized Experience Replay in Critic Network . . . 58

3.2.3 Integration of Prioritized Experience Replay in Action Network . . 59

3.2.4 On-line Learning Algorithms . 61

3.2.5 Stability Analysis . 62

3.3 Simulation and Evaluation . 69

3.3.1 Cart-pole Balancing Problem . 69

3.3.2 Triple-link Inverted Pendulum Balancing Problem 72

3.4 Summary . 75

CHAPTER 4 Smart Grid Application 1: Supplementary Adaptive Dynamic Pro-

gramming Controller for Virtual Synchronous Machine 76

4.1 Benchmark VSM System . 78

4.2 Controller Design Based on Adaptive Dynamic Programming 82

4.3 Simulation and Evaluation . 87

4.3.1 Training The Adaptive Dynamic Programming Controller 88

4.3.2 Case Study I: Step Change in The d-axis Reference Current 90

4.3.3 Case Study II: Single-phase Ground Fault 92

4.4 Summary . 96

vii

CHAPTER 5 Smart Grid Application 2: Harmonic Reduction Using Shunt Active

Filter and Online Learning based Control 97

5.1 Benchmark and System Configuration . 101

5.2 Proposed Controller Design for Benchmark System 107

5.2.1 Training Procedures for ADP Controller 111

5.2.2 Stability Discussion of ADP Controller 112

5.3 Simulation Results . 114

5.3.1 Parameters Setup for ADP Controller 115

5.3.2 Case Study I: Non-linear Load . 116

5.3.3 Case Study II: Different Loading Conditions 119

5.4 Summary . 122

CHAPTER 6 Conclusions and Future Work . 123

viii

ABBREVIATIONS

ADP Adaptive dynamic programming

CCVSI Current controlled voltage source power inverter

CNN Convolutional neural network

DFIG Doubly-fed induction generator

DHP Dual heuristic dynamic programming

DQN Deep Q-network

EDV Electric drive vehicle

FFT Fast fourier transform

GDHP Globalized dual heuristic dynamic programming

HDP Heuristic dynamic programming

HPF High pass filter

LPF Low pass filter

MDP Markov decision process

MIMO Multiple-input multiple-output

MLP Multi-layer perceptron

NN Neural network

PER Prioritized experience replay

PI Proportional-integral

PID Proportional-integral-derivative

PV Photovoltaics

ix

PWM Pulse width modulation

RL Reinforcement learning

RMS Root-mean-square

RNN Recurrent neural network

ROCOF Rate of change of frequency

SAF Shunt active filters

THD Total harmonic distortion

UUB Uniformly ultimately bounded

VSM Virtual synchronous machines

x

LIST OF FIGURES

Figure 1.1. Interaction between agent and environment in reinforcement learning

(this figure is reprinted from [1]). 6

Figure 1.2. Reinforcement Learning with an actor/critic structure [2]. 7

Figure 1.3. 8-3-8 neural network which can be used to learn input and output (this

figure is reprinted from [3]). 9

Figure 1.4. Learned hidden layer representation for 8-3-8 network 10

Figure 1.5. Deep Reinforcement Learning applied to visual control of a racing slot

car [4]. 17

Figure 1.6. Schematic illustration of the DQN structure. Left: Naive formulation

of DQN. Right: DQN structure used in Deepmind paper [5]. 18

Figure 1.7. Schematic illustration of the convolutional neural network [6]. 19

Figure 1.8. Convolutional neural network with three convolutional layer [5]. 20

Figure 1.9. Overall organization of the thesis. 22

Figure 2.1. The architecture of the proposed ADP controller design with history

experience memory. 32

Figure 2.2. The algorithm flowchart of the proposed ADP design. 38

Figure 2.3. The training process of ADP controller: (a) weights trajectories from

4 inputs to 1 hidden node in action network; (b) weights trajectories

from 6 hidden to 1 output node in action network; (c) weights trajecto-

ries from 5 inputs to 1 hidden node in critic network; and (d) weights

trajectories from 6 hidden to 1 output node in critic network. 43

xi

Figure 2.4. The training process of ADP controller: (a) trajectory of output of

critic network, J(t); (b) reinforcement signal, r(t); and (c) control ac-

tion, u(t). 44

Figure 2.5. Performance comparison between proposed ADP controller and tradi-

tional ADP controller (a) x (m), and (b) θ (radians). 45

Figure 2.6. Typical trajectory of proposed ADP controller on the triple-link pen-

dulum balancing task: position of the cart, x for a successful run. . . . 48

Figure 2.7. Performance comparison between proposed ADP controller and tradi-

tional ADP controller with the convergence of state, x (m). 49

Figure 3.1. Proposed ADP diagram based on prioritized experience replay. 55

Figure 3.2. Probability density function for (a) Uniform random sampling (b) Pri-

oritized sampling. 56

Figure 3.3. Training procedure for prioritized experience replay based ADP with

prioritized sampling method. 58

Figure 3.4. Proposed ADP algorithm based on prioritized experience replay. The

highlighted portion shows detailed steps for prioritized experience re-

play integration. 60

Figure 3.5. Box plot comparison of two methods: ER based ADP and PER based

ADP with respect to trials to succeed for uniform 10% sensor noise

condition. 72

Figure 3.6. Typical curves: (a) error curve (b) probability curve with rank repre-

sented by numbers from 1 to 10 for 10 tuples in experience replay with

no failure experiences. 73

xii

Figure 4.1. Schematic diagram of VSM current controlled voltage source inverter

with closed loop current controller and phase locked loop tracked from

the grid. 79

Figure 4.2. d-q equivalent model of three-phase inverter with cross-coupling and

feed-forward terms included. 81

Figure 4.3. ADP controller used as a supplementary controller (Refer to Fig. 4.1

for implementation in VSM system). 83

Figure 4.4. Action neural network with 3 inputs, 6 hidden neurons, and 1 output

neuron. 84

Figure 4.5. Critic neural network with 4 inputs, 6 hidden neurons, and 1 output

neuron. 86

Figure 4.6. Comparision between ADP and conventional PI Controller. (a) d-axis

reference current signal (Idre f). (b) Overshoot at first step change re-

duced with supplementary ADP controller and system response made

faster. (c) Overshoot at second step change reduced with supplemen-

tary ADP controller and system response made faster. 90

Figure 4.7. Harmonic spectrum of the grid current in the case of PI controller. . . . 91

Figure 4.8. Harmonic spectrum of the grid current in the case of ADP as a supple-

mentary controller. 91

Figure 4.9. Schematic diagram of VSM benchmark system connected to grid through

∆-Y transformer and single phase unsymmetrical fault with fault impedance

of Zg. 93

xiii

Figure 4.10. Three phase inverter output voltages (line to neutral) under single phase

unsymmetrical fault at 0.054167 sec and cleared at 0.1 sec. 93

Figure 4.11. Ability of supplementary ADP to track Idre f under single phase un-

symmetrical fault at 0.054167 sec and fault cleared at 0.1 sec. 94

Figure 4.12. Three phase current with PI controller under single phase unsymmet-

rical fault at 0.054167 sec and fault cleared at 0.1 sec. 95

Figure 4.13. Three phase current with ADP controller under single phase unsym-

metrical fault at 0.054167 sec and fault cleared at 0.1 sec. 96

Figure 5.1. Microgrid with non-linear loads and shunt active filter connected to

reduce harmonics. 98

Figure 5.2. Schematic diagram of a shunt active filter connected to source and

non-linear load for compensation of harmonics. 102

Figure 5.3. Current reference generation (iαre f and iβ re f). 103

Figure 5.4. Overall diagram of online learning based ADP controller for the inner

current control loop in the power inverter (Fig. 5.2). 109

Figure 5.5. Critic neural network with 8 inputs, 12 hidden neurons, and 1 output

neuron. 109

Figure 5.6. The training process of ADP controller: (a) weights trajectories from 6

inputs to 1 hidden node in action network, (b) weights trajectories from

12 hidden to 1 output node in action network, (c) trajectory of output

of critic network, J(t), and (d) reinforcement signal, r(t) during the

training process. 113

xiv

Figure 5.7. Performance comparison between two control techniques: PI and PI+ADP

with tracking curve for (a) direct axis current, Id , and (b) quadrature

axis current, Iq. 117

Figure 5.8. Control actions generated by ADP for (a) direct axis current, Id , and

(b) quadrature axis current, Iq. 117

Figure 5.9. Dynamic experiment response of the power inverter connected sys-

tem. First figure shows source current with the power inverter (PI

controller implemented) connected at 0.11s. Second figure shows im-

proved source current with the power inverter (PI+ADP controller im-

plemented) connected at 0.11s. All these currents are for the first A-

phase. 118

Figure 5.9. Comparative study of PI and PI+ADP controller for (a) Active power

transients, and (b) Reactive power transients because of the power in-

verter connected at 0.11s. These figures are zoomed-in to show supe-

rior performance of the ADP controller. 120

Figure 5.10. Performance comparison of PI and ADP under different loading con-

ditions. 121

Figure 5.11. Comparison of dominant harmonics for PI and ADP under load=100W.

The blue dashed line shows IEEE Std. 519 limits. 122

xv

LIST OF TABLES

Table 2.1. Performance evaluation for cart-pole balancing task for 100 runs. The

2nd, 3rd and the 4th column are with the traditional ADP method, while

5th, 6th and 7th column are with our proposed ADP method. 42

Table 2.2. Parameters used in the triple-link inverted pendulum benchmark 47

Table 2.3. Performance evaluation for triple-link inverted pendulum balancing task

for 100 runs. The 2nd, 3rd and the 4th column are with the traditional

ADP method, while 5th, 6th and 7th column are with our proposed ADP

method. 48

Table 3.1. Performance evaluation for cart-pole balancing task for 100 runs. The

2nd, 3rd and the 4th column are with the traditional ADP method, while

5th, 6th and 7th column are with experience replay ADP method. The

8th, 9th and 10th column are with the proposed ADP method. 71

Table 3.2. Performance evaluation for triple-link inverted pendulum balancing task

for for 100 runs. The 2nd, 3rd and the 4th column are with the tradi-

tional ADP method, while 5th, 6th and 7th column are with experience

replay ADP method. The 8th, 9th and 10th column are with the pro-

posed ADP method. 75

Table 4.1. Performance measurement of d-axis current control corresponding to

Fig. 4.6 . 92

Table 4.2. Performance measurement of d-axis current control corresponding to

Fig. 4.11 . 95

xvi

Table 5.1. Benchmark system parameters . 107

xvii

ABSTRACT

INTELLIGENT LEARNING CONTROL SYSTEM DESIGN BASED ON ADAPTIVE

DYNAMIC PROGRAMMING

NARESH MALLA

2017

Adaptive dynamic programming (ADP) controller is a powerful neural network

based control technique that has been investigated, designed, and tested in a wide range of

applications for solving optimal control problems in complex systems. The performance

of ADP controller is usually obtained by long training periods because the data usage

efficiency is low as it discards the samples once used. Experience replay is a powerful

technique showing potential to accelerate the training process of learning and control.

However, its existing design can not be directly used for model-free ADP design, because

it focuses on the forward temporal difference (TD) information (e.g., state-action pair)

between the current time step and the future time step, and will need a model network for

future information prediction. Uniform random sampling again used for experience

replay, is not an efficient technique to learn. Prioritized experience replay (PER) presents

important transitions more frequently and has proven to be efficient in the learning

process.

In order to solve long training periods of ADP controller, the first goal of this thesis

is to avoid the usage of model network or identifier of the system. Specifically, the

experience tuple is designed with one step backward state-action information and the TD

can be achieved by a previous time step and a current time step. The proposed approach is

xviii

tested for two case studies: cart-pole and triple-link pendulum balancing tasks. The

proposed approach improved the required average trial to succeed by 26.5% for cart-pole

and 43% for triple-link. The second goal of this thesis is to integrate the efficient learning

capability of PER into ADP. The detailed theoretical analysis is presented in order to

verify the stability of the proposed control technique. The proposed approach improved

the required average trial to succeed compared to traditional ADP controller by 60.56%

for cart-pole and 56.89% for triple-link balancing tasks. The final goal of this thesis is to

validate ADP controller in smart grid to improve current control performance of virtual

synchronous machine (VSM) at sudden load changes and a single line to ground fault and

reduce harmonics in shunt active filters (SAF) during different loading conditions. The

ADP controller produced the fastest response time, low overshoot and in general, the best

performance in comparison to the traditional current controller. In SAF, ADP controller

reduced total harmonic distortion (THD) of the source current by an average of 18.41%

compared to a traditional current controller alone.

1

CHAPTER 1 INTRODUCTION

1.1 Background

In literature, reinforcement learning (RL) is defined as the learning about how to

map situations to action taken by an agent so as to maximize the reward [1, 3]. A

reinforcement learning task that satisfies the Markov property is called a Markov decision

process (MDP). The traditional RL algorithms have great difficulty in evaluating the

future optimal actions with huge searching space. Deep learning enables multi-layer

processors/perceptrons to learn the data representation with multiple levels of encoding

and decoding process. These methods improve the state-of-the-art pattern recognitions

(e.g., speech, object, genomics and others) [7]. Deep Q network (DQN), one type of deep

reinforcement learning algorithms, has been developed to mimic human and animals’

decision making process through a combination of reinforcement learning and hierarchical

sensory processing systems [6, 8–10]. It uses several layers of nodes to build up the

mapping and representation of the data and it makes the neural network capable to learn

concepts from raw sensory or image data (which is usually with very high-dimension state

spaces). Backpropagation algorithm is one of the typical ways to show how such a model

adjusts its weight parameters to represent the relationship between input and output [11].

Several different versions of backpropagation algorithms have also been developed to

improve the convergent speed for large-scale input data stream [12]. Convolutional neural

network (CNN) is another powerful technique to extract represented features and conduct

end-to-end policy searching for 2-D images, yet may require certain computation at

times [13, 14]. Interesting applications of deep reinforcement learning have been reported

2

in robot navigation and robot arm manipulation [15, 16]. Among all the reported results,

the deep auto-encoder and certain training algorithms are generally used for this type of

large searching space decision making problems. These frontier results also inspired the

possible integration to other control and optimization fields.

One class of reinforcement learning methods is based on the actor-critic structure,

where an actor generates an action and a critic component evaluates the performance. This

principle motivates the development of a family of approximate or adaptive dynamic

programming (ADP) designs. There are three typical structures in ADP design family,

heuristic dynamic programming (HDP), dual heuristic dynamic programming (DHP) and

Globalized dual heuristic dynamic programming (GDHP). They are mainly applied for

online control and optimization problems. For example, in HDP design, it consists of an

action and a critic networks. The critic network is designed to evaluate the current online

learning performance based on the instant control action, while the action network

produces an online learning based control signal to improve the control

performance [2, 17–23]. DHP and GDHP are so-called advanced ADP designs, and are

expected to learn and control faster and more accurate than the basic HDP design. HDP

will be referred to as ADP hereinafter. Depending on whether it needs a model-network or

not, ADP methods can also be categorized as model-free design [24–26] and model-based

designs [27–30]. In recent years, event-based ADP [31] and data-based ADP [32] are

developed to design the adaptive robust control for the nonlinear systems. Many of the

theoretical and convergence analysis publications have reported to guarantee the optimal

policy after the learning-interaction process [33–36]. However, learning/convergent speed

and data efficiency are two of the challenges of applying ADP based methods in

3

real-world applications.

Currently, there has been a trend studying the advantages of experience replay

technique to improve the data efficiency of ADP/RL methods from both theoretical and

experimental perspectives [4, 37–39]. Classical ADP based control converges relatively

slow, because it needs enough time to learn to interact with systems. The samples are used

only once and then discarded right away. The controller could easily “forget” the previous

experience after learning for a long time. Thus, the learning is not efficient and accurate

after a long period of time. Some pilot studies with the integration of experience replay

have been reported on ADP designs for dc motor, inverted pendulum, and zero-sum

games [40, 41]. However, it is still an open question how to systematically facilitate the

learning and association process of ADP based approaches in a general way and explore

the various real applications.

1.2 Reinforcement Learning and Adaptive Dynamic Programming

In this section, we will first introduce the background and fundamental principles of

Markov decision process, and then its optimal solutions based on reinforcement learning

and adaptive dynamic programming.

1.2.1 Markov Decision Process

MDP model consists of a set of possible states (st), a set of possible actions (at),

some reward function (R(st ,at)), and a probability that an action at = u(t) in state

st = x(t) will lead to next state st+1 = x(t +1). Note that in next chapters, x is used to

denote state and u is used to denote control action. MDP must satisfy the Markov property

that the effects of an action taken in a state is independent of the prior history and only

4

depends on that state. For given state, s, next state, s′ and action a, the probability of each

possible next state, known as the transitional probability can be defined in a particular

finite MDP as [1]:

Pa
ss′

= Pr{st+1 = s′|st = s,at = a}. (1.1)

The expected value of the next reward, rt+1 can be written as:

Ra
ss′

= E{rt+1|st = s,at = a,st+1 = s′}. (1.2)

The state-value function, V π for an arbitrary policy π can be evaluated by cumulating

future possible discounted reward:

V π(s) = Eπ{rt+1 + γrt+2 + γ
2rt+3 + ...|st = s} (1.3)

= Eπ{rt+1 + γV π(st+1)|st = s}. (1.4)

where, rt+1, rt+2, rt+3, ... are rewards received at time t +1, t +2, t +3... and γ is the

discount factor. The successive approximation V (s) can be obtained by using the Bellman

equation as an iterative update rule:

Vt+1(s) = Eπ{rt+1 + γVt(st+1)|st = s}. (1.5)

After following the existing policy π , we can consider selecting action a in state s. Then,

the value of this way of behaving is:

5

Qπ(s,a) = Eπ{rt+1 + γV π(st+1)|st = s,at = a}. (1.6)

If Qπ(s,π ′(s))≥V π(s), then policy π ′ must be as good as, or better than π . This is called

policy improvement process.

1.2.2 Reinforcement Learning

Reinforcement learning is a type of learning in which learner or decision maker

known as the agent interacts with its environment to take actions so as to achieve certain

goal. The agent is naive at the beginning and is subjected to new situations from which it

learns to make decisions so as to maximize cumulative reward from the environment over

the time. This basic concept is also illustrated by Fig. 1.1 [1]. At each time step t, the

agent observes the state of the environment, st , and based on that generates an action, at .

Meanwhile, it will receive an instant reward rt , indicating the control performance. The

agent will adjust its parameters to maximize the reward in the future. This process is

repeated along the time axis.

Almost all reinforcement learning algorithms are based on estimating value

functions, that estimate how good it is to perform certain action in a certain state. The

value function of a state s under an optimal policy, denoted by V ∗, is the expected return

and can be defined as:

V ∗(s) = max
a

Eπ∗{Rt |st = s,at = a}

= max
a

Eπ∗{rt+1 + γ

∞

∑
k=0

γ
krt+k+2|st = s,at = a}

= max
a

E{rt+1 + γV ∗(st+1)|st = s,at = a}.

(1.7)

6

Agent

Environment

action

at

state

st
reward

rt

rt+1

st+1

Figure 1.1. Interaction between agent and environment in reinforcement learning (this
figure is reprinted from [1]).

where Eπ∗{} denotes the expected value if the agent follows the optimal policy π∗. The

last equation is one of the form of Bellman optimality equation [42] for V ∗. The Bellman

optimality equation for Q∗ is

Q∗(s,a) = E{rt+1 + γ max
a′

Q∗(st+1,a′)|st = s,at = a} (1.8)

Reinforcement learning algorithms are usually used to solve the discrete-time

optimization problems with Markov properties. For years, Q-learning, SARSA (λ) and

temporal difference (TD) algorithms are the most commonly used methods for maze

navigation, path planning and other agent-environment interaction applications.

1.2.3 Adaptive Dynamic Programming

For continuous-time and continuous-state problem optimization with Markov

properties, adaptive dynamic programming is one of efficient ways to solve it. Fig. 1.2

shows the actor-critic structure which is based on the reinforcement learning principle. In

7

this design, the critic and the actor are tuned online using the observed data containing

state variable, reward and next state variable along the system trajectory. Neural networks

are typically used to build the mapping of action/critic structure here. Weights of one

Globalized neural network (NN) are kept constant while weights of other NN are tuned

and the procedure is repeated until both NN have converged. After enough training, the

actor produces the optimal control action and critic evaluates the performance of actor

over time. Learning and interaction is the key that enables adaptive controller to converge

to the optimal control. Neural network, fuzzy logic, and other computational intelligence

techniques can be employed to implement the mapping of critic and action networks.

CRITIC–Evaluates

the Current

Control Policy

ACTOR–

Implements the

Control Policy

System/

EnvironmentControl

Action
System

Output

Reward/

Response

from

Enviroment

Policy

Update/

Improvement

Figure 1.2. Reinforcement Learning with an actor/critic structure [2].

Heuristic dynamic programming is one of the basic ADP designs which only

consists of action and critic networks. The architecture of critic network is a multi-layer

perceptron (MLP) structure. The inputs to the critic network are the measured system

8

state vector, s(t), and control action, a(t). J(t) is the output of the critic element and the J

function approximates the discounted total reward to go.

Adaptive dynamic programming and reinforcement learning are both commonly

used in the society for the optimization of decision making process. Though

reinforcement learning can also deal with continuous time systems, it is usually required

to discretize the state and action spaces before hand. This may possibly sacrifice accuracy

or increase the computational load in some cases. The advantage of adaptive dynamic

programming is to deal with continuous state system in continuous time fashion.

1.3 Computational Intelligence Techniques in Online Learning and Optimal Control

In this section, we will discuss the key components in deep reinforcement learning,

e.g., deep autoencoder, convolutional neural network, and one of the important parameter

to be used for algorithm development in next chapters: termed as experience replay.

1.3.1 Autoencoder and Deep Autoencoder

An autoencoder neural network is with MLP structure which has one or more

hidden layers. The input is first encoded by hidden nodes which can be decoded to

produce output.

The simplest example of autoencoder can be realized by 8-3-8 network as shown in

Fig. 1.3 and Fig. 1.4, rooted from [3]. These results are generated from the authors’

graduate course project: EE792: Computational Intelligence. In the network shown in

Fig. 1.3, the eight network inputs are connected to three hidden units, which are in turn

connected to the eight output units. Because of this structure, the three hidden units will

be forced to represent the eight input values in some way that captures their relevant

9

+0.5

Bias Node

W1
W2

h1

Inputs
(8)

Outputs
(8)

Input Layer

Hidden Layer

Output Layer

X1

X2

X3

X8

Y1

Y2

Y3

Y8

Figure 1.3. 8-3-8 neural network which can be used to learn input and output (this figure is
reprinted from [3]).

features, so that this hidden layer representation can be used by the output units to

compute the correct target values. The network shown in Fig. 1.3 can be trained to learn

the simple output target function:

Out put y = Input x. (1.9)

where x is a vector containing binary values. The network must learn to reproduce the

eight inputs at the corresponding eight output units. Although this is a simple function, the

network in this case is constrained to use only three hidden units. Therefore, the essential

information from all eight input units must be captured by the three learned hidden units.

When backpropagation is applied to this task, the autoencoder successfully learns the

10

Input

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000001

Output

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000001

Hidden Values

0.9912 0.9909 0.9957

0.0404 0.2634 0.9828

0.9490 0.9928 0.0072

0.8884 0.0035 0.7604

0.9895 0.2031 0.0159

0.0057 0.9898 0.6685

0.0844 0.4970 0.0077

 0.1692 0.0054 0.2037

Figure 1.4. Learned hidden layer representation for 8-3-8 network

target function using the eight possible vectors as training examples. If the number of

hidden layer increases, then the autoencoder is called deep autoencoder. Deep

autoencoder finds many applications in image search [43], data compression [44], topic

modeling and information retrieval [45]. The training algorithm and neural network

structure may be different (e.g, Restricted Boltzmann Machine), however the principle

remains the same in case of deep autoencoder [46].

1.3.2 Convolutional Neural Networks

Convolutional neural network (CNN) is a variation of MLPs which is mostly used in

deep learning techniques. It consists of one or more convolutional layers followed by one

or more fully connected MLP layers. The input to a convolutional layer is with input size

as:

Input size = n×n× r. (1.10)

11

where n×n is height and width of image in pixels and r=number of channels (e.g., r=3 for

RGB image). The convolutional layer will have k filters of size as:

Filter size = m×m×q. (1.11)

where m≤ n and q≤ r. Within each layer of CNN, set of feature detectors exists, each of

which responds to the presence of a particular pattern in an input tensor [47]. Each filter is

replicated across the entire visual field and they share the same weights and bias to form a

feature map which increases efficiency. Between layers, dimension reduction technique

called max pooling layer [48] or strided convolutions [49] are utilized. Backpropagation

algorithm can be used to compute the gradient with respect to the parameters of the model

in order to use gradient based optimization [50].

1.3.3 Deep Q Network

Deep Q-network is an artificial agent with ability of recent advances in training deep

neural network that can learn successful policies directly from high-dimensional sensory

inputs using reinforcement learning [6]. Deep Q-network agent takes only the pixels and

the game score as inputs and has learning capability to excel at a diverse array of

challenging tasks. In case of deep Q-network, the compressed feature of deep autoencoder

is treated as state and stored in experience replay. At every update iteration i, the current

parameters θ are updated so as to minimize the mean-squared Bellman error with respect

to old parameters θ , by optimizing the following loss function (DQN Loss):

Li(θi) = E[(r+ γ max
a′

Q(s′,a′;θ
−
i)−Q(s,a;θi))

2] (1.12)

12

For each update i, a tuple of experience (s,a,r,s′)∼U(D) (or a minibatch of such

samples) is sampled uniformly from the replay memory D. For each sample (or

minibatch), the current parameters θ are updated by a stochastic gradient descent

algorithm. Specifically, θ is adjusted in the direction of the sample gradient gi of the loss

with respect to θ ,

gi = (r+ γ max
a′

Q(s′,a′;θ
−
i)−Q(s,a;θi))∇θiQ(s,a;θ) (1.13)

Then, actions are selected at each time-step t by an ε-greedy behavior with respect to the

current Q-network Q(s,a;θ) as described in [51].

1.3.4 Experience Replay

Experience replay (ER) technique delivers memory capacity for a learning agent to

recall past experiences and apply them to update the current policy. Thus, high data

efficiency is achieved by reusing the samples. The basic technique behind experience

replay is to store all the experience tuple defined as,

et = (s,a,r,s′) (1.14)

where t refers to the time instance. The overall replay memory is defined as

Dt = {e1,e2, ...,et} (1.15)

13

When training the neural network, random minibatches from the replay memory are

sampled instead of the most recent transition to avoid local minimum. Experience replay

is first proposed in [52], in which experience data are stored and chosen randomly to

update the value function and policy in reinforcement learning for neural network

approximation. As mentioned in [53], the advantages of experience replay are twofold,

first it helps to increase the sample efficiency by allowing samples to be reused. On top of

this, in the context of neural networks, experience replay allows for mini-batch updates

which helps the computational efficiency, especially when the training is performed on a

GPU. In addition, learning from mini-batch samples would cause the updates of the

network parameters to have a low variance, leading to faster and potentially more stable

learning. Second advantage is that the experiences used to train the networks are not only

based on the most recent policy and ε can be used to scale the amount of exploration. If

ε=1, the movement is completely random and if ε=0, the best policy is followed i.e.,

greedy behavior. Use of past experiences and past policy also avoids the algorithm getting

stuck in a local minimum or diverging case [6].

1.4 Discussion of Opportunities for Deep Learning Enabled Adaptive Dynamic Program-

ming

Deep reinforcement learning and experience replay methods open many new

opportunities for adaptive dynamic programming in the continuous time and continuous

state domain. “End-to-end” learning and control from raw images or sensory data to the

optimized control action is also possibly solvable by the deep learning enabled ADP

approach. Feature representation, deep auto-encoder, convolutional neural network, and

14

deep Q network are the possible necessary components for deep learning enabled ADP

design. Currently, there are also a few pilot studies on applying experience replay to

improve the learning and data efficiency of ADP approach for zero-sum optimization

problem.

In [54], an actor-critic, model-free algorithm based on the deterministic policy

gradient is presented that can operate over continuous action spaces. Using the same

learning algorithm, network architecture and hyper-parameters, their algorithm robustly

solved more than 20 simulated physics tasks, including classic problems such as cartpole

swing-up, dexterous manipulation, legged locomotion and car driving. Similarly, [55]

applied the deep Q-network on standard RL testing continuous as well as discrete

domains, such as grid world, mountain car problem, and inverted pendulum problem.

Training neural network with the recent data causes it to forget previous data and learning

will be difficult. Thus, experience replay plays a vital role in convergence of neural

network of deep reinforcement learning whose integration in ADP controller is at its pilot

stage. The experience replay was integrated in [40] to update the weights of the action

network and critic network in ADP approach [24] for optimal control of DC motor

problem [56] and inverted pendulum.

1.4.1 Feasibility for Integration of Experience Replay for RL Structure

An integral reinforcement learning and experience replay algorithm is developed on

an actor-–critic structure in [37] to learn online the solution to the

Hamilton–Jacobi-Bellman equation for partially-unknown constrained-input systems. The

near optimal solution convergence and stability was guaranteed in this paper with ER

15

based RL framework. The authors proposed one way to integrate experience relay based

gradient-descent algorithm for tuning the weights of critic NN by using the current data

and some past data (which are stored but can be removed and replaced) for learning the

weights at each specific time. This can be observed in Eq. (28) and Eq. (42) of the

paper [37]. They also stated that new data points can replace old ones in the history stack,

only if a replacement increases the minimum eigenvalue and consequently increases the

convergence rate of the critic NN weights. This implies that tuning weights of critic

network with experience replay updating law improves the convergence speed. In the

meawhile, the authors only used a single-layer NN for each actor-critic structure.

In [57], ER in actor-critic algorithm is proposed to address the issues of efficiency

and autonomy that are required to make reinforcement learning feasible for real-world

control tasks. Their experimental study with simulated octopus arm and half-cheetah

demonstrates the practicability of the proposed algorithm to solve difficult learning

control problems in a reasonable short time. A general ER framework is developed in [38]

that can be combined with essentially any incremental RL technique, and instantiates this

framework for the approximate Q-learning and SARSA algorithms. Authors also present

promising real time learning results in inverted pendulum and robot systems, which are

encouraging for real time applicability.

1.4.2 Maze Navigation Problem

Maze navigation problem is an interesting example for understanding deep

reinforcement learning principle. The state of the environment in maze navigation

problem example can be defined by the location of agent in the maze. It is possible to take

16

coordinate position as states but it may not be universal in other games. Thus, the authors

in [12] take screen pixels containing sufficient information about maze navigation

problem. Raw pixels are also used as input state of a reinforcement learning problem in

using fitted Q-iteration to generate optimal policy. The first step in deep reinforcement

learning is preprocessing the image and compressing it to lower dimension using deep

autoencoder. Processing the benchmark dataset MNIST, a deep autoencoder as described

in [46] could be trained and tested using the backpropagation algorithm as mentioned

in [3]. In [12], the preprocessing technique is applied first: taking screenshot, resizing

them to 30x30 pixels and converting to grayscale with 256 gray levels. 6200 of these

images were taken, 3100 are used for training and 3100 for testing. These images are then

feeded to 900-900-484-225-121-113-57-29-15-8-2-8-15-29-57-113-121-225-484-900-900

deep autoencoder structure. This deep autoencoder is retrained and fine-tuned until they

get the reconstruction for testing images exactly same as input similar to method as shown

in Fig. 1.5.

Deep reinforcement learning perfectly fits into this situation as we could represent

our Q-function with a neural network, that takes the state (compressed 2 dimensional

hidden layer values) and output Q-value for each possible action (1:right, 2:up, 3:left,

4:down). If the agent reaches the goal, reward is set as 1 else reward is 0. Resilient

backpropagation proposed in [58] is used in [12] for training of NNs which is one of the

fastest weight update mechanisms. It takes into account only the sign of the partial

derivative over all patterns (not the magnitude), and acts independently on each weight

factor.

17

Figure 1.5. Deep Reinforcement Learning applied to visual control of a racing slot car [4].

1.4.3 Human Level Control

Significant progress has been made by integrating advances in deep learning for

image pixels preprocessing and deep autoencoder with reinforcement learning, resulting in

the deep Q network algorithm [6] which is capable of human level performance on many

Atari video games with only raw pixels as input. Traditionally, DQN is implemented

using state and action as the input to the network and the maximum discounted future

reward by performing action a in state s (Q-value) is obtained as output. In the paper [6], a

new deep Q-network is proposed to learn from represented features from raw images as

shown in the right side of Fig. 1.6 for each possible action as mentioned in [5]. The

advantage of this approach is that to identify the action with the highest Q-value, we only

have to do one forward pass through the network and all Q-values for all actions are

available immediately. To do so, convolutional neural network can be used for generating

18

actions as shown in Fig. 1.7. The network architecture is for 84x84 pixel image and the

memory sizes are provided in Fig. 1.8. It shows a classical convolutional neural network

with three convolutional layers, followed by two fully connected layers.

Figure 1.6. Schematic illustration of the DQN structure. Left: Naive formulation of DQN.
Right: DQN structure used in Deepmind paper [5].

In [51], the first massively distributed architecture for deep reinforcement learning is

presented which is applied to 49 out of Atari 2600 games in the Arcade Learning

Environment, using identical hyper-parameters and its performance surpassed

non-distributed DQN in above 80% of games. In [59], a conceptually simple and

lightweight framework for deep reinforcement learning is proposed that uses

asynchronous gradient descent for optimization of deep neural network controllers. It

demonstrated that learning a predictive model of state dynamics can result in a pretrained

hidden layer structure that reduces the time strongly required to solve reinforcement

learning problems. The neural networks are trained in these literatures by rmsprop weight

updating mechanism [60], which is a variant of rprop algorithm [58] used for mini-batch

19

Figure 1.7. Schematic illustration of the convolutional neural network [6].

training.

1.4.4 Future Directions

There are still some open questions and challenges along this direction. For

example, after the integration of experience replay technique, how to make sure that the

computation and calculation will finish within a short sampling time from the algorithm

perspective itself. Especially when the size of history stack increases (e.g., [3]), the

computation for each time step will certainly increase dramatically. High-performance

computational hardware will be strongly required to make sure the controller still finishes

the calculation on time. Also, how to systematically select a batch of samples from history

stack rather than doing random sampling. The questions and challenges also reveal many

opportunities for the fundamental research in this area.

20

Figure 1.8. Convolutional neural network with three convolutional layer [5].

1.5 Contributions and Organization of This Thesis

1.5.1 Contributions

The main contributions of this thesis are stated below:

(a) Successfully integrated the history experience for training both the critic and action

networks of the ADP controller. The integrated architecture focusses on improving

the training speed and adapting to the system faster. The key parameters in the

proposed ADP controller are successfully validated online for the different control

benchmarks.

(b) Successfully integrated the history experience based on prioritized sampling for

tuning weights of both critic and action network of ADP controller. A systematic

approach is proposed to integrate history experience in both critic and action

networks of ADP controller design.

(c) Experience replay is designed with the backward TD technique to ensure the

model-free learning performance of the ADP controller. The model-free ADP

design does not rely on an accurate mathematical model of the system. The

traditional forward TD technique (e.g., state-action pair) is between the current time

21

step and the future time step and will need a model network for future information

prediction.

(d) Detailed theoretical analysis is presented using Lyapunov theory in order to verify

the stability of the proposed control technique.

(e) Application of ADP controller for transient and steady state performance

improvement in virtual synchronous machine (VSM). Generally used

proportional-integral (PI) controller in VSM has limited transient performance in

current control. ADP controller has been proposed as a supplementary controller for

fine tuning conventional PI current controller thereby improving the performance of

VSM.

(f) Application of ADP controller for reduction of harmonics in current controlled

voltage source inverters. A multiple-input multiple-output (MIMO) online learning

control system is developed based on the ADP design. A series of time-delayed

current error signals are designed as input for the ADP controller, which outputs

compensating control actions (one is for d-axis and the other one is for q-axis) for

the current controller in the power inverter. In addition, an appropriate

reinforcement signal has been designed with the delayed tracking errors in the

power inverter. Based on this, the ADP controller will generate compensating

control actions, which guarantees its success.

1.5.2 Thesis Outline

This thesis has been organized as follows: Chapter 2 highlights the first project with

the background of history experience with some of its key features, describes the design of

22

Intelligent Learning Control System Design

based on Adpative Dynamic Programming

New Adaptive Dynamic Programming

Architectures
Smart Grid Applications

Project#1

Design of History Experience

Replay for Model Free

Adapative Dynamic

Programming Controller

Project#2

Integration of Prioritized

Experience Replay Design for

Model Free Adaptive

Dynamic Programming with

Stability Analysis

Project#3

Supplementary Adaptive

Dynamic Programming

Controller for Virtual

Synchronous Machine

Project#4

Harmonic Reduction using

Shunt Active Filter and

Online Learning based

Control

Figure 1.9. Overall organization of the thesis.

the proposed ADP controller and its implementation flowchart, gives the simulation

results from two case studies: cart-pole balancing problem and triple-link inverted

pendulum, and concludes the chapter along with some future directions along this work.

Chapter 3 introduces the second project with prioritized experience replay and its

importance for improvement of convergence of online learning control. The systematic

integration technique, stability analysis and experimental results are presented as well.

Chapter 4 presents the validation of ADP controller for improvement of performance of

traditional PI based current controller in VSM. Chapter 5 presents the validation of ADP

controller for harmonic reduction based on current controlled voltage source inverter. The

benchmark description is presented along with detailed design procedure and

experimental results. Finally, Chapter 6 presents the conclusion, limitations, and future

developments related to the research thesis.

23

CHAPTER 2 Design of History Experience Replay for Model Free Adaptive Dynamic

Programming Controller

This chapter deals with the new algorithm development and verification with the

integration of experience replay. As mentioned in the previous chapter, reinforcement

learning (RL) is the learning process of how to map situations to actions taken by an agent

so as to maximize the reward [1]. An RL task that satisfies the Markov property is called a

Markov decision process. Deep reinforcement learning is a recent advancement in RL

tasks which achieved human level performance in Atari video games just by observing the

screen pixels and receiving rewards from the game score [8]. The research on deep

reinforcement learning has been growing ever since [6, 51, 54, 61]. One of the important

elements that accelerated the convergence and speed up the training of deep reinforcement

learning is history experience, also known as experience replay in these papers. History

experience delivers memory capacity for a learning agent to recall past experiences and

apply them to update the current policy. It stores the sample of experiences and repeatedly

presents them to the deep reinforcement learning algorithm. This increases the data

efficiency of the system because of the opportunity to reuse past experiences.

An adaptive dynamic programming (ADP) controller is one type of actor-critic

structure which can solve optimal control problems in complex decision making systems.

It consists of action and critic neural networks (NN) with a multi-layer perceptron (MLP)

structure in general. The critic network is designed to evaluate the current online learning

based controller while the action network produces an online learning based control signal

to improve the control performance [17, 18, 23, 24, 62, 63]. Q-learning and ADP are with

24

good convergent properties and have been recently used as well to tackle the single-agent

RL task without full information of the system dynamics [64, 65]. ADP controller has

shown promising results on a number of power system control examples [66–68].

However, the performance of the ADP controller is usually obtained by long training

periods. In other words, traditional ADP based control has a relatively slower convergence

rate because it needs enough training to learn to interact with systems. The samples are

used once and then discarded. The controller could forget the past experience after

training for a long time. Thus, the training is not data efficient and accuracy is low.

Following the trend of integrating history experience with reinforcement learning, several

papers [38, 57] have shown interesting results by integrating a history experience table

into the ADP/RL methods for improving its data efficiency from both theoretical and

experimental perspectives. The authors in [37] proposed one way to integrate history

experience with a gradient-descent algorithm for tuning the weights of critic NN by using

the current data and some past data (which are stored but can be removed and replaced)

for learning the weights at each specific time. The improved convergence speed was

achieved, however, the experience replay is used to update only the critic weights and the

performance improvement by updating both action and critic network weights is not

mentioned. In [57], history experience in actor-critic algorithm is proposed to address the

issues of efficiency and autonomy that are required to make reinforcement learning

feasible for real-world control tasks to solve difficult learning control problems in a

reasonably short time. Authors in [38] developed a general history experience framework

that can be combined with essentially any incremental RL technique and present

promising real time learning results in inverted pendulum and robot systems which are

25

encouraging for real time applicability. Data in the history experience database is

repeatedly used in [40] to update the weights of the action network and critic network in

the ADP approach for optimal control of a DC motor problem [56] and an inverted

pendulum. The training speed is improved compared to the traditional ADP approach.

The integration of history experience has been reported on actor-critic designs for

nonzero-sum games [41]. However, these literatures which integrated history experience

in ADP or actor-critic structure or deep reinforcement learning used a one time-step

forward sample to train their network which requires a model network to predict the future

state. Thus, to systematically facilitate the learning and association process of ADP based

approaches by integrating history experience is missing. In addition, maintaining the

model-free online learning capability of the integrated approach is also missing for

various real-world applications.

There are several major approaches to analyze the stability of the ADP controller. In

the learning process, two networks are tuned simultaneously and the stability of the

closed-loop system is guaranteed using Lyapunov energy-based techniques [2, 69].

Detailed Lyapunov stability analysis of the ADP based controller is presented in [70] to

support the ADP structure from a theoretical point of view. The authors demonstrated that

the auxiliary error and the error in the weights estimates are uniformly ultimately bounded

(UUB) using the Lyapunov stability construct. In [71], proportional-integral-derivative

(PID) control rule is incorporated into neural networks and new results of UUB are

provided using a Lyapunov stability construct. The monotonic convergence of optimality

is discussed for the goal representation ADP control design in [72], and theoretical proof

of convergence is given in terms of both the internal reinforcement signal and the

26

performance index. In [73, 74], stability of the ADP controller is presented, where the

authors demonstrated the theoretical analysis that the estimation errors of NN weights are

UUB by the Lyapunov stability construct. Experimentally, later in simulation section, it

can be observed that the weights and parameters of the ADP controller are quickly

converged and bounded after the system transients.

Modares et. al. [37] proposed the experience-replay based online algorithm for

concurrent learning along with current data for adaptation of critic weights. The

successful real-time learning results presented in [38] are encouraging for further research

in experience replay for the real-time reinforcement learning control. A Lyapunov

stability analysis of the ADP based controller is presented in [37] to support the

actor-critic structure with integrated experience replay. The authors used the Lyapunov

stability construct to guarantee the success of the overall system. An integral

reinforcement learning and experience replay algorithm is discussed in [75] to show the

convergence of the learning process. An analysis of the experience replay is presented

in [76] with the theoretical analysis and the effects of replayed and backward TD. It is

shown in [77] that the estimation bias is bounded and asymptotically vanishes, which

allows the actor-critic and experience replay based algorithm to preserve the convergence

properties of the original algorithm. All these existing publications provide guidance to

derive the theoretical stability analysis for the proposed ADP design.

All of aforementioned literature motivates the research to integrate the powerful

learning capability of history experience to ADP. However, the existing design of history

experience cannot be directly integrated into a model-free ADP design. It is because the

existing work uses the forward temporal difference (TD) information (e.g., state-action

27

pair) between the current time step and future time step to train the network. To predict

the future state-action pair, the model network or identifier of the system/environment is

essential. In such case, offline data is needed to build the model network and train it very

well. The advantage of the backward TD information used in the history experience

replay design in this chapter is to avoid the usage of the model network or identifier of the

system/environment. Thus, this chapter proposes a systematic history experience replay

design to avoid the model network usage. Specifically, the history experience is designed

with the tuple or sample from the current time step, t, and the previous time step, t−1.

Thus, the TD can be achieved by the previous time step and the current time step and

experience tuple is designed with a one step backward state-action pair. This preserves the

model-free online learning capability of the ADP method. The major contributions of this

chapter are twofold:

1. The project in this chapter has integrated the history experience for training both the

critic and action networks of the ADP controller. The integrated architecture

focusses on improving the training speed and adapting to the system faster. The key

parameters in the proposed ADP controller are successfully validated online for the

different control benchmarks.

2. The history experience is designed in this chapter with the backward TD technique

to ensure the model-free learning performance of the ADP controller. The

model-free ADP design does not rely on an accurate mathematical model of the

system. The traditional forward TD technique (e.g., state-action pair) is between the

current time step and the future time step and will need a model network for future

28

information prediction.

In addition, the performance improvement is verified with the help of two control

problems: a cart-pole balancing task and a triple-link pendulum balancing task. The

integration of history experience improves the data efficiency and preserves the online

learning capability of the ADP. For fair comparison, we set the same initial starting states

and initial weight parameters for both approaches (traditional ADP and history experience

integrated ADP) under the same simulation environment. The triple-link pendulum is

considered to be one of the most difficult and challenging balancing tasks. Our proposed

controller has balanced the system in a short time when the traditional ADP is still at its

learning phase.

2.1 Background of History Experience

This section presents the background of history experience starting with the batch

training method. The benefits of history experience are then discussed and the time

complexity of using this method are focussed at the end.

2.1.1 Batch Learning

Batch reinforcement learning is defined as the task of learning the best possible

policy from a fixed set of a transition samples, known as a batch, which can be easily

adapted to the classical online case where the agent interacts with the environment while

learning. It is a subfield of dynamic programming-based reinforcement learning [78].

Batch learning is one of the methods to learn from the history experience. The idea behind

history experience for batch learning is to speed up convergence by using observed state

transitions once and reusing them repeatedly as if they were new observations. The

29

transitions collected using history experience reflect the connection between the states. By

spreading it along these connections, there is more efficient use of this information. One

of the fastest methods to efficiently learn from these batches of samples is a resilient

back-propagation algorithm [12, 58]. However, the algorithm complexity makes it difficult

for online learning implementation [79] and thus the gradient descent algorithm is

commonly used in the literature. One major difference between batch and online learning

is that the batch algorithm computes the error associated with each input sample while

keeping the system weights constant. However, online learning updates system weights

for each sample in the input. At the end, both algorithms usually converge to the same

global minima.

2.1.2 Benefits of History Experience

In addition to increase in data efficiency of the system, another beneficial effect of

history experience is the aggregation of information from multiple trajectories as

explained in [38]. For an example of a cart-pole, the trajectory to successfully balance a

pole may be different. If more than one trajectory are used to train the actor-critic

structure during the online process instead of only current data, the convergence will be

faster and will be verified later. The other benefit of history experience is that it

asymptotically has similar effects with eligibility traces. This is because it transmits

similar information as propagated by the eligibility traces [38]. To collect the past

information, eligibility traces can be used to provide a short-term memory of many

previous input signals. The addition of eligibility traces can accelerate the TD learning

process. λ is an eligibility trace decay parameter which normally lies in the range [0,1].

30

Here, 0 represents no eligibility traces. The benefit of an eligibility trace without having to

tune the additional parameter, λ , is obtained with increased size of history experience.

History experience breaks the temporal correlations of the neural network learning

updates. It also makes sure that the experiences used to train the networks are not only

based on the most recent policy and epsilon can be used to scale the amount of

exploration. This makes sure the algorithm won’t get stuck in a local minimum or diverge.

The neural networks are global function approximators and online learning might cause

the network to forget when learning a new task, even if it has previously learned to do the

related task well. Thus, it is important for the neural networks to properly generalize their

knowledge to the whole state-action space by varying the training data enough in the

experience database [53].

2.1.3 Discussion of Time Complexity

The most computationally demanding component of the history experience

integrated algorithm is the weight updating part, which consumes certain time to reduce

the error below the threshold. Parallel computing techniques in a recent simulation

environment solves high computational and data-intensive problems using multicore

processors, GPUs, and computer clusters. The weights updating part for the action and

critic networks by history experience can be implemented using a parallel computing

toolbox which divides the computation among available workers. This would reduce the

computation time and improve the performance of the system. With the recent

advancement in modern technology, the computation burden may not be a barrier for new

processors. Thus, a history experience integrated algorithm can have a less computational

31

burden and have the potential to provide real time optimal control action.

2.2 Proposed ADP Controller and Implementation

This section presents our method of improving the training mechanism of the ADP

using history experience along with design and implementation details. The stability of

the ADP controller is discussed as well. The proposed algorithm stores the sample of

experiences and repeatedly presents them to a gradient-descent based online ADP training

algorithm. This increases the data efficiency of the system due to reuse of the otherwise

discarded samples.

2.2.1 Overall Framework

The overall diagram of the proposed ADP controller design based on history

experience is shown in Fig. 2.1. The proposed controller is a model-free technique that

does not require a model network and can adapt to any system to which it is connected to.

In one of the basic ADP designs, known as heuristic dynamic programming (HDP) [24],

the action network generates the optimal control action iteratively and a critic network

evaluates the performance of the action network by approximating J close to the optimal

solution. J is also the output of the critic network. The controller observes the state, x(t)

from the system and generates the action, u(t) by interacting with the action network. The

basic idea in adaptive critic design is to adapt the weights of the critic network to

approximate the optimal cost function, J∗(x(t)), satisfying the modified Bellman principle

of optimality [42], given by:

J∗(x(t)) = min
u(t)
{J∗(x(t +1))+ r(x(t))−Uc} (2.1)

32

The optimal online learning based controller can be written as:

u∗(x(t)) = argmin
u(t)

J∗(x(t)) (2.2)

where x(t) is the input state vector, r(x(t)) is the immediate cost incurred by u(t) at time t,

and Uc is the ultimate desired objective which the cost function is desired to achieve. This

equation cannot be analytically solved in general. Adaptive dynamic programming is one

of the efficient ways to iteratively solve continuous-time and continuous-state problem

optimization.

X

2

X

1

X

3

h

3

h

2

h

4

h

5

h

6

h

1

u

X2

X1

X3

h

3

h

2

h

4

h

5

h

6

h

1

J

u

System

J(t)
α

Action

Network

Critic

Network

Uc(t)

Signal flow

History

Experience
Store

x(t-1),u(t-1),x(t),r(t)

x(t)

u(t)

r(t)

 Weights updating

Information from

history experience

J(t-1)-r(t)

Figure 2.1. The architecture of the proposed ADP controller design with history experience
memory.

33

2.2.2 Design of Model-Free History Experience

The measured history data in form of experience tuple:

d(t) = {x(t−1),u(t−1),r(t),x(t)} (2.3)

is stored into the history experience,

D = {d(1),d(2),d(3), ...,d(L)}, (2.4)

where L is the size of history experience. The entire history experience is limited to the

size of length, L and the oldest tuple is discarded if the size of history experience increases

over the limit. The system is set one time step back to make the controller learn online.

Thus, for the first time step, the controller waits and starts training at the next time step.

Feedback to the controller is given through a reinforcement signal, r(t) and the next state

is observed through taking action, u(t−1). A random tuple is chosen from the history

experience to train both the action and critic network as depicted by “Information from

history experience” in Fig. 2.1. Here, the random tuple is chosen to break the correlation

between the consecutive samples so as to avoid the local minimum [8]. Thus, a tuple of

experience, d(t) given by Eq. (2.3) is stored in the history experience, D given by

Eq. (2.4), which will be used to train both the action and the critic network. There are two

paths to tune the parameters of action/critic networks in ADP which will be discussed

below.

34

2.2.3 Design of Critic Network

The architecture of the critic network is a MLP structure. The output of the critic

network, J function, approximates the discounted total reward to go. At time, t, the

measured system state vector, x(t), and control action, u(t) from the action network are

inputs to the critic network, and J(t) is the output of the critic element. R(t) is the future

accumulative reward-to-go value at time t and r(t)=external reinforcement value at t. In

the ADP design, the J function is used to approximate R (i.e. J→ R). The weight

updating mechanism in ADP for the critic network is based on gradient descent rule which

minimizes the prediction error for the network given by: ec(t) = αJ(t)− [J(t−1)− r(t)].

The reinforcement signal, r(t) may be as simple as either a “0” or “-1” corresponding to

“success” or “failure” respectively and is provided by the external environment and α is

the discount factor. A tuple of experience, given by equation (2.3), is randomly chosen

from the history experience. Then, the inputs to the critic network are the measured

system state vector, x(t−1), and control action, u(t−1). J(t−1) is the output of the critic

element at time, t−1.

The following weights updating rule is presented to investigate the weights

adaptation in the critic network:

wc(t +1) = wc(t)+∆wc(t) (2.5)

∆wc(t) =−lc(t)
[

∂Ec(t)
∂wc(t)

]
−

N−1

∑
n=1

lc(t)
[

∂Ecn(t)
∂wcn(t)

]
. (2.6)

∂Ec(t)
∂wc(t)

=
∂Ec(t)
∂J(t)

∂J(t)
∂wc(t)

(2.7)

35

The index n is used to refer to the nth sample data (n = 1, ...,L) stored in the history

experience and the time, t, is used for the current time. Note in equation (2.6), the first

term is a traditional gradient-descent updating law to minimize the objective function,

Ec(t) = 0.5ec(t)2. The last term of equation (2.6) tries to minimize this objective function

from the stored samples in the history experience.

2.2.4 Design of Action Network

The action network in the ADP has a similar MLP NN architecture as the critic

network. However, the input neuron and output neuron numbers are different. The

principle of adjusting the weights of the action network is to indirectly back-propagate the

error between the approximate J function from the critic network and the desired ultimate

objective, denoted by Uc. In turn, the action network can be implemented by either a linear

or a nonlinear network depending on the complexity of the problem. The weight updating

in the action network can be formulated as follows: ea(t) = J(t)−Uc(t). The ultimate

objective here is to minimize the squared error by adjusting the action network weights.

The input to the action network is the measured system state vector, x(t), from a tuple of

experience, d(t), randomly chosen from the history stack as described in the previous

subsection. The output of the action network is the control action, u(t). The similar

weight updating rule as in the critic network can be applied to action network as follows:

wa(t +1) = wa(t)+∆wa(t) (2.8)

∆wa(t) =−la(t)
[

∂Ea(t)
∂wa(t)

]
−

N−1

∑
n=1

la(t)
[

∂Ean(t)
∂wan(t)

]
. (2.9)

∂Ea(t)
∂wa(t)

=
∂Ea(t)
∂J(t)

∂J(t)
∂u(t)

∂u(t)
∂wa(t)

(2.10)

36

Note in equation (2.9), the first term is a traditional gradient-descent updating law for the

objective function, Ea(t) = 0.5ea(t)2. The last term of equation (2.9) tries to minimize this

objective function from the stored samples in the history experience.

2.3 Online Learning Alogrithms

The algorithm for integrating a history experience into the ADP controller is shown

by the flowchart as represented in Fig. 2.2. At the initialization stage, action network

weights from input to hidden, wa1, action network weights from hidden to output, wa2,

critic network weights from input to hidden, wc1, and critic network weights from hidden

to output, wc2 are initialized in a certain range typically between [-1,1] with uniform

random distribution. The learning rates for the action network, la, and for the critic

network, lc, are also initialized (e.g., 0.3 for cart-pole and 0.1 for triple-link case studies).

The discount factor, α , is initialized in the range (0,1). The history experience, D, is

initialized as null (/0). The initial state is set as x(0), which is defined in each of the case

study.

As shown in Fig. 2.2, a previous state and action pair is required, and the controller

waits for the first time step when t=0 and records this state, x(0) and action, u(0). In the

next time step, the new state, x(t) and reinforcement signal, r(t) are obtained. The control

action, u(t), is obtained by forward pass of the action network with input as x(t). The

experience tuple, d(t), defined in equation (2.3), is built and saved in the history

experience, D, as depicted by equation (2.4). If the size of D is greater than L, the oldest

entry of D is removed and the space is released for a new tuple. Next, a tuple is sampled

by a uniform random sampling technique from the history experience which is used for

37

training a critic and an action networks as described in Section 2.2.2 and Section 2.2.3.

This training and adaptation will be repeated in the next time step until the termination

criterion is met.

The weights of critic and action network can be updated using the rule which is

derived as follows. The output J(t) of the critic network can be written as:

J(t) =
Nch

∑
i=1

w(2)
c (t)φc,i(t) (2.11)

φc,i(t) =
1− exp−qi(t)

1+ exp−qi(t)
, i = 1, ...,Nch (2.12)

qi(t) =
na+1

∑
i=1

w(1)
ci, j(t)x j(t), i = 1, ...,Nch (2.13)

where,

qi: ith hidden node input of the critic network;

φc,i: corresponding output of the hidden node;

φc = [φc,1,φc,2...φc,Nch]
T ;

Nch: total number of hidden nodes in the critic network;

na +1: total number of inputs into the critic network including the analog action

value u(t) from the action network.

By applying the chain rule, the adaptation of the critic network is summarized as

follows:

1) ∆w(2)
c (hidden to output layer)

∆w(2)
ci (t) = lc(t)

[
− ∂Ec(t)

∂w(2)
ci (t)

]
−

N−1

∑
n=1

lc(t)

[
∂Ecn(t)

∂w(2)
cin (t)

]
(2.14)

38

Initialize:

Action network weights: wa1,wa2

Critic network weights: wc1, wc2

Learning rates: la, lc

Discount factor, α ∈ (0,1)

History experience, D ←∅

 Set x(0) as the initial state

Obtain u(t-1) by forward

pass of action network

Take action u(t-1), observe

reward r(t) and the next state

x(t)

If size (D)<L

Update weights of critic

and action network

Uniformly sample a tuple,

{x(t-1),u(t-1), r(t), x(t)} from the replay

memory

If

t>T

No

Yes

Yes

No

Start

Store the experience tuple

dt = {x(t-1),u(t-1), r(t), x(t)} into a replay memory

Dt = {d1, ..., dt}

Remove the

oldest entry of D

If training

iteration>=N

No

Yes

Update

t=t+1

Stop

Figure 2.2. The algorithm flowchart of the proposed ADP design.

39

∂Ec(t)

∂w(2)
ci (t)

=
∂Ec(t)
∂J(t)

∂J(t)
∂wc(t)

= αec(t)φc,i(t) (2.15)

2) ∆w(1)
c (input to hidden layer)

∆w(1)
ci, j(t) = lc(t)

[
− ∂Ec(t)

∂w(1)
ci (t)

]
−

N−1

∑
n=1

lc(t)

[
∂Ecn(t)

∂w(1)
cin (t)

]
(2.16)

∂Ec(t)

∂w(1)
ci, j(t)

=
∂Ec(t)
∂J(t)

∂J(t)
∂φc,i(t)

∂φc,i(t)
∂qi(t)

∂qi(t)

∂w(1)
ci, j(t)

(2.17)

= αec(t)w
(2)
ci (t)[

1
2
(1−φ

2
c,i(t))] (2.18)

Similarly, the equations for the action network are:

u(t) =
1− exp−v(t)

1+ exp−v(t)
(2.19)

v(t) =
Nah

∑
i=1

w(2)
ai (t)φa,i(t) (2.20)

φa,i(t) =
1− exp−hi(t)

1+ exp−hi(t)
, i = 1, ...,Nah (2.21)

φa = [φa,1,φa,2...φa,Nah]
T (2.22)

hi(t) =
na

∑
j=1

w(1)
ai, j(t)x j(t), i = 1, ...,Nah (2.23)

where, v is the input to the action node, and φa,i and hi are the output and the input of the

hidden nodes of the action network, respectively. Nah is the number of hidden nodes of

action network. Now, for action network:

40

1) ∆w(2)
a (hidden to output layer)

∆w(2)
ai (t) = la(t)

[
− ∂Ea(t)

∂w(2)
ai (t)

]
−

N−1

∑
n=1

la(t)

[
∂Ean(t)

∂w(2)
ain (t)

]
(2.24)

∂Ea(t)

∂w(2)
ai (t)

=
∂Ea(t)
∂J(t)

∂J(t)
∂u(t)

∂u(t)
∂v(t)

∂v(t)

∂w(2)
ai (t)

(2.25)

= ea(t)[
1
2
(1−u2(t))]φa,i(t)

Nch

∑
i=1

[w(2)
ci (t)

1
2
(1−φ

2
c,i(t))w

(1)
ci,na+1(t)]

(2.26)

2) ∆w(1)
a (input to hidden layer)

∆w(1)
ai, j(t) = la(t)

[
− ∂Ea(t)

∂w(1)
ai j (t)

]
−

N−1

∑
n=1

la(t)

[
∂Ean(t)

∂w(1)
ai jn(t)

]
(2.27)

∂Ea(t)

∂w(1)
ai j (t)

=
∂Ea(t)
∂J(t)

∂J(t)
∂u(t)

∂u(t)
∂v(t)

∂v(t)
∂φa,i(t)

∂φa,i(t)
∂hi(t)

∂hi(t)

∂w(1)
ai j (t)

(2.28)

= ea(t)[
1
2
(1−u2(t))]w(2)

ai (t)[
1
2
(1−φ

2
a,i(t))]x j(t)

Nah

∑
i=1

[w(2)
ci (t)

1
2
(1−φ

2
c,i(t))w

(1)
ci,na+1(t)]

(2.29)

The weights of the critic and action networks are updated with the algorithm as

described in [24]. In both networks, normalization is used in order to confine the values of

the weights into some appropriate range as follows:

wc(t +1) =
wc(t)

max||wc(t)||
, i f ||wc||> threshold (2.30)

wa(t +1) =
wa(t)

max||wa(t)||
, i f ||wa||> threshold (2.31)

41

2.4 Simulation Results

The simulation results presented here are from two case studies: a cart-pole

balancing problem and a triple-link inverted pendulum. For both the cases, a comparison

is made between the traditional ADP and the proposed ADP approach.

2.4.1 Cart-pole Balancing Problem

The proposed history experience based ADP architecture has been implemented on

a cart-pole balancing problem [24, 80]. The ultimate objective is to generate appropriate

control action in terms of force applied on the cart, so as to balance the single pole

mounted on the cart. The detail model of the system can be described with the following

differential equations:

∂ 2θ

∂ t2 =
gsinθ + cosθ [−F−mlθ 2 sinθ +µcsgn(ẋ)]− µpθ̇

ml

l
(

4
3 −

mcos2 θ

mc+m

) (2.32)

∂ 2x
∂ t2 =

F +ml[θ̇ 2 sinθ − θ̈ cosθ]−µcsgn(ẋ)
mc +m

. (2.33)

where the acceleration g = 9.8m/s2, the mass of the cart mc=1.0 kg, the mass of the pole

m=0.1 kg, half-pole length l=0.5 m, the coefficient of friction of the cart µ= 0.0005, and

the coefficient of friction of the pole µp=0.000002. The force, F applied to the cart is in

the range [-10, 10] N. A pole is considered fallen when the angle is outside the range of

[-12°, 12°] or the cart is beyond the range of [-2.4, 2.4] m. To evaluate the statistical

performance of our proposed approach, 100 runs were set to this task with different initial

state conditions. Specifically, the angle and angular velocity of the pole in each of these

initial states are uniformly generated within [-0.05, 0.05] radians for θ and [-0.5, 0.5] m

42

Table 2.1. Performance evaluation for cart-pole balancing task for 100
runs. The 2nd, 3rd and the 4th column are with the traditional ADP
method, while 5th, 6th and 7th column are with our proposed ADP
method.

Noise type
Traditional ADP Proposed ADP

SR* x̄† σ] SR* x̄† σ]

Noise free 99% 47.9 58.1 100% 32.7 35.6
Uniform 5% actuator 98% 57.8 72.7 100% 36.4 50.7
Uniform 10% actuator 99% 73.4 130.9 100% 59.2 111.1
5% sensor 98% 90.1 105.3 100% 75.0 88.5
10% sensor 98% 132.7 140.9 100% 95.9 115.6

SR*: ‘Success rate’ for 100 runs
x̄†: Required average number of trials to succeed
σ]: Standard deviation of trials to succeed

for x, while the angular velocity and velocity of the cart are both 0.

Our proposed approach has been compared with the traditional ADP method

presented in [24] with the same parameter setting, except in this case continuous control is

used. These results are summarized in Table 2.1. From experience, the memory size is

chosen as L=10. The different sizes of this history experience memory has been tried. For

instance, if L is chosen as 16, the required average number of trials to succeed increased to

72.3 under noise free condition. This may be because of the overfitting issue in this

benchmark. From our experiences in this case study, the optimum experience replay

memory size is found by trial-and-error experience. In other systems from previous

publications [6, 51, 54], the experience replay memory size might differ. For complex

systems with a large number of states (e.g., high dimensional image pixels), the experience

replay memory size should be large enough so as to remember the important experiences.

For a noise free condition, the proposed ADP provided 31.7% improvement in

average trials to succeed over traditional ADP. In addition, our proposed method provided

43

0 10 20 30
Time (s)

-2

-1

0

1

(a)

0 10 20 30
Time (s)

-6

-4

-2

0

2

4

6

(b)

0 10 20 30Time (s)
-2

-1

0

1

2

(c)

0 10 20 30Time (s)

-2

-1

0

1

2

(d)

Figure 2.3. The training process of ADP controller: (a) weights trajectories from 4 inputs
to 1 hidden node in action network; (b) weights trajectories from 6 hidden to 1 output node
in action network; (c) weights trajectories from 5 inputs to 1 hidden node in critic network;
and (d) weights trajectories from 6 hidden to 1 output node in critic network.

a less standard deviation of trails to succeed and better results under different noise

conditions. This indicates that our approach is more robust and can work effectively under

relatively large level of noises. The typical training process of the proposed ADP

controller for a single run under noise-free condition is demonstrated in Fig. 2.3 and

Fig. 2.4. Fig. 2.3(a) shows the weight evolution of the action network from 4 input nodes

to 1 hidden node. Similarly, Fig. 2.3(b) shows the weight evolution of the action network

from 6 hidden nodes to 1 output node. Similarly, Fig. 2.3(c) shows the weight evolution of

the critic network from 5 input nodes to 1 hidden node. Similarly, Fig. 2.3(d) shows the

44

0 10 20 30
Time (s)

(a)

-2

0

2

4

0 10 20 30
Time (s)

(b)

-1

-0.5

0

0 10 20 30
Time (s)

(c)

-10

-5

0

5

10

Figure 2.4. The training process of ADP controller: (a) trajectory of output of critic net-
work, J(t); (b) reinforcement signal, r(t); and (c) control action, u(t).

weight evolution of the critic network from 6 hidden nodes to 1 output node. The

convergence of all wa1, wa2, wc1, and wc2 indicates the convergence of the learning. In

addition, Fig. 2.4(a) shows the convergence of the J(t) function, and Fig. 2.4(b) shows the

convergence of the reinforcement signal, r(t). Fig. 2.4(c) shows the convergence of the

control action, u(t), which is also the output of the ADP controller. The convergence of

u(t) indicates that the investigated approach is stable and effective during the actuator

noise. Experimentally, it can be observed from Fig. 2.3 and Fig. 2.4 that the weights and

parameters of the proposed ADP controller are quickly converged and bounded after the

system transients. On average, the proposed ADP provided 26.5% improvement in

average trials to succeed over the traditional ADP.

The convergence of the states using the proposed and traditional ADP approaches

are compared in Fig. 2.5. For a fair comparison, the same initial states and weights are

used as described before. The results from traditional ADP and proposed ADP are at

different time scales because the latter finished the simulation earlier. The traditional ADP

controller took 287.4s to balance the cart-pole, whereas the proposed ADP controller

learned to balance it in 125.7s. Although the angle, θ in case of traditional ADP seemed

45

to be converged around 50 to 100s, position of cart, x goes outside the limit at that time.

This verifies that when the traditional ADP is still in the learning phase, our proposed

ADP has learned to balance the cart-pole. The proposed ADP controller starts from

0 50 100 150 200 250Time (s)
 (b)

-0.2

0

0.2

0 50 100 150 200 250
Time (s)

 (a)

-2

0

2

Traditional ADP
Proposed ADP
Limits

End of a successful trial of traditional ADP controller

End of a successful trial of proposed ADP controller

Figure 2.5. Performance comparison between proposed ADP controller and traditional
ADP controller (a) x (m), and (b) θ (radians).

random initial weights as shown in Fig. 2.3. The controller starts to learn from the failure

trails. The controller carries on the learning experience to the next trial and gradually

learns the proper way to achieve the successful trial. From Fig. 2.5, the states: position, x

and cart-pole angle, θ are slightly oscillating in order to balance the pole. These are the

reasons why there is minor adjusting of action network weights, wa1 and wa2 at around

10s if they are zoomed-in.

2.4.2 Triple-link Inverted Problem

The same triple-link inverted pendulum balancing task is considered as

in [24, 80, 81]. The ultimate objective is to generate appropriate control action in terms of

force applied on the cart so as to balance the triple-link mounted on the cart. However, the

level of difficulty is much higher compared to a simple cart-pole because there are three

joints: mount joint, first joint and second joint. This makes the system highly unstable and

46

therefore is a challenging problem to solve. This is comparable to deep reinforcement

learning trying to solve a difficult Atari video game from scratch in terms of difficulty.

Instead of screen pixels, 8 states are used: [x,θ1,θ2,θ3, ẋ, θ̇1, θ̇2, θ̇3]. The detail model of

the system can be described with the following differential equation:

F(q)
∂ 2q
∂ t2 =−G

(
q,

∂q
∂ t

)
∂q
∂ t
−H(q)+L(q,u) (2.34)

where the components and parameters used are the same as described in [24, 80].

There are eight state variables in this model: position of the cart on the track, x;

vertical angle of the first link joint to the cart, θ1; vertical angle of the second link joint to

the first link, θ2; vertical angle of the third link joint to the second link, θ3; cart velocity, ẋ;

angular velocity of θ1, i.e. θ̇1; angular velocity of θ2, i.e. θ̇2; and angular velocity of θ3,

i.e. θ̇3. The constraints for the triple-linked inverted pendulum are (1) the cart track

extends 1.0 m to both sides from the center point; (2) the voltage applied to the motor

should be within [-30 V, 30 V]; (3) each link angle should be within the range of

[−20°,20°] with respect to the vertical axis. Here, condition (2) is guaranteed by using a

sigmoid function. While for the other two conditions, if either one fails or both fail, the

system will be provided with an external reinforcement signal, r=-1 at the moment of

failure, otherwise r=0 all the time. Based on this external reinforcement signal, our

proposed ADP approach will be trained using the past experiences to facilitate the

learning and optimization process over time.

100 runs was conducted for the triple link pendulum. Similar to the cart-pole

problem, different initial starting states was used for each run. Specifically, the three

47

angles and angular velocity of the triple links are set to be uniformly within the range of

[-0.02, 0.02] radians and [-0.5, 0.5] radians/s, respectively. As for x and ẋ, their initial

states are set to zero. The critic network architecture is chosen as a 9-–14-–1 MLP (i.e.,

nine input neurons, fourteen hidden layer neurons, and one output neuron) structure, and

the action neural network architecture is chosen as a 8—14-–1 MLP structure. The

learning parameters such as learning rate, internal cycle, and internal training error

threshold for the action network, and critic network of the proposed ADP are presented in

Table 2.2 and the descriptions of the notation used are defined as following:

lc(0) Initial learning rate of the critic network at the beginning of the simulation
when t = 0;

la(0) Initial learning rate of the action network at the beginning of the simulation
when t = 0;

lc(f) Final learning rate of the critic network at the end of the simulation;
la(f) Final learning rate of the action network at the end of the simulation;
Nc Internal cycle of the critic network;
Na Internal cycle of the action network;
Tc Internal training error threshold for the critic network;
Ta Internal training error threshold for the action network.

Table 2.2. Parameters used in the triple-link inverted pendulum benchmark

Parameter lc(0) la(0) lc(f) la(f) Nc Na Tc Ta α

Value 0.1 0.1 0.005 0.005 40 50 0.05 0.005 0.95

The summary of the simulation results with different noise conditions is presented in

Table 2.3. From our experience and for better performance, the history experience size is

set as a short term memory size of L=10. For a noise free condition, the proposed ADP

provided 42.73% improvement in average trials to succeed and reduced its standard

deviation over the traditional ADP. In addition, our proposed method provided better

result in different noise conditions.

48

Table 2.3. Performance evaluation for triple-link inverted pendulum bal-
ancing task for 100 runs. The 2nd, 3rd and the 4th column are with the
traditional ADP method, while 5th, 6th and 7th column are with our pro-
posed ADP method.

Noise type
Traditional ADP Proposed ADP

SR* x̄† σ] SR* x̄† σ]

Noise free 100% 468.5 488.2 100% 268.3 305.8
Uniform 5% actuator 99% 500.6 511.5 100% 298.6 353.9
Uniform 10% actuator 96% 544.7 465.0 100% 323.6 367.0
Uniform 5% sensor 96% 609.0 608.6 99% 311.4 353.8
Uniform 10% sensor 95% 612.9 624.6 100% 352.9 380.3

SR*: ‘Success rate’ for 100 runs
x̄†: Required average number of trials to succeed
σ]: Standard deviation of trials to succeed

0 5 10 15 20 25 30
Time (s)

-1

0

1

Figure 2.6. Typical trajectory of proposed ADP controller on the triple-link pendulum
balancing task: position of the cart, x for a successful run.

Fig. 2.6 shows the convergence for the position of the triple-link inverted pendulum.

For fair comparison, initial weights and states of both approaches are kept the same as

described before. From the simulation for a typical run with a noise free condition as

shown in Fig. 2.7, the proposed ADP controller has learned to balance the triple-link

inverted pendulum much faster while the traditional ADP controller needed more time to

learn to balance the triple-link pendulum.

2.5 Summary

This project successfully integrated the history experience into the traditional ADP

design. The key idea of our approach was to simplify the prior extensive training and

49

0 50 100 150 200

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

Traditional ADP
Proposed ADP
Limits

End of a successful trial of proposed ADP controller

End of a successful trial of traditional ADP controller

Figure 2.7. Performance comparison between proposed ADP controller and traditional
ADP controller with the convergence of state, x (m).

reduce training time associated with the ADP controller thereby preserving the online,

model-free learning capability of the ADP. A detailed design architecture and the

methodology adapted was presented. Simulation analysis was performed on two case

studies: a cart-pole model and a triple-link inverted pendulum model to demonstrate the

superior learning capability of the integrated approach. The important remark from this

project that creates motivation for next chapter is as follows. The history experience was

sampled in our study with random sampling, however it can be sampled with some rule or

priority which might further boost the convergence process.

50

CHAPTER 3 Integration of Prioritized Experience Replay Design for Model Free

Adaptive Dynamic Programming with Stability Analysis

This chapter deals with the new algorithm development and verification with the

integration of prioritized experience replay (PER). This chapter also provides detailed

stability analysis for the proposed algorithm. As mentioned in previous chapter, adaptive

dynamic programming (ADP) controller is a powerful technique that solves challenging

control problems iteratively [24]. It consists of an action and a critic neural network (NN)

with a multi-layer perceptron (MLP) structure. The critic network is designed to evaluate

the current online learning based controller while the action network produces a control

action [17, 18, 23, 24, 62]. However, convergence of ADP controller is relatively slow

because it needs more time to learn from the system. Traditional ADP controller discards

incoming data immediately. There are two drawbacks: (a) Traditional ADP control

approach neglects possibly rare and important experiences that would be useful later on,

and (b) possible correlated updates that break the independent and identically distributed

(i.i.d.) assumption of stochastic gradient-based algorithms used for traditional ADP. Deep

learning and deep reinforcement learning techniques provide some hints to solve this

problem with the concept of storing past experiences [6, 8].

Experience replay (ER) is one of key techniques in the aforementioned papers, and

it delivers memory capacity for a learning agent to recall past experiences to update the

current policy [52]. It stores experience tuple similar to state-action pair in reinforcement

learning and repeatedly presents them to various types of reinforcement learning

algorithm (e.g., Deep-Q Network (DQN)). This technique breaks the temporal

51

correlations between the consecutive samples with randomly presenting tuple

information [82]. However, existing uniform random sampling is not an efficient way to

use history information. It is studied in [6, 8] that uniform random sampling method does

not differentiate important tuples and always overwrites with the recent tuples due to the

limitation of finite memory size. It also gives identical weight to all tuples in the

experience replay. The authors in [6, 8] suggest that a more sophisticated strategy is

needed similar to prioritized sweeping [83] that promotes the important tuples. Prioritized

experience technique presents important tuples frequently, and therefore uses experience

replay information more efficiently [84]. The experimentation of the Atari Learning

Environment in [82] shows that the prioritized sampling with Double DQN significantly

outperforms previous state-of-the-art Atari video game results. In [85], prioritized

sampling strategy is combined with deep Q-network with experiment on four Atari 2600

games. The authors conclude that using prioritized sampling can lead to a faster and more

stable learning process, and a better performance of scoring. In [82], the authors

investigate how prioritization can make experience replay more efficient and effective than

if all tuples are replayed uniformly. The key idea presented is that an DQN agent can learn

more effectively from certain tuples than from others.

ER is integrated with actor-critic algorithm in [57] to address the issues of efficiency

and autonomy that are required to make reinforcement learning feasible for real-world

control tasks to solve difficult learning control problems in a reasonable short time.

In [38], a general experience replay framework is developed that can be combined with

essentially any incremental RL technique and the authors present promising real time

learning results in inverted pendulum and robot systems, which are encouraging for real

52

time applicability. The weights of the action network and critic network in ADP are

updated using the experience replay [40] for optimal control of a DC motor problem [56]

and an inverted pendulum. The training speed is improved compared to classic ADP

approach. In [41], the experience replay has been integrated with actor-critic designs for

nonzero-sum games. Because of prioritized experience replay (PER), more important

sample has higher probability to be selected for training. Thus, ADP controller is expected

to learn better policy efficiently and effectively. There are two variants of prioritization

technique: proportional prioritization [86] and rank-based prioritization [87] out of which

rank-based prioritization is considered in this paper. Modares et. al. [37] proposed the

experience replay based online algorithm for concurrent learning along with current data

for adaptation of critic weights in a continuous time domain. In [10], theoretical analysis

for double Q-learning is given with verification that the lower bound on the absolute error

of the double Q-learning estimate is zero. In [88], theoretical analysis is presented with

proof that recent development in reinforcement learning called retrace can be interpreted

as an application of the importance weight truncation and bias correction trick advanced

in their paper. The stability of the proposed controller is verified in this paper using

similar Lyapunov function as that in [70, 73].

Motivated by the new state-of-the-art achievement by prioritized experience replay

of efficient learning, a similar technique has been proposed to integrate prioritized

experience replay into ADP controller. The prioritized experience replay has been

integrated to further improve the training process compared to experience replay based

ADP methods [89]. In addition, the current tuple is the most important sample for on-line

learning and it is selected for the first training step. The rest of the samples are collected

53

by prioritized sampling method apart from the current tuple. The samples collected by

prioritized sampling method has the most important information and is used for updating

weights of both action and critic network.

Modares et. al. [37] proposed the experience replay based online algorithm for

concurrent learning along with current data for adaptation of critic weights in a continuous

time domain. In [10], theoretical analysis for double Q-learning is given with verification

that the lower bound on the absolute error of the double Q-learning estimate is zero.

In [88], theoretical analysis is presented with proof that recent development in

reinforcement learning called retrace can be interpreted as an application of the

importance weight truncation and bias correction trick advanced in their paper. The

stability of the proposed controller is verified in this chapter using similar Lyapunov

function as that in [70, 73].

3.1 Design of Experience Replay

Experience replay technique delivers an agent with a capacity to memorize and

recall past experiences. This can be applied to update the present policy. Thus, high data

efficiency is achieved by reutilizing the samples. The basic technique behind experience

replay is to store all the experience tuple defined as,

et = (x(t−1),u(t−1),r(t),x(t)) (3.1)

where t refers to the current time instance, x(t) refers to previous state, u(t−1) is the

action taken in order to move to the current state, x(t) according to which reward signal,

r(t) is given. Thus, experience tuple is similar to state-action pair in the reinforcement

54

learning. Here, state action pair is backed up one-time step to avoid the model network.

The overall experience replay with finite size of L is defined as

D = {e1,e2, ...,eL} (3.2)

Here, L is user-defined according to different applications. When training the neural

network, random minibatches or a single tuple from the experience replay are/is sampled

instead of the most recent tuple to avoid local minimum or diverging case [6]. Experience

replay is first proposed in [52], in which experience data are stored and chosen randomly

to update the value function and policy in reinforcement learning for neural network

approximation. There are many advantages of experience replay as mentioned in [53],

first it helps to increase the sample efficiency by allowing samples to be reused. In the

context of neural networks when the training is performed on a GPU, experience replay

allows for mini-batch updates which helps the computational efficiency. In addition,

learning from mini-batch samples would cause the updates of the network parameters to

have a low variance, leading to faster and stable learning. Another advantage of

experience replay is that ε can be used to scale the amount of exploration and thus the

experiences used to train the networks are not only based on the most recent policy. If

ε=1, the movement follows uniform random distribution and if ε=0, the optimal policy is

followed, known as greedy behavior.

3.2 Prioritized Sampling in Experience Replay and Integration Into ADP Design

The algorithm for integrating a prioritized experience replay into the ADP controller

is shown in Fig. 3.1, which is extended from the recent work [89]. The similarity with the

55

previous work is that the current tuple is the most important sample for on-line learning

and it is selected for the first training step. The main difference from the previous work is

that the rest of the samples are collected by prioritized sampling method apart from the

current tuple. The samples collected by prioritized sampling method has the most

important information and is used for updating weights of both action and critic network

as shown in Fig. 3.1.

X

2

X

1

X

3

h

3

h

2

h

4

h

5

h

6

h

1

u

X2

X1

X3

h

3

h

2

h

4

h

5

h

6

h

1

J

u

System

J(t)
α

Action

Network

Critic

Network

Uc(t)

Signal flow

Experience

Replay

Database

S
to

re

x(
t-

1
),

u
(t

-1
),

x(
t)

,r
(t

)

x(t)

u(t)

r(t)

 Weights updating

Information from

history experience

J(t-1)-r(t)

Prioritized

SamplesPDF

Figure 3.1. Proposed ADP diagram based on prioritized experience replay.

The architecture of the critic network is a MLP structure. The output of the critic

network, J function, approximates the discounted total reward to go. At time, t, the

measured system state vector, x(t), and control action, u(t) from the action network are

inputs to the critic network, and J(t) is the output of the critic element. R(t) is the

expected accumulative reward-to-go value at time t and r(t)=external reinforcement value

at t. In the ADP design, the J function is used to approximate R (i.e. J→ R). The action

56

network in the ADP has a similar MLP NN architecture as the critic network. However,

the input neuron and output neuron numbers are different. In turn, the action network can

be implemented by either a linear or a nonlinear network depending on the complexity of

the problem. This section describes about prioritized sampling method and how it is

integrated into ADP design.

3.2.1 Prioritized Sampling of Experience Replay

Tuples are randomly picked from the experience replay with the equal probability as

shown in Fig. 3.2(a) and thus learning may not be from the special ones. Fig. 3.2(b) shows

probability density function for prioritized sampling with the most important information

at the center.

(a) (b)

Figure 3.2. Probability density function for (a) Uniform random sampling (b) Prioritized
sampling.

A stochastic sampling method is adapted from [82] which finds balance between

pure greedy prioritization and uniform random sampling. Priority is translated to

probability of being chosen for training. The probability of sampling kth experience replay

tuple is given as:

P(k) =
pα

k

∑
L−1
l=1 pα

l

(3.3)

57

where pα
k > 0 is the priority of kth tuple, and the exponent, α determines how much

prioritization is used, with α=0 corresponding to the uniform case. Rank-based

prioritization is defined with:

pk =
1

rank(k)
(3.4)

where rank(k) is the rank of kth experience replay tuple when the experience replay

database is sorted according to |Errork|. The concept is that a high TD-error is correlated

to a high level of information. These tuples should be sampled with more probability than

the others. The advantage is that this prioritization technique is not sensitive to outliers,

and thus is more robust in addition to large speed-ups in learning curve. Therefore, the

tuples are sorted in descending order of |Errork|. The index, k returned after sorting the

tuple is used to calculate the rank by using: rank(k) = y, where y ranges from 1 to

size(Errork). Fig. 3.3 shows the prioritized sampling method in which tuple(s) of

experience is selected according to probability density function. In an experience replay

tuple, the current tuple of experience represented by Eq. (3.1) is added to the newest tuple

entry and oldest tuple is destroyed according to the experience replay size limit. The

probability density curve is obtained by Eq. (3.3) from which random mini-batch or tuples

of experience of given size can be extracted using different sampling/selection method.

The sample with the highest probability is the most important one and has the highest

chance to be selected for training. This important tuple of experience are used for training

the ADP controller.

58

Prioritized
Sampling

ADP

Train

Probability Density FunctionCurrent

Oldest

<x(t-1),u(t-1),r(t),x(t)>

,,

,,

,,

,,

,,

Figure 3.3. Training procedure for prioritized experience replay based ADP with prioritized
sampling method.

3.2.2 Integration of Prioritized Experience Replay in Critic Network

The weight updating mechanism in ADP for the critic network is based on gradient

descent rule which minimizes the prediction error for the network given by:

ec(t) = αJ(t)− [J(t−1)− r(t)] (3.5)

and the squared error is given by an objective function, Ec(t) = 0.5ec(t)2. The

reinforcement signal, r(t) may be as simple as either a “0” or “-1” corresponding to

“success” or “failure” respectively and is provided by the external environment and α is

the discount factor. A tuple of experience, given by Eq. (3.1), is randomly chosen from the

experience replay.

The following weights updating rule is presented to investigate the weights

adaptation in the critic network:

wc(t +1) = wc(t)+∆wc(t) (3.6)

∆wc(t) =−lc(t)
[

∂Ec(t)
∂wc(t)

]
︸ ︷︷ ︸

traditional
error propagation

−
N−1

∑
n=1

lc(t)
[

∂Ecn(t)
∂wc(t)

]
︸ ︷︷ ︸

proposed additional
error propagation

. (3.7)

59

The index n is used to refer to the nth experience replay tuple (n = 1, ...,N−1) sampled

from the experience replay and the time, t, is used for the current time. The index k used

in previous subsection represents index of experience replay before sampling and n

represents index of tuple of experience after prioritized sampling. Here, N−1=number of

samples from experience replay using prioritized sampling used for training critic and

action networks where, N ≤ L. Note in Eq. (3.7), the first term is a traditional

gradient-descent updating law to minimize the objective function, Ec(t). The last term of

Eq. (3.7) tries to minimize this objective function from the stored samples in the

experience replay. Here, Ecn(t) represents the critic network squared error or objective

function of nth experience tuple obtained from prioritized sampling.

3.2.3 Integration of Prioritized Experience Replay in Action Network

The principle of adjusting the weights of the action network is to indirectly

back-propagate the error between the approximate J function from the critic network and

the desired ultimate objective, denoted by Uc. The weight updating in the action network

can be formulated as follows:

ea(t) = J(t)−Uc(t). (3.8)

The ultimate objective here is to minimize the squared error, Ea(t) = 0.5ea(t)2 by

adjusting the action network weights. The input to the action network is the measured

system state vector, x(t), from a tuple of experience, d(t), randomly chosen from the

experience replay as described in the previous subsection. The output of the action

network is the control action, u(t). The similar weight updating rule as in the critic

60

Initialization of proposed ADP
controller

 Set
x(t-1)=x(0) as

the initial state

Obtain u(t-1) by
forward pass of
action network

Take action u(t-1),
observe reward, r(t) and

the next state x(t)

If size (D)<L

Update weights of
critic and action

network

Sample a tuple,
{x(t-1),u(t-1), r(t),

x(t)} from the
experience replay

with probability, P(i)
and Roulette wheel
selection method

If
t>T

No
Yes

Yes

No

Start

Store the
experience tuple
dt = {x(t-1),u(t-1),
r(t), x(t)} into a

experience replay
Dt = {d1, ..., dL}

Remove oldest
entry of D

If training
iteration>=N

No

Yes Update t=t+1

Calculate the
priority of
samples in

experience replay
using pk=1/rank(k)

Sort experience
replay

according to
|Errork|

Calculate the
probability of

sampling
tuple using

Eq. (3.3)

Stop

Figure 3.4. Proposed ADP algorithm based on prioritized experience replay. The high-
lighted portion shows detailed steps for prioritized experience replay integration.

network can be applied to action network as follows:

wa(t +1) = wa(t)+∆wa(t) (3.9)

∆wa(t) =−la(t)
[

∂Ea(t)
∂wa(t)

]
︸ ︷︷ ︸

traditional
error propagation

−
N−1

∑
n=1

la(t)
[

∂Ean(t)
∂wa(t)

]
︸ ︷︷ ︸

proposed additional
error propagation

. (3.10)

Note in Eq. (3.10), the first term is a traditional gradient-descent updating law for the

objective function, Ea(t). The last term of Eq. (3.10) tries to minimize this objective

function from the stored samples in the experience replay. Here, Ean(t) represents the

action network squared error or objective function of nth experience tuple obtained from

prioritized sampling.

61

3.2.4 On-line Learning Algorithms

The algorithm for integrating a prioritized experience replay into the ADP controller

is shown by the flowchart in Fig. 3.4. At the initialization stage, action network and critic

network weights are initialized in a certain range with uniform random distribution. The

learning rates for the action network, la, and for the critic network, lc, are also initialized

typically in the small range. The discount factor, α , is initialized in the range (0,1). The

experience replay, D, is initialized as null (/0). The initial state is set as x(0), which is

defined in each of the case study. A previous state and action pair is required, and the

controller waits for the first time step when t=0 and records this state, x(0) and action,

u(0). In the next time step, the new state, x(t) and reinforcement signal, r(t) are obtained.

The control action, u(t), is obtained by forward pass of the action network with input as

x(t). The experience tuple, d(t), defined in Eq. (3.1), is built and saved in the prioritized

experience replay, D, as depicted by Eq. (3.2). The prioritized experience replay works on

the principle similar to that of queue (first-in-first-out, FIFO principle). The current tuple

is stored at the top of the prioritized experience replay as shown in Fig. 3.3.

If the size of D is greater than L, the oldest entry of D is removed and the space is

released for a new tuple. As mentioned at the beginning of Section 3.2, current tuple

contains the highest level of information and it is always selected for the first training

period. For the next training period during each time step, the experience replay is sorted

according to error |Errork| and priority of sample is calculated for the samples in the

experience replay using Eq. (3.4). Next, a given number of tuples are sampled by a

probability sampling technique following Eq. (3.3) with roulette wheel selection

62

method [90] from the experience replay which is used for training a critic and an action

networks. The action and critic networks weights can be trained by algorithm as shown in

chapter 2, section 2.3, Eq. (2.14)-(2.29). This training and adaptation will be repeated in

the next time step until the termination criteria is met.

3.2.5 Stability Analysis

For the stability of the proposed ADP controller, a similar Lyapunov function as that

in [70, 73] has been reconstructed. The Lyapunov function is as follows:

V =V1 +V2 +V3 (3.11)

where,

V1 =
1
lc

tr(w̃T
c (t)w̃c(t)) (3.12)

V2 =
1
2
||ζc(t−1)||2 (3.13)

V3 =
1

γla
tr
(

w̃T
a (t)w̃a(t)

)
(3.14)

In Eq. (3.13), ζc(t−1) = (ŵc(t−1)−wc)
T φc(t−1) = w̃T

c (t−1)φc(t−1) and γ > 0. The

first difference of the Lyapunov function candidate can be written as:

∆V = ∆V1 +∆V2 +∆V3. (3.15)

For ∆V1,

∆V1 =
1
lc

tr
(

w̃T
c (t +1)w̃c(t +1)− w̃T

c (t)w̃c(t)
)

(3.16)

63

where,

ŵc(t +1) =ŵc(t)− lcαφc(t)
(

αŵT
c (t)φc(t)+ r(t)− ŵT

c (t−1)φc(t−1)
)T

− lcα

N−1

∑
n=1

φcn(t)
(

αŵT
c (t)φcn(t)+ rn(t)− ŵT

c (t−1)φcn(t−1)
)T

(3.17)

and the corresponding w̃c(t +1) can be expressed as:

w̃c(t +1) =w̃c(t)− lcαφc(t)
(

αŵT
c (t)φc(t)+ r(t)− ŵT

c (t−1)φc(t−1)
)T

− lcα

N−1

∑
n=1

φcn(t)
(

αŵT
c (t)φcn(t)+ rn(t)− ŵT

c (t−1)φcn(t−1)
)T

(3.18)

=
(

I− lcα
2
φc(t)φ T

c (t)−
N−1

∑
n=1

lcα
2
φcn(t)φ T

cn(t)
)

w̃c(t)

− lcαφc(t)
(

αŵT
c (t)φc(t)+ r(t)− ŵT

c (t−1)φc(t−1)
)T

− lcα

N−1

∑
n=1

φcn(t)
(

αŵT
c (t)φcn(t)+ rn(t)− ŵT

c (t−1)φcn(t−1)
)T

.

(3.19)

Then,

∆V1 =
1
lc

tr
(

w̃T
c (t)A

T Aw̃c(t)− w̃T
c (t)w̃c(t)+Bα

2l2
c φ

T
c (t)φc(t)BT

−w̃T
c (t)A

T lcαφc(t)BT −Blcαφ
T
c (t)Aw̃c(t)

) (3.20)

where A = I− lcα2φc(t)φ T
c (t)−∑

N−1
n=1 lcα2φcn(t)φ T

cn(t) and B = αwT
c φc(t)+ r(t)− w̃T

c (t−

1)φc(t−1)− lcα ∑
N−1
n=1 φcn(t)

(
αŵT

c (t)φcn(t)+ rn(t)− ŵT
c (t−1)φcn(t−1)

)T
. From [70],

w̃T
c (t)A

T Aw̃c(t)− w̃T
c (t)w̃c(t) =− lcα

2||ζc(t)||2−lcα
2w̃T

c (t)φcφ
T
c

×
(

I− lcα
2
φcφ

T
c −

N−1

∑
n=1

lcα
2
φcn(t)φ T

cn(t)
)

w̃c(t)
(3.21)

64

where ζc(t) = w̃T
c (t)φc(t).

Thus,

∆V1(t) =−α
2||ζc(t)||2−α

2
(

1− lcα
2||φc(t)||2−

N−1

∑
n=1

lcα
2||φcn(t)||2

)
||ζc(k)||2

+ lcα
2||φc(t)||2×||αwT

c φc(t)+ r(t)− ŵT
c (t−1)φc(t−1)

− lcα

N−1

∑
n=1

φcn(t)
(

αŵT
c (t)φcn(t)+ rn(t)− ŵT

c (t−1)φcn(t−1)
)T
||2

−2tr
[
α

(
I− lcα

2×||φc(t)||2−
N−1

∑
n=1

lcα
2||φcn(t)||2

)
ζc(t)

×
(

αwT
c φc(t)+ r(t)− w̃T

c (t−1)φc(t−1)

−
N−1

∑
n=1

(αŵT
c (t)φcn(t)+ rn(t)− ŵT

c (t−1)φcn(t−1))
)T]

(3.22)

The upper bound of Eq. (3.22) can be obtained by applying Cauchy-Schwarz inequality

for the fourth term. Thus,

∆V1(t)≤−α
2||ζc(t)||2−α

2(1− lcα
2||φc(t)||2

−
N−1

∑
n=1

lcα
2||φcn(t)||2)||ζc(k)||2+||αwT

c φc(t)+ r(t)− ŵT
c (t−1)φc(t−1)

− lcα

N−1

∑
n=1

φcn(t)(αŵT
c (t)φcn(t)+ rn(t)

− ŵT
c (t−1)φcn(t−1))T ||2α

2||ζc(t)||2−α
2
(

1− lcα
2||φc(t)||2

−
N−1

∑
n=1

lcα
2||φcn(t)||2

)
×||ζc(t)+wT

c φ(t)+α
−1r(t)

−α
−1ŵT

c (k−1)×φc(k−1)+
N−1

∑
n=1

wT
c φ(t)

+α
−1rl(t)−α

−1ŵT
c (k−1)×φcn(k−1)||2.

(3.23)

65

Then,

∆V1(t)≤−α
2||ζc(t)||2+

1
2
||ζc(t−1)||2+2||αwT

c φc(k)+ r(t)

− ŵT
c (t−1)φ T

c (t−1)||2+2
N−1

∑
n=1
||αwT

c φc(k)+ rl(t)

− ŵT
c (t−1)φ T

cn(t−1)||2−α
2
(

1− lcα
2||φc(t)−

N−1

∑
n=1

lcα
2||φcn(t)||2

)
×||ζc(t)+wT

c φ(t)+α
−1r(t)−α

−1ŵT
c (k−1)×φc(k−1)

+
N−1

∑
n=1

(
wT

c φ(t)+α
−1rl(t)−α

−1ŵT
c (k−1)×φcn(k−1)||2

)
.

(3.24)

For ∆V2,

∆V2(t) =
1
2

(
||ζc(k)||2−||ζc(k−1)||2

)
. (3.25)

∆V3 can be written as:

∆V3 =
1

γla
tr
(

w̃T
a (t +1)w̃a(t +1)− w̃T

a (t)w̃a(t)
)
. (3.26)

where,

ŵa(t +1) = ŵa(t)− laαφa(t)ŵT
c (t)Ca(t)×

(
ŵT

c (t)φc(t)
)T

−laα

N−1

∑
n=1

φan(t)ŵT
c (t)Can(t)×

(
ŵT

c (t)φcn(t)
)T

.

(3.27)

where, C(t) is a matrix of Nhc×n dimension, and its elements can be expressed as

Cki(t) =
1
2

(
1−φ

2
ck
(t)
)

wck,m+i,k = 1, ...,Nhc, i = 1, ...n. (3.28)

66

Substituting Eq. (3.27) into Eq. (3.26), and using the property tr(AB) = tr(BA):

∆V3 =
1
γ

{
−2ŵT

c (t)C(t)ζa(t)
[
ŵT

c φc(t)
]T
−2

N−1

∑
n=1

ŵT
c (t)Cn(t)ζan(t)

× [ŵT
c φcn(t)]T + la||ŵT

c (t)C(t)||2||φa(t)||2||ŵT
c (t)φc(t)||2

+ la
N−1

∑
n=1
||ŵT

c (t)Cl(t)||2||φan(t)||2||ŵT
c (t)φcn(t)||2

} (3.29)

With further simplification,

∆V3 =
1
γ

{
− [||ŵT

c (t)C(t)||2−la||ŵT
c C(t)||2||φa(t)||2

]
×||ŵT

c (t)φc(t)||2

−||ŵT
c (t)C(t)||2||ζa(t)||2+||ŵT

c (t)φc(t)− ŵT
c (t)C(t)ζa(t)||2

−
N−1

∑
n=1

[
||ŵT

c (t)Cl(t)||2−la||ŵT
c (t)Cl(t)||2||φan(t)||2

]
×||ŵT

c (t)φcn(t)||2

−
N−1

∑
n=1
||ŵT

c (t)Cl(t)||2||ζan(t)||2+
N−1

∑
n=1
||ŵT

c (t)φcn(t)− ŵT
c (t)Cl(t)ζan(t)||2}

(3.30)

Using Cauchy-Schwarz inequality,

∆V3 ≤
1
γ

{
−
[
||ŵT

c (t)C(t)||2−la||ŵT
c C(t)||2||φa(t)||2

]
×||ŵT

c (t)φc(t)||2

+ ||ŵT
c (t)C(t)||2||ζa(t)||2+4||ŵT

c (t)φc(t)||2+4||ζc(t)||2

−
N−1

∑
n=1

[
||ŵT

c (t)Cl(t)||2−la||ŵT
c (t)Cl(t)||2||φan(t)||2

]
×||ŵT

c (t)φcn(t)||2

−
N−1

∑
n=1
||ŵT

c (t)Cl(t)||2||ζan(t)||2+4
N−1

∑
n=1

[
||ŵT

c (t)φcn(t)||2+||ζcn(t)||2
]}

(3.31)

Substituting Eq. (3.24), (3.25), and (3.31) into Eq. (3.15), the first difference of the

67

Lyapunov function candidate:

∆V (t)≤−
(

α
2− 1

2
− 4

γ

)
||ζc(t)||2−α

2
(

1− lcα
2||φc(t)−

N−1

∑
n=1

lcα
2||φcn(t)||2

)
.||ζc(t)+wT

c φ(t)+α
−1r(t)−α

−1ŵT
c (k−1)×φc(k−1)

+
N−1

∑
n=1

(
wT

c φ(t)+α
−1rl(t)−α

−1ŵT
c (k−1)×φcn(k−1)||2

)
− 1

γ
[||ŵT

c (t)C(t)||2

− la||ŵT
c C(t)||2||φa(t)||2]×||ŵT

c (t)φc(t)||2−
1
γ

[
||

N−1

∑
n=1

[ŵT
c (t)Cl(t)||2

−
N−1

∑
n=1

la||ŵT
c (t)Cl(t)||2||φan(t)||2]×||ŵT

c (t)φcn(t)||2
]

+2||αwT
c φc(k)+ r(t)− ŵT

c (t−1)φ T
c (t−1)||2

+2
N−1

∑
n=1
||αwT

c φc(k)+ rl(t)− ŵT
c (t−1)×φ

T
cn(t−1)||2

+
1
γ

{
||ŵT

c (t)C(t)||2||ζa(t)||2+
4
γ
||ŵT

c (t)φc(t)||2

−
N−1

∑
n=1
||ŵT

c (t)Cl(t)||2||ζan(t)||2+
4
γ

N−1

∑
n=1

[
||ŵT

c (t)φcn(t)||2+||ζcn(t)||2
]}

(3.32)

Choose

1√
2
< α < 1, lc <

1
Nα2||Φc(t)||2

, la <
1

N||φa(t)||2
(3.33)

and select γ satisfying

γ >
4

(α2− 1
2)
. (3.34)

68

Then:

∆V (t)≤−
(

α
2− 1

2
− 4

γ

)
||ζc(t)||2−α

2
(

1− lcα
2||φc(t)−

N−1

∑
n=1

lcα
2||φcn(t)||2

)
.||ζc(t)+wT

c φ(t)+α
−1r(t)−α

−1ŵT
c (k−1)×φc(k−1)+

N−1

∑
n=1

(
wT

c φ(t)

+α
−1rl(t)−α

−1ŵT
c (k−1)×φcn(k−1)||2

)
− 1

γ

[
||ŵT

c (t)C(t)||2

− la||ŵT
c C(t)||2||φa(t)||2

]
×||ŵT

c (t)φc(t)||2−
1
γ
[
N−1

∑
n=1

[
||ŵT

c (t)Cl(t)||2

−
N−1

∑
n=1

la||ŵT
c (t)Cl(t)||2||φan(t)||2

]
×||ŵT

c (t)φcn(t)||2]+D2

(3.35)

where D2 is defined as:

D2 =2||αwT
c φc(k)+ r(t)− ŵT

c (t−1)φ T
c (t−1)||2+2

N−1

∑
n=1
||αwT

c φc(k)+ rl(t)

− ŵT
c (t−1)φ T

cn(t−1)||2+1
γ

{
||ŵT

c (t)C(t)||2||ζa(t)||2+
4
γ
||ŵT

c (t)φc(t)||2

−
N−1

∑
n=1
||ŵT

c (t)Cl(t)||2||ζan(t)||2+
4
γ

N−1

∑
n=1

[
||ŵT

c (t)φcn(t)||2
]}

.

(3.36)

Applying the Cauchy-Schwarz inequality,

D2 ≤8
(
||α2||wT

c φc(t)||2+r2(t)+
1
4
||ŵT

c (t−1)φc(t−1)||2+1
4
||ŵT

c φc(t−1)||2
)

+8
(N−1

∑
n=1
||αwT

c φc(t)||2+r2
l (t)+

1
4
||ŵT

c (t−1)φcn(t−1)||2

+
1
4
||ŵT

c φcn(t−1)||2
)
+

2
γ

{
||ŵT

c (t)C(t)||2||×
(
||wT

a φa(t)||2+||wT
a φa(t)||2

)
+

4
γ
||ŵT

c (t)φc(t)||2+
2
γ

N−1

∑
n=1
||ŵT

c (t)Cl(t)||2

× (||wT
a φan(t)||2+||wT

a φan(t)||2)+
4
γ

N−1

∑
n=1

[
||ŵT

c (t)φcn(t)||2
]}

(3.37)

69

≤
(

8α
2 +4+

4
γ

)
w2

cmφ
2
cm +

4
γ

w2
cmC2

mw2
amφ

2
am +8r2

m

+
N−1

∑
n=1

[(
8α

2 +4+
4
γ

)
w2

cmnφ
2
cmn +

4
γ

w2
cmnC2

mnw2
amnφ

2
amn +8r2

mn

]
= D2

m +
N−1

∑
n=1

D2
mn

(3.38)

where wcm,wam,φcm,φam,Cm and rm are the upper bounds of wc,wa,φc(t),φa(t),C(t) and

r(t), respectively. If Eq (3.33) holds, then for any:

||ζc(t)||>

√√√√D2
m +∑

N−1
n=1 D2

mn

α2− 1
2 −

4
γ

, (3.39)

the first difference ∆L(t)≤ 0 holds. According to the Lyapunov extension theorem, this

demonstrates that the errors between the optimal network weights w∗c , w∗a and their

respective estimations ŵc(t), ŵa(t) are uniformly ultimately bounded (UUB), respectively.

This verifies the stability of the proposed method.

3.3 Simulation and Evaluation

The simulation results presented here are from two case studies: a cart-pole

balancing problem and a triple-link inverted pendulum balancing problem. For both cases,

a comparison among the traditional ADP in [24], the authors’ most recent ADP in [89]

and the proposed ADP approach is presented.

3.3.1 Cart-pole Balancing Problem

The ultimate objective of cart-pole balancing task is to generate appropriate control

action force applied on the cart, so as to balance the single pole mounted on the cart. The

70

model of the system can be described with the following differential equations:

∂ 2θ

∂ t2 =
gsinθ + cosθ [−F−mlθ 2 sinθ +µcsgn(ẋ)]− µpθ̇

mn

l
(

4
3 −

mcos2 θ

mc+m

) (3.40)

∂ 2x
∂ t2 =

F +ml[θ̇ 2 sinθ − θ̈ cosθ]−µcsgn(ẋ)
mc +m

. (3.41)

where the acceleration g = 9.8m/s2, the mass of the cart mc=1.0 kg, the mass of the pole

m=0.1 kg, half-pole length l=0.5 m, the coefficient of friction of the cart µ= 0.0005, and

the coefficient of friction of the pole µp=0.000002. The force, F applied to the cart is in

the range [-10, 10] N. A pole is considered fallen when the angle is outside the range of

[-12°, 12°] or the cart is beyond the range of [-2.4, 2.4] m. To evaluate the statistical

performance, 100 runs is set with different initial state conditions. Specifically, the angle

(θ) and position (x) of the pole in each of these initial states are uniformly generated

within [-0.05, 0.05] radians and [-0.5, 0.5] m, while the angular velocity (θ̇) and velocity

of the cart (ẋ) are both 0.

The proposed approach has been compared with the traditional ADP method

presented in [24] with the same parameter setting, however continuous control is used

here. The experience replay based ADP (ER based ADP) method presented in [89] is also

included as well for comparison. These results are summarized in Table 3.1. From

experience, the experience replay size is chosen as L=10. Different sizes of this

experience replay has been tried, and this is the best size from the trial-and-error

experience. For noise free conditions, PER based ADP provided 42.8% improvement over

ER based ADP. To identify whether this is significant improvement or not, ANOVA test is

71

Table 3.1. Performance evaluation for cart-pole balancing task for 100 runs. The 2nd, 3rd
and the 4th column are with the traditional ADP method, while 5th, 6th and 7th column are
with experience replay ADP method. The 8th, 9th and 10th column are with the proposed
ADP method.

Noise type
Traditional ADP [24] ER based ADP [89] PER based ADP
SR∗ Mean† σ] SR∗ Mean† σ] SR∗ Mean† σ]

Noise free 99 47.9 58.1 100 32.7 35.6 100 18.7 18.5
Uniform 5% a. 98 57.8 72.7 100 36.4 50.7 100 19.8 17.8
Uniform 10% a. 99 73.4 130.9 100 59.2 111.1 100 23.5 26.3
Uniform 5% s. 98 61.1 93.1 100 59.9 84.1 100 21.9 27.3
Uniform 10% s. 98 61.4 142.3 100 68.8 112.2 100 34.4 55.0

SR*: ‘Success rate’ for 100 runs (in %)
Mean†: Required average number of trials to succeed
σ]: Standard deviation of trials to succeed
a.:actuator, s.:sensor

used with following hypothesis:

• Null hypothesis: there is no significant difference in mean.

• Alternative hypothesis: there is significant difference in mean.

It has been tested with 99% confidence interval and it has been found that p-value for

noise-free condition is 5.80e-04 which is very much less than 0.01. Thus the inference is

to reject null hypothesis and the conclusion is that there is significant difference of mean

value for noise-free condition. Similarly, for different noise conditions as in Table 3.1, the

p-values are: 0.0022, 0.0020, 2.73e-05, 0.006. Therefore, it is concluded that PER based

ADP achieved significant improvement over ER based ADP at 99% confidence interval. It

can also seen from Fig. 3.5 that there is significant improvement in required average

number of trials to succeed for PER ADP in comparison to ER ADP for 10% uniform

sensor noise condition.

For analyzing the details of prioritized experience replay, a random instance has

72

ER based ADP PER based ADP

0

100

200

300

400

500

600

700

T
ri

al
s

to
 s

uc
ce

ed

Figure 3.5. Box plot comparison of two methods: ER based ADP and PER based ADP
with respect to trials to succeed for uniform 10% sensor noise condition.

been selected with no failure experience (i.e. r(t)=0 for all samples) in experience replay

and the Figs. 3.6(a) and 3.6(b) were extracted. Fig. 3.6(a) depicts the error=|Errork| as

calculated by Eq. (3.5). Based on this error, Eq. (3.3) is used to calculate the probability of

samples in experience replay which is represented in Fig. 3.6(b). Fig. 3.6(b) also shows

rank represented by numbers with 1 representing the tuple with highest error and having

the highest probability to be selected. It can be concluded from these figures that

experience tuple with highest error represents tuple with highest probability of being

selected for training action and critic networks. This accelerates the training process

compared to uniform random sampling method in ER based ADP [89]. This explains the

improvement in trial to succeed for different noise conditions as shown in Table 3.1.

3.3.2 Triple-link Inverted Pendulum Balancing Problem

The same triple-link inverted pendulum balancing task as in [24, 80] has been

considered. The ultimate objective is to generate appropriate control action force applied

73

(a) (b)

Figure 3.6. Typical curves: (a) error curve (b) probability curve with rank represented by
numbers from 1 to 10 for 10 tuples in experience replay with no failure experiences.

on the cart so as to balance the triple-link mounted on the cart. However, the level of

difficulty is much higher compared to a simple cart-pole because there are three joints:

mount joint, first joint and second joint. This makes the system highly unstable and

therefore is a challenging problem to solve. The model of the system can be described

with the following differential equation:

F(q)
∂ 2q
∂ t2 =−G

(
q,

∂q
∂ t

)
∂q
∂ t
−H(q)+L(q,u) (3.42)

where the components and parameters used are the same as described in [24, 80].

There are eight state variables in this model: position of the cart on the track, x;

vertical angle of the first link joint to the cart, θ1; vertical angle of the second link joint to

the first link, θ2; vertical angle of the third link joint to the second link, θ3; cart velocity, ẋ;

angular velocity of θ1, i.e. θ̇1; angular velocity of θ2, i.e. θ̇2; and angular velocity of θ3,

i.e. θ̇3. The constraints for the triple-linked inverted pendulum are (1) the cart track

extends 1.0 m to both sides from the center point; (2) the voltage applied to the motor

74

should be within [-30 V, 30 V]; (3) each link angle should be within the range of

[−20°,20°] with respect to the vertical axis. Here, condition (2) is guaranteed by using a

sigmoid function. While for the other two conditions, if either one fails or both fail, the

system will be provided with an external reinforcement signal r =−1 at the moment of

failure, otherwise r = 0 all the time.

100 runs has been conducted for the triple link pendulum. Similar to the cart-pole

problem, different initial starting states has been used for each run. Specifically, the three

angles and angular velocity of the triple links are set to be uniformly within the range of

[-0.02, 0.02] radians and [-0.5, 0.5] radians/s, respectively. As for x and ẋ, their initial

states are set to zero. The descriptions of the notation used are defined as following. The

initial learning rates of critic and action network are initialized at 0.1 which is decreased

by 0.05 every five time steps until it reaches 0.005 and stays at 0.005 thereafter. The

internal cycles for critic and action networks are set as: Nc=40 and Na=50 respectively.

The internal error threshold for critic and action networks are set as: Tc=0.05 and

Ta=0.005 respectively.

The summary of the simulation results with different noise conditions is presented

in Table 3.2. It shows comparison for three control approaches: traditional ADP [24], ER

based ADP [89], and the proposed method i.e. prioritized experience replay based ADP

(PER based ADP). The experience replay size has been set as a short term experience

replay size of L=10 and number of training cycles for action and critic networks as N=10.

For noise free condition, ER based ADP provided 42.73% improvement in required

average number of trials to succeed. PER based ADP provided 51.63% improvement and

reduced the standard deviation for required average number of trials to succeed. In

75

Table 3.2. Performance evaluation for triple-link inverted pendulum balancing task for for
100 runs. The 2nd, 3rd and the 4th column are with the traditional ADP method, while 5th,
6th and 7th column are with experience replay ADP method. The 8th, 9th and 10th column
are with the proposed ADP method.

Noise type
Traditional ADP [24] ER based ADP [89] PER based ADP

SR∗ Mean† σ] SR∗ Mean† σ] SR∗ Mean† σ]

Noise free 100 468.5 488.20 100 268.3 305.8 100 226.6 256.7
Uniform 5% a. 99 500.6 511.54 100 298.6 353.9 100 228.7 305.8
Uniform 10% a. 96 544.7 465.00 100 323.6 367.0 100 233.5 301.6
Uniform 5% s. 96 609.0 608.63 99 311.4 353.8 100 226.7 289.4
Uniform 10% s. 95 612.9 624.64 100 352.9 380.3 100 253.8 332.2

SR*: ‘Success rate’ for 100 runs (in %)
x̄†: Required average number of trials to succeed
σ]: Standard deviation of trials to succeed
a.:actuator, s.:sensor

average for all noise conditions, from Table 3.2, the experience replay based ADP could

achieve only 43% improvement of required average number of trails to succeed. However,

the proposed PER based ADP approach improved the required average number of trials to

succeed by 56.89% compared to traditional ADP for this triple-link balancing task.

3.4 Summary

Prioritized experience replay is a method that can do efficient learning from

experience replay. This project integrated prioritized experience replay to model free ADP

controller, thereby preserving the model-free capability of ADP. First, one step backward

state-action information is used for the design of experience replay tuple to avoid the

model network usage. Second, a systematic approach is proposed to integrate history

experience in both critic and action networks of ADP controller design. Rank based

prioritization is used to train ADP controller in two control benchmarks: cart-pole and

triple-link balancing task for accelerating the training process.

76

CHAPTER 4 Smart Grid Application 1: Supplementary Adaptive Dynamic

Programming Controller for Virtual Synchronous Machine

The project in this chapter is a joint work with Dr. Reinaldo Tonkoski and Dipesh

Shrestha who kindly provided benchmark of this work. Increased photovoltaics (PV)

penetration in PV-hydro integrated systems decreases relative inertia of the system due to

lack of rotating masses like in conventional synchronous generator. This leads to

frequency instability problem and can have a significant impact on its dynamic

performance and transient stability [91]. Load/generation changes and PV fluctuations in

such systems can cause large frequency deviations at a high rate of change of frequency

(ROCOF) [92]. A solution to improve the transient stability of such integrated PV-hydro

micro-grids is to add inertia into the system using virtual synchronous machines (VSM).

A VSM can emulate virtual inertia by using small amounts of stored energy in the battery

or super-capacitor controlled by a power electronics converter [93]. Renewable based

generation, such as PV, use power electronics converter system as an interface between the

source and the grid. The batteries are usually used in renewable energy systems with

inverters because of the intermittent nature of renewable energy sources like solar. This

combination of PV and battery can also be used as VSM. Conventionally, this type of

converter is controlled using the standard decoupled d-q vector, proportional-integral (PI)

control approach whose control strategy is inherently limited due to the difficulty in tuning

the proportional-integral controller parameters [94]. Such challenge motivates the

development of adaptive control approach for the VSM application.

In [95], a strong ability of neural network vector control is shown in the case of

77

permanent magnet synchronous motors to tolerate system disturbances, rapidly changing

reference commands, and satisfy control requirements for complex electric drive vehicle

(EDV) needs as in [96]. In [94] and [97], the vector control of a grid-connected

rectifier/inverter using an artificial neural network has been claimed. In [98], an efficient

grid-connected controller is produced for a three-phase grid-connected converter to solve

a tracking problem under disturbances. However, d-axis current under variable grid-filter

inductance conditions shows high spikes at transient when tracking reference current.

In [99], recurrent neural network (RNN) training with the Levenberg-Marquardt algorithm

is used for optimal control of a grid-connected converter, but this does not involve on-line

training and requires well-trained RNN controller. In [100], current harmonics has been

mitigated by using fuzzy controller based 3-phase 4-wire shunt active filter with Id− Iq

control strategies, but there is no clue of performance of this controller during sudden load

change condition. In recent years, adaptive dynamic programming (ADP) has been widely

used for balancing a inverted pendulum [24], improving the system damping as well as

dynamic transient stability for not only small step changes, but also large disturbances

such as three phase short circuit [101–103]. ADP has also been widely used for damping

oscillations in a large power system [104], as a supplementary controller for a doubly-fed

induction generator (DFIG) to enhance power system stability [62, 105–107], and so on.

However, none of them have applied ADP for current control of pulse width modulation

(PWM) inverters used in VSM.

All of the aforementioned literatures indicate the need for developing a

supplementary adaptive control approach for VSM system. The basic idea is to

complement an existing controller using a supplementary controller based on ADP. In this

78

way, the prior knowledge of the original controller can be utilized. On the other hand, it

can make the original controller become “smarter” by incorporating an actor-critic

structure. The critic network is designed to evaluate the current supplementary controller,

while the actor is to produce a supplementary control signal to improve the control

performance [24, 62, 108]. The major contributions of the project in this chapter are as

follows. Firstly, ADP controller is proposed for use as a supplementary controller in the

VSM benchmark system developed by Dipesh and Ujjwol. The advantage of the online

learning capability of ADP is used, which is model-free and data-driven, for improving

performance of the current controller for grid-connected rectifier/inverter in renewable and

electric power system acting as a VSM. Secondly, adaptation of ADP is demonstrated

under different types of disturbance and fault in VSM application.

The rest of the chapter is organized as follows. Section II describes the benchmark

used for this simulation. Section III illustrates the algorithm used for ADP applied here as

a supplementary controller. Section IV compares the performance of the ADP controller

with the conventional PI controller in two case studies: first for step change in Id and

second for unbalanced single line to ground fault in power system. Finally, Section V

summarizes the chapter.

4.1 Benchmark VSM System

Fig. 4.1 depicts the schematic diagram of VSM control structure with current

controlled voltage source inverter, which includes an external control loop. This loop

calculates the net active power (Pre f) to be consumed or delivered by the battery system

used to maintain the frequency and ROCOF under standard values. The inner current

79

Figure 4.1. Schematic diagram of VSM current controlled voltage source inverter with
closed loop current controller and phase locked loop tracked from the grid.

control loop consists of PI controller for regulating the output current of the inverter. The

goal of the control scheme is to regulate the output current by providing the appropriate

gate signal to the PWM inverter. The sinusoidal output currents (Ia, Ib and Ic) are

transformed in to rotatory d-q frame using Park’s transformation. This conversion

converts Ia, Ib and Ic into dc signal Id and Iq. Conversion into dc signals is necessary for

the PI controller. Since only active power control is necessary for frequency control in

VSM, only Id control is required and Iq is always made to be zero. Then, the error signal

after comparing with their reference values is fed to a PI controller, which generates

reference values V ∗d and V ∗q after considering cross-coupling terms ωLIq and ωLId , adding

feed-forward terms Vd and Vq. These reference values undergo dq to abc transformation

also known as inverse Park’s transformation to generate V ∗a , V ∗b , V ∗c . Finally, they are

compared with the carrier signal through a comparator to generate gate signals for the

PWM inverter.

Whenever there is a change in irradiance of the sun, there will be sudden change in

PV output causing change in frequency. The reference value of Id is generated by

reference current calculator in the external current control loop whose input is the

80

difference between reference frequency of 60 Hz and actual frequency of the system.

Here, Iq is made zero by default to control active power only. Phase locked loop is used to

measure the frequency of the system and the phase angle of the voltage signals. The net

active power to be absorbed or supplied based on the error in frequency and rate of change

of frequency is calculated as in [109]. The d-axis reference current is generated based on

this net active power. A PI-controller is used to track this reference current and absorb or

supply the net active power to maintain the frequency of the system. There are certain

limitations in the transient performance of PI controller which will be discussed in later

sections.

The simplified d-q equivalent model for current controller design is shown in

Fig. 4.2. The d-q equivalent model consists of two circuits, one each for the d-axis and

q-axis. Based on this figure, the transfer function of the plant is represented by following

equation:

Gplant(s) =
IL(s)

Vinv(s)
=

1
L

s+ R
L

(4.1)

where, Vinv is the unfiltered output voltage of the inverter, L and C are the inductance and

capacitance values of the LC filter and R is the resistance of the inductor which was

assumed to be 0.1 Ω. The frequency response of the plant was then obtained. The three

phase inverter was designed with a switching frequency of 10 kHz. The cross–over

frequency of the current controller was selected to be 1 kHz (or 6283.18 rad/s) which is a

decade below the switching frequency. The 1 kHz cross-over frequency provides fast

enough speed response for the designed current controller. Similarly, the phase margin of

the loop transfer function (combined transfer function of the plant and controller) was

81

Figure 4.2. d-q equivalent model of three-phase inverter with cross-coupling and feed-
forward terms included.

selected to be 45◦ which provides a large overshoot as presented later in Section IV.

Overshoot reduction by increasing phase margin is not desired because the system

response will become slow [110]. It was desirable to achieve a high gain at the low

frequencies to ensure that the overall system had minimal steady state error and a higher

attenuation at high frequencies to suppress the switching noises in the inverter. Taking

these points into consideration, a modified Proportional Integral type 2 controller was

selected as the appropriate controller for the current control. The generic transfer function

used for the PI type 2 controller is:

CPI2(s) = KPI
1+ sτ

sτ

1
1+ sTp

(4.2)

where, KPI is the proportional gain, τ is the time constant of the controller and Tp is the

time constant of the additional pole at high frequency used to attenuate high frequency

noises. This modified PI type 2 controller is tuned as described in [111].

In case of sudden load change, inverter has to supply current to the grid accordingly

82

for which command is given by gate signal to the inverter. Because of sudden load

change, frequency fluctuation occurs at the output of inverter which is sensed by PLL and

outer frequency control loop generates reference Id and Iq current and PI controller is

tuned in the benchmark so that actual Id and Iq current tracks their respective reference

values. However, in doing so, overshoot occurs after step change and also there is some

steady state error as discussed in Section IV later for Id current with PI controller only.

4.2 Controller Design Based on Adaptive Dynamic Programming

In order to reduce the overshoot and steady state error mentioned in the previous

section, ADP is connected as a supplementary controller as shown in Fig. 4.3.

The basic idea in adaptive critic design is to adapt the weights of the critic network

to make the approximating or optimal cost function, J∗(X(t)), satisfy the Bellman

principle of optimality [42], given by:

J∗(X(t)) = min
u(t)
{J∗(X(t +1))+ r(X(t))−Uc} (4.3)

The optimal supplementary controller can be computed from:

u∗(X(t)) = argmin
u(t)

J∗(X(t)) (4.4)

Eq. (4.3) is the modified Bellman equation where r(X(t)) is the immediate cost

incurred by u(t) at time t, and Uc is a heuristic term used to balance [112]. This equation

cannot be analytically solved in general, thus the problem of optimal current control can

be solved iteratively and approximately by using ADP as a supplementary controller.

83

Figure 4.3. ADP controller used as a supplementary controller (Refer to Fig. 4.1 for imple-
mentation in VSM system).

The reinforcement signal r(t) is provided from the external environment and may be

as simple as either a “0” or “-1” corresponding to “success” or “failure” respectively [24].

In this chapter, the reinforcement signal for the critic network is given as follows:

r(t) =−c(a1X2
1 +a2X2

2 +a3X2
3) (4.5)

where, c, a1, a2 and a3 are the coefficients of this quadratic equation.

X1=error signal between Id and Idre f ;

X2=one time step delayed error signal;

X3=two time step delayed error signal;

X(t)=[X1, X2, X3].

84

Figure 4.4. Action neural network with 3 inputs, 6 hidden neurons, and 1 output neuron.

The above two delayed signals of error signal (1 time step and 2 time step delayed)

are fed into the ADP controller in order for the ADP controller to work properly.

Fig. 4.4 demonstrates the 3-6-1 architecture of the action network. It is a three-layer

neural network with 6 hidden neurons. The inputs to the action network are the measured

system state vector X1, its one time-step delayed values X2, and two time-step delayed

values X3. The output of the action network is the supplementary control signal u(t). The

principle in adapting the action network is to indirectly back-propagate the error between

the desired ultimate objective, denoted by Uc, and the approximate J function from the

critic network. Since “0” is defined as the reinforcement signal for “success,” Uc is set to

“0” in the design paradigm. In the action network, the state measurements are used as

inputs to create a control as the output of the network. In turn, the action network can be

implemented by either a linear or a nonlinear network, depending on the complexity of the

problem. The weight updating in the action network can be formulated as follows.

ea(t) = J(t)−Uc(t) (4.6)

The performance error measure to be minimized in action network is given by:

85

Ea(t) =
1
2

e2
a(t) (4.7)

Thus, the action network can be represented as:

u = nna(X ,wa) (4.8)

The weight update algorithm by a gradient descent rule is given as follows:

wa(t +1) = wa(t)+∆wa(t) (4.9)

∆wa(t) = la(t)
[
−∂Ea(t)

∂wa(t)

]
(4.10)

∂Ea(t)
∂wa(t)

=
∂Ea(t)
∂J(t)

∂J(t)
∂u(t)

∂u(t)
∂wa(t)

(4.11)

where la(t)> 0 is the learning rate of the action network at time t, which usually

decreases with time to a small value, and wa is the weight vector in the action network.

Fig. 4.5 demonstrates the 4-6-1 architecture of the critic network. Similar to the

action network, it is a three-layer neural network with 6 hidden neurons. The inputs to the

critic network are the measured system state vector X1, their one time-delayed values X2,

two time-delayed values X3, and the action network output u(t). Here, J(t)=output of the

critic element and J function approximates the discounted total reward to go.

If R(t) is future accumulative reward-to-go value at time t, α is discount factor

which is taken as 0.95, then

R(t) = r(t +1)+αr(t +2)+ ... (4.12)

86

where, this r(t +1)=external reinforcement value at t +1. In ADP design, J function is

used to approximate R (i.e. J→ R) [62, 104, 106]. The Bellmann error or prediction error

Figure 4.5. Critic neural network with 4 inputs, 6 hidden neurons, and 1 output neuron.

is given by:

ec(t) = αJ(t)− [J(t−1)− r(t)] (4.13)

The objective function to be minimized in critic network is given by:

Ec(t) =
1
2

e2
c(t) (4.14)

Thus, critic network can be represented as:

J = nnc(X ,u,wc) (4.15)

The weight update algorithm by a gradient descent rule for the critic network is given as

follows:

wc(t +1) = wc(t)+∆wc(t) (4.16)

87

∆wc(t) = lc(t)
[
−∂Ec(t)

∂wc(t)

]
(4.17)

∂Ec(t)
∂wc(t)

=
∂Ec(t)
∂J(t)

∂J(t)
∂wc(t)

(4.18)

where lc(t)> 0 is the learning rate of the critic network at time t, which usually decreases

with time to a small value, and wc is the weight vector in the critic network.

The weights of the critic and action networks are updated with the algorithm as

described in [24]. The objective of the ADP controller is to provide an optimal control

signal that can reduce the oscillations in Id current for efficient tracking of reference

current. In both networks, normalization is used in order to confine the values of the

weights into some appropriate range as follows:

wc(t +1) =
wc(t)

max||wc(t)||
, i f ||wc||> threshold (4.19)

wa(t +1) =
wa(t)

max||wa(t)||
, i f ||wa||> threshold (4.20)

4.3 Simulation and Evaluation

To assess the performance of the supplementary control approach using ADP, the

integrated controller and the benchmark was tested in MATLAB/Simulink with ADP

embedded in S-function block of Simulink. The three-phase inverter was replaced by an

ideal voltage source to observe the best performance of the ADP controller. Two case

studies were conducted: the first case study was step change in Id and the second case

study was an unbalanced single phase to ground fault. Only the current control loop was

considered here and the influence of the outer loop control was unchanged for a fair

88

evaluation of the controllers.

4.3.1 Training The Adaptive Dynamic Programming Controller

The effectiveness of the supplementary controller is ensured by prior extensive

training. To train the ADP for this benchmark VSM system, the following parameters

were adjusted:

For critic network,

Number of inputs=4;

Number of output=1;

Number of hidden nodes=6;

Weights were initialized in the range of [-0.1.0.1].

For action network,

Number of inputs=3;

Number of output=1;

Number of hidden nodes=6;

Weights were initialized in the range of [-0.1,0.1].

Inputs were normalized in the range of [-1,1] after diving by 10 since the input

current is assumed to vary in the range of 0 to 10 A for 2.5 kW inverter. Outputs were

amplified by the factor of 40 since output of PI controller varies from 0 to 400. Here 10%

adjustment by supplementary ADP controller is assumed. The coefficients of Eq. (4.5)

were set as follows: c=1, a1=0.4, a2=0.3 and a3=0.3. If system parameters like range of Id

changes, normalization of input and amplification of output may change or ADP might

need training again. The following additional parameters were set in ADP.

89

Nc = internal cycle of the critic network;

Na = internal cycle of the action network;

Ta = internal training error threshold for the action network;

Tc = internal training error threshold for the critic network;

Nh = Number of hidden nodes=6;

la(0) = initial learning rate of the action network;

lc(0) = initial learning rate of the critic network;

la = learning rate of the action network at time t, which is decreased by 0.05

every 5 time steps until it reaches 0.005 and it stays at la(f)=0.005

thereafter;

lc = learning rate of the critic network at time t which is decreased by 0.05

every 5 time steps until it reaches 0.005 and it stays at lc(f)=0.005

thereafter.
The weights in the action and the critic networks were trained using their internal

cycles, Na and Nc, respectively. The weights of the two networks were updated for at most

Na and Nc times, respectively within each time step, or stopped once the internal training

error threshold Ta and Tc have been met. For the training process, after above parameters

were set in MATLAB code inside s-function block, the ADP controller was connected as

shown in Fig. 4.3 to the VSM benchmark [109] shown in Fig. 4.1. Repeated simulations

were performed until reduced transient overshoot was obtained. These trained weights

were used for improving the transient and steady state stability for both of cases that

follow. After the end of the training process, internal cycles (Nc, Na) and learning rates (la,

lc) of the critic and action networks were reduced in order to avoid over-fitting in neural

90

Time (s)
0 0.02 0.04 0.06 0.08 0.1

I dr
ef

 (
A

)

0

1

2

3

4

5

6

7

8
Step changes of I

dref

I
dref

First step change at 0 sec

Second step change at 0.054167 s

Time (s) ×10-3
0 2 4 6 8

I d &
 I

dr
ef

 (
A

)

1.5

2

2.5

3

3.5

4

4.5

5

Variation of I
d
 with step change from 0 A to 3 A at 0 sec

I
dref

 change from 0 A to 3 A

I
d
 with PI only

I
d
 with supplementary ADP

PI control

Reference Signal

Supplementary ADP based control

Time (s)
0.054 0.055 0.056 0.057 0.058 0.059

I d &
 I

dr
ef

 (
A

)
3

3.5

4

4.5

5

5.5

6

6.5

7

Variation of I
d
 with step change from 3 A to 6 A at 0.054167 sec

I
dref

 change from 3 A to 6 A

I
d
 with PI

I
d
 with supplementary ADP

PI control

Supplementary ADP based control

Reference Signal

Figure 4.6. Comparision between ADP and conventional PI Controller. (a) d-axis reference
current signal (Idre f). (b) Overshoot at first step change reduced with supplementary ADP
controller and system response made faster. (c) Overshoot at second step change reduced
with supplementary ADP controller and system response made faster.

networks.

4.3.2 Case Study I: Step Change in The d-axis Reference Current

The system was tested for step change in d-axis reference current from 3 A to 6 A

which is represented in Fig. 4.6(a). Id with ADP control in Fig. 4.6(b) and Fig. 4.6(c)

demonstrates the d-axis current behavior of the PI controlled Grid connected inverter

system acting as virtual synchronous machine. At the beginning, d-axis current changes

from 0 A to 3 A at t=0 sec. ADP controller quickly regulated the d-axis currents to

reference current. For simulation setup with total simulation time of 0.1 sec, step change

was made from 3 to 6 A at 0.054167 sec (which implies the increase in generation from

91

FFT analysis

Harmonic order
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ag

 (
%

 o
f

Fu
nd

am
en

ta
l)

0

0.05

0.1

0.15

0.2

Fundamental (60Hz) = 9.999 A, THD= 1.58%

Figure 4.7. Harmonic spectrum of the grid current in the case of PI controller.
FFT analysis

Harmonic order
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ag

 (
%

 o
f

Fu
nd

am
en

ta
l)

0

0.05

0.1

0.15

0.2

Fundamental (60Hz) = 9.999 A , THD= 1.13%

Figure 4.8. Harmonic spectrum of the grid current in the case of ADP as a supplementary
controller.

PV). This particular step change time was chosen because at this time Va, output of the

inverter, is at its peak value so that ADP controller performance could be observed in the

worst scenario. The experiment showed that ADP controller can be applied successfully

for this system.

The simulation time was set to 0.1 sec for properly observing the three phase

inverter output waveform. The inverter output voltage was not much affected with

disturbance since only Id control was performed but not Iq control. Fig. 4.6 presents a

92

comparison study for conventional PI and ADP as a supplementary controller. Fig. 4.6(b)

and 4.6(c) shows the three advantages of ADP: first is the reduction in overshoot, second

is the faster system response and third is the reduced steady state error. Table II shows the

overshoot in percentage corresponding to two different control methods. The transient

overshoot for first step change from 0 A to 3 A with conventional PI controller [109] is

62.49%. With ADP controller, this overshoot is reduced to 16.88% which can protect the

inverter from surge currents. It can be seen that from Fig. 4.6 and Table II, ADP has the

fastest response time, minimum overshoot and the best performance.

The total harmonic distortion (THD) of the grid current in the case of d-axis current

control with PI controller is shown in Fig. 4.7 and ADP as a supplementary controller for

current regulation is shown in Fig. 4.8. For measuring the THD, 6 cycles were taken by

setting simulation time as 0.2 sec and full load reference current i.e. 10 A. In this case, the

first 16 harmonic orders are shown. It can be clearly observed that ADP reduced the THD

from 1.58% to 1.13%. Thus, for different values of reference current, the comparison

study demonstrated that the ADP performs better than conventional PI control approach.

Table 4.1. Performance measurement of d-axis current control corresponding to Fig. 4.6

Measurement

Method
Conventional PI
Controller [109]

ADP
Controller

First overshoot 62.49% 16.88%
Second overshoot 17.63% 5.72%

4.3.3 Case Study II: Single-phase Ground Fault

A single phase to ground fault with fault impedance of 0.001 Ω was introduced in

phase-A at time 0.054167 sec and removed at 0.1 sec. Fig. 4.9 shows the schematic

93

diagram of the setup for simulating this fault at the point of common coupling where a

Y −∆ transformer is introduced on left side of the fault. The phase voltages under this

conditions is shown in Fig. 4.10. Under such unbalanced fault conditions, current supplied

by inverter becomes unbalanced with conventional PI controller as shown in

Fig. 4.12 [113].

Figure 4.9. Schematic diagram of VSM benchmark system connected to grid through ∆-Y
transformer and single phase unsymmetrical fault with fault impedance of Zg.

Time (s)
0.04 0.06 0.08 0.1 0.12

O
ut

pu
t v

ol
ta

ge
 (

L
-N

)
on

de

lta
 s

id
e

of
 tr

an
sf

or
m

er
 (

V
)

-400

-300

-200

-100

0

100

200

300

400
V

a

V
b

V
c

Fault Duration

Figure 4.10. Three phase inverter output voltages (line to neutral) under single phase un-
symmetrical fault at 0.054167 sec and cleared at 0.1 sec.

For this case study, the pre-trained weights from case study I were used. Single

phase to ground fault was simulated in MATLAB/Simulink with the help of three phase

fault block of Simulink where Va was shorted to ground and the parameters were set as

94

Time (s)
0.04 0.06 0.08 0.1 0.12

I d &
 I

dr
ef

 (
A

)

0

0.5

1

1.5

2

2.5

3

3.5
Variation of I

d
 under fault

I
dref

I
d
 with PI only

I
d
 with ADP

Reference signal

Supplementary
ADP based control

PI control

Fault Duration

Figure 4.11. Ability of supplementary ADP to track Idre f under single phase unsymmetrical
fault at 0.054167 sec and fault cleared at 0.1 sec.

mentioned above. For robustness in the phase angle detection during the fault, the PLL in

MATLAB was set to have automatic gain control, that enabled the PLL to keep the phase

difference between actual signal and the voltage controlled oscillator to zero even during

the fault condition. The reference Id current was set to 2 A. The total simulation time was

set to 0.2 sec.

Initially, the system was operated at a steady state condition with d-axis reference

current of 2 A. At t=0.054167 sec (worst condition when inverter output voltage, Va is at

its peak), single-phase to ground fault was introduced in the system with fault impedance,

Zg of 0.001Ω. The results in Fig. 4.11 shows that the ADP controller reduces the transient

overshoot and steady state error as well for the efficient tracking of Id current even during

unbalanced fault conditions and after fault clearance at 0.1 sec also. Table III shows the

overshoot in percentage corresponding to two different control methods for this case

study. The transient overshoot during single phase to ground fault at 0.054167 sec with

95

Time (s)
0.04 0.06 0.08 0.1 0.12

C
ur

re
nt

 s
up

pl
ie

d
by

 in
ve

rt
er

 (
A

)

-3

-2

-1

0

1

2

3
I
a

I
b

I
c

Fault Duration

Figure 4.12. Three phase current with PI controller under single phase unsymmetrical fault
at 0.054167 sec and fault cleared at 0.1 sec.

Table 4.2. Performance measurement of d-axis current control corresponding to Fig. 4.11

Measurement

Method Conventional
PI Controller

[109]

ADP
Controller

Maximum overshoot with
fault at 0.054167s

78.45% 8.8%

Maximum overshoot with
fault cleared at 0.1s

65.44% 6.97%

conventional PI controller [109] is 78.45%. With ADP controller, this overshoot is

reduced to 8.8% which can protect the inverter from surge currents. Similar is the

condition after fault clearance at 0.1 sec. Comparing Fig. 4.12, Fig. 4.13 and Table III,

improvement of the inverter output current by ADP controller is threefold: first the spikes

during and after the unbalanced fault is reduced that can protect the inverter from surge

currents, second the distortions in the current are minimized and third is that the

supplementary ADP controller enables the inverter to supply balanced current to the grid

even under unbalanced fault conditions.

96

Time (s)
0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

C
ur

re
nt

 s
up

pl
ie

d
by

 in
ve

rt
er

 (
A

)

-2

-1

0

1

2 I
a

I
b

I
c

Fault Duration

Figure 4.13. Three phase current with ADP controller under single phase unsymmetrical
fault at 0.054167 sec and fault cleared at 0.1 sec.

4.4 Summary

In this chapter, a supplementary ADP controller for d-axis current control is

proposed so that Id current effectively tracks reference current. It plays an important role

for the effective application of VSM, not only under sudden step change condition, but

also under the fault in three-phase system such as unbalanced single line to ground fault.

With the advantage of NN weights updating rules, the ADP controller adopted its key

parameters when the system is under different faults. More robust results were obtained

by ADP controller in comparison with the conventional PI controller. This VSM system

with adaptive control has long-term benefit to micro-grids and data center applications.

97

CHAPTER 5 Smart Grid Application 2: Harmonic Reduction Using Shunt Active Filter

and Online Learning based Control

The project in this chapter is a joint work with Dr. Reinaldo Tonkoski, Ujjwol

Tamrakar and Dipesh Shrestha who kindly provided benchmark of this work. Electrical

energy is expected to contribute to about 60% of all world energy consumption by

2040 [114]. Power electronics based equipment in data centers and in commercial and

industrial applications as shown in Fig. 5.1 are with non-linear nature. Hence, they draw

harmonic currents from the power grid and can cause power quality issues. Some of the

major issues related to current harmonics include vibration in motors, generator burnouts,

and computer network failures to name a few [115, 116]. Among the different approaches,

shunt active filters (SAF) have become a particularly popular solution for harmonic

reduction, owing to the recent advancements in power electronic switches and their

guaranteed performance over a wide range of dynamic operating conditions unlike passive

filters [117, 118].

The total harmonic distortion (THD) of a current signal is a measurement of the

harmonic distortion present and is defined as the summation of all the harmonic

components of the current waveform compared against the fundamental component of the

current wave. The IEEE Std. 519 recommendations for harmonic control in power

systems states that the THD of the source current should be less than 5% [119]. The

standard also has stringent requirements on individual harmonic components. The basic

concept behind a SAF is to compensate the higher order harmonic currents and the

reactive power demand of the load through a power electronics based current controlled

98

Data Centers

Commercial and Industrial Loads

Electronic Ballast

Motors

Saturated

Transformers

High

Voltage
HVAC systems

Shunt

Active

Filter

Medium

Voltage

Variable

frequency

drives

Commercial

Buildings

Saturated

Motors

Transformer

Power Grid

Figure 5.1. Microgrid with non-linear loads and shunt active filter connected to reduce
harmonics.

voltage source power inverter (CCVSI), hereinafter referred to as power inverter. Thus,

the source only needs to provide the fundamental component of the load current [120].

The control structure of a SAF has two control loops: (i) an outer loop that estimates the

current that the inverter needs to inject/absorb to compensate the load harmonics and the

reactive power, and (ii) an inner loop responsible for tracking the generated reference

current. The outer current loop is typically implemented using either the instantaneous

reactive power theory [121], or the synchronous reference frame theory [122]. The inner

current control loop is traditionally implemented using a proportional-integral (PI) control

based approach. However, the dynamics of the PI controller are inadequate because of the

limited bandwidth of the controller. As a result, the SAF may not give the required

performance when the loads have a high degree of non-linearity [123].

99

This has led to the development of a number of machine learning based adaptations

to improve the performance of the traditional control in power inverters. It also motivated

us to design an online learning based controller to improve the performance of the power

inverter in terms of the THD. Artificial neural network (NN) techniques and classical

back-propagation algorithms have been used to improve the control performance of the

SAF in [115, 120, 124]. However, the implemented algorithm lacks online adaptation and

the performance under varying load conditions has not been quantified. In [125], NNs

were used in the outer loop to improve the estimation of compensating currents. Although

the THD was reduced within the IEEE Std. 519 limits, the inner control structure still

used a hysteresis based current control approach which has its own disadvantages related

to high switching frequency and difficulty in the filter design. In [99], recurrent neural

network (RNN) training with the Levenberg-Marquardt algorithm is used for optimal

control of a grid-connected inverter, but this does not involve online training and requires

a well-trained RNN controller. Other optimal control techniques like the model predictive

control with selective harmonic elimination is proposed in [126] for multilevel power

converters which resulted in a fast dynamic response. However, these techniques are

highly dependent on the accuracy of the system model and are prone to limited transient

and steady state behavior due to parameter uncertainties [127].

All of the aforementioned literature indicates the need for developing an online

learning approach to improve the dynamic performance of the inner current control loop,

hence improving the harmonic compensating capability of power inverters. An adaptive

dynamic programming (ADP) controller has been proposed to address these issues in

recent power and control communities. It consists of two NNs based architecture

100

consisting of an action network and a critic network. The critic network is designed to

evaluate the online learning based controller, while the action network produces an online

learning based control signal to improve the control

performance [17, 18, 23–25, 62, 128, 129]. The ADP controller has shown promising

results on a number of power system control examples [66, 81, 103–107, 130–134]. For

example, the concept of the supplementary ADP control has been used to enhance power

system stability in [106, 107, 135, 136]. In [62, 96, 105], a similar control approach is

incorporated into the generators’ frequency control loop to improve the frequency

response of the system and smooth out the variations due to large scale wind,

photovoltaics (PVs) and/or electric vehicles (EVs) integration.

Yet, only a few papers have investigated the power electronics pulse width

modulation (PWM) current control through the ADP based controller concerning the

difficulty involved as mentioned in [97]. Literature [94, 95, 97, 98] proposed and validated

the vector control of a grid-connected rectifier/inverter using an artificial neural network

and back-propagation through time weights updating rule. However, the system was not

implemented for harmonic reduction applications and the current controller lacks the

online learning capability. In this chapter, an integration of the online learning ADP

control approach is proposed for the power electronic inverter to improve the harmonic

compensating capability and the transient performance. The model-free ADP control does

not rely on an accurate mathematical model of the system or the pole-zero placement

design as in traditional controllers. Thus, the mathematical model descriptions of the

benchmark system are not required. The ADP controller is a purely data-driven control

approach which observes the system states and outputs the control actions over time. In

101

addition, the ADP controller has learning and adaptation capabilities. The key parameters

in the ADP controllers will be adjusted online for the disturbances and changing of loads.

The major contributions of the research in this chapter are summarized as follows:

1) A multiple-input multiple-output (MIMO) online learning control system is developed

based on the ADP design. A series of time-delayed current error signals are designed as

input for the ADP controller, which outputs compensating control actions (one is for

d-axis and the other one is for q-axis) for the current controller in the power inverter. In

addition, an appropriate reinforcement signal has been designed with the delayed tracking

errors in the power inverter. Based on this, the ADP controller will generate compensating

control actions, which guarantees its success. 2) This proposed approach has been applied

in two challenging case studies. First, the proposed system was tested for a three-phase

full wave bridge rectifier with a resistive load (non-linear load). The current drawn by

such a load shows a high degree of non-linearity. The ADP controller improved the

bandwidth of the inner current control loop leading to efficient tracking of the currents and

also an average reduction by 18.41% in THD. Next, the proposed system was subjected to

a sudden step change in the load. Furthermore, the system was tested under different load

conditions. The system obtained a better transient and steady state performance (e.g.,

faster response, lower overshoot, and efficient tracking) compared to a traditional PI

controller based system.

5.1 Benchmark and System Configuration

A simplified diagram of the SAF configuration is shown in Fig. 5.2. The non-linear

load is connected to the three-phase AC source. The non-linear load considered in this

102

chapter is a three-phase diode bridge rectifier, followed by a resistance, RL. In order to

supply the harmonics and the reactive power consumed by this non-linear load, the SAF is

connected in parallel to the system. The SAF thus provides the harmonic current demand

of the load and as a consequence only sinusoidal currents with an almost unity factor

would be delivered from the source.

Current

Reference

Voltage

Sensor

Current

Control

Figure 5.2. Schematic diagram of a shunt active filter connected to source and non-linear
load for compensation of harmonics.

The SAF generates the compensation current, iC. The sum of the source current, iS

and iC is the non-linear load current, iL. The coupling inductor is used to suppress the

high-frequency currents originating from the switching of power inverter. There are two

main control loops associated with the SAF control algorithm: an inner current control

loop and an outer harmonic current estimation loop. The inner current control loop tracks

the reference current in the d−q frame using the PI controller. The outer control loop

measures the load current and the source voltage and generates the reference active and

103

reactive power to be compensated by the SAF using instantaneous p−q theory as shown

in Fig. 5.3. First, the instantaneous three-phase source voltages (vga, vgb and vgc) and the

three-phase load currents (iLa, iLb and iLc) are measured and transformed to α-β -0

coordinates (iL0, iLα , iLβ , vg0, vgα and vgβ as shown in Fig. 5.3) using the Clarke’s

transformation as follows:

vg0

vgα

vgβ

=

√
2
3

1√
2

1√
2

1√
2

1 −1
2 −1

2

0
√

3
2 −

√
3

2

vga

vgb

vgc

 (5.1)

iL0

iLα

iLβ

=

√
2
3

1√
2

1√
2

1√
2

1 −1
2 −1

2

0
√

3
2 −

√
3

2

iLa

iLb

iLc

 . (5.2)

abc

abc

p-q

Estimtation

Instantaneous

Reactive

Power Theory

LPF

+
-

pp ~

qq ~

0

0

Calculate

vga

vgb

vgc

iLa

iLb

iLc

-

PI

Figure 5.3. Current reference generation (iαre f and iβ re f).

Next, these currents and voltages in α-β -0 coordinate are used to calculate the

104

instantaneous active (p) and reactive power (q) consumed by the load as follows:

p = vgα iLα + vgβ iLβ = p̄+ p̃ (5.3)

q = vgα iLβ − vgβ iLα = q̄+ q̃ (5.4)

where, p̄ and p̃ are the low frequency and the high frequency components of instantaneous

active power, and q̄ and q̃ are the low frequency and the high frequency components of

instantaneous reactive power. The instantaneous active power consumed by the load

(p̄+ p̃) is passed through a low pass filter (LPF, butterworth type) to filter out the high

frequency harmonics component (p̃). Next, the output of the LPF is deducted from the

original instantaneous active power to give just the high frequency component (p̃). This

combination is essentially a high pass filter (HPF) that extracts only the high frequency

components of the load active power. This is the reference compensating active power

(pre f) for the SAF. In order to compensate all the reactive power demanded by the load

and to maintain the unity power factor in the source current, all the calculated

instantaneous reactive power becomes the reference compensating reactive power (qre f)

for the SAF. There is one extra control loop which compensates the active power loss in

the capacitor to maintain constant DC voltage across it. The DC voltage across the

capacitor is compared with the standard voltage (400 V): the error is then fed to a PI

controller which generates the compensating active power (ploss) to maintain the constant

voltage across the DC capacitor. For the PI controller design of this extra control loop, the

inverter is considered to be a constant current source for the DC side of the voltage

105

controller. Thus, the transfer function of the plant for the DC side controller is as follows:

VDC

ploss
=

1
CVCO

s+ 2
RC

(5.5)

where, ploss is the compensating active power loss in the capacitor, VDC is the DC bus

voltage across the capacitor, C is the rated capacitance, VC0 is the reference capacitor

voltage, and R is the resistance parallel to the capacitor.

Next, the reference active power loss for the DC voltage controller is added to the

reference active power calculated earlier from the HPF. Thus, the reference instantaneous

active and reactive power are calculated using:

 iαre f

iβ re f

=
1

v2
α + v2

β

 vgα −vgβ

vgβ vgα

 p̃− ploss

q

 (5.6)

where, iαre f and iβ re f are the reference compensating currents in the α-β -0 coordinate

system. Since the PI controller cannot track sinusoidal currents, the reference current in

the α-β -0 coordinate is converted into d−q coordinates using the following relation:

 Idre f

Iqre f

=

 cos(ωt) sin(ωt)

−sin(ωt) cos(ωt)

 iαre f

iβ re f

 (5.7)

where, ωt is the synchronous reference frame angle, and Idre f and Iqre f are reference

currents in the d−q coordinate system. Finally, the reference current in d−q coordinates

is passed to a standard tuned PI controller designed with a switching frequency of 20 kHz,

a cut-off frequency of 4 kHz and a phase margin of 45° (tuned by the methods described

106

in [68, 111]) which generates the modulating signal for the PWM generator of the inverter.

The cut-off frequency is kept relatively higher in this case to increase the PI controller’s

bandwidth.

The benchmark simulation model was developed and tested in MATLAB/Simulink.

A three-phase three-wire balanced system is considered in this chapter. A three-phase

bridge diode rectifier with a DC load of 700 W (base case) is used as the non-linear load.

The load was simulated using six diodes configured in three-phase bridge configuration as

illustrated in Fig. 5.2. The output of the diode-bridge was then connected to resistor RL.

The value of RL was obtained using the simple equation:

P =
V 2

r
RL

(5.8)

where Vr is the output voltage of the rectifier which in this case is 272 V. The power

inverter is rated at 1 kW. A capacitor rated at 400 V DC is used as the energy storage

device. The switching frequency of the PWM inverter is 20 kHz. The grid side impedance

is set as: Zsource = (0.01+ j0.00038)Ω and load side impedance is set as:

Zload = (0.01+ j3.8)Ω. The parameters used for the simulation of the benchmark are

given in Table 5.1.

In this chapter, THD is used as the performance measurement to evaluate the

success of the control approaches. The THD is computed as:

T HD =

√
I2
2 + I2

3 + I2
4 + ...+ I2

N

I1
(5.9)

107

Table 5.1. Benchmark system parameters

Parameter Value
1. Inductance of coupling inductor 10 mH
2. Internal resistance of coupling inductor 0.1 Ω

3. Resistance of grid 0.01 Ω

4. Inductance of grid 1 µH
5. Load side resistance 0.01 Ω

6. Load side inductance 10 mH
7. Capacitance of DC bus capacitor 450 µF

where I2, I3, I4, ..., IN are the root-mean-square (RMS) value of the harmonics 2,3,4,...,N

respectively and I1 is the RMS value of the fundamental source current. Here, the Nth

harmonic order corresponds to the Nyquist frequency. The Nyquist frequency is half the

sampling frequency of the selected signal. In this chapter, the sampling frequency is 1

MHz and the switching frequency is 20 KHz. Thus, the Nyquist criterion is satisfied.

5.2 Proposed Controller Design for Benchmark System

The basic idea in an adaptive-critic design is to adapt the weights of the critic

network to approximate the optimal cost function, J∗(X(t)), satisfying the modified

Bellman principle of optimality [42], given by:

J∗(X(t)) = min
u(t)
{J∗(X(t +1))+ r(X(t))−Uc} (5.10)

The optimal online learning based controller can be written as:

u∗(X(t)) = argmin
u(t)

J∗(X(t)) (5.11)

108

where X(t) is the input state vector, r(X(t)) is the immediate cost incurred by u(t) at time

t, and Uc is ultimate desired objective which is to be achieved by the cost function. This

equation cannot be analytically solved in general, thus the problem of optimal current

control needs to be solved iteratively and approximately by using ADP [137–140]. In

ADP, the action network generates the optimal control action iteratively and the critic

network evaluates the performance of action network by approximating J close to the

optimal solution. J is also the output of the critic network. The connection detail for the

inner current control loop with proposed online based ADP controller is shown in Fig. 5.4

with the signal flow from left to right. The errors in d-axis and q-axis feedback currents

(Id and Iq) are fed to both the PI and ADP controllers whose output combination produces

the appropriate modulating signal for the PWM inverter. The gate signals for the inverter

are generated using this modulating signal after considering the cross-coupling terms

ωLIq and ωLId , and adding feed-forward terms Vd and Vq. This signal is then transformed

from d−q to a−b− c coordinates using the inverse Park’s transformation. A LPF is

added before PWM generation to avoid potential high frequency noise in the modulating

signal by the ADP. Here, the online learning based control action produced by ADP is

defined as: u(t)=[ud(t), uq(t)], where ud(t) and uq(t) are supplementary control actions for

the outputs of d-axis and q-axis PI controllers respectively. There are two paths to tune the

parameters of the two types of networks in ADP which will be discussed below.

The critic network is a three-layer neural network with 12 hidden neurons. The

architecture of the critic network is 8-12-1 as shown in Fig. 5.5. The inputs to the critic

network are the measured system state vector, X(t), and action network output, u(t). Here,

J(t) is the output of the critic element and the J function approximates the discounted total

109

ud(t)
Output of ADP

(Control Signals)

Iqref

Iq wLId Vq

ADP

Inner q-axis current control loop

Error

between

Iq and Iqref

D

Idref

Id wLIq Vd

Error

between

Id and Idref

Vqref

Vdref

DD

D

uq(t)
dq0abc

dq0

icc

icb

ica
PWM

Generation
dq0

abcαβ0

Inner d-axis current control loop

Low pass

filter

(20kHz)

DD

Figure 5.4. Overall diagram of online learning based ADP controller for the inner current
control loop in the power inverter (Fig. 5.2).

Figure 5.5. Critic neural network with 8 inputs, 12 hidden neurons, and 1 output neuron.

110

reward to go.

The prediction error for the critic network is given by:

ec(t) = αJ(t)− [J(t−1)− r(t)] (5.12)

The reinforcement signal, r(t) for the critic network is defined as follows:

r(t) =−c(a1x2
1 +a2x2

2 +a3x2
3 +a4x2

4 +a5x2
5 +a6x2

6) (5.13)

where c, a1, a2, a3, a4, a5 and a6 are the coefficients of this quadratic equation.

x1=error signal between Id and Idre f ;

x2=one-time step delayed error signal for Id;

x3=two-time step delayed error signal for Id;

x4=error signal between Iq and Iqre f ;

x5=one-time step delayed error signal for Iq;

x6=two-time step delayed error signal for Iq;

X(t)=[x1, x2, x3, x4, x5, x6].

The above delayed error signals (1 time-step and 2 time-step delayed signals) are

fed into the ADP controller in order for it to work properly. This would ensure that the

high magnitude of compensating control actions are produced during the transients, and

less magnitude of compensating control actions during the steady state conditions.

The action network has a similar multi-layer perceptron neural network architecture

as the critic network. However, input neurons and output neuron numbers are different.

111

The inputs to the action network are the measured system state vector, X(t), and the

output of the action network is the online learning based control signal, u(t). The principle

in adapting the action network is to indirectly back-propagate the error between the

desired ultimate objective, denoted by Uc, and the approximate J function from the critic

network. Since “0” is defined as the reinforcement signal for “success,” Uc is set to “0” in

the design paradigm. In the action network, the state measurements are used as inputs to

create a control as the output of the network. In turn, the action network can be

implemented by either a linear or a non-linear network, depending on the complexity of

the problem. The action and critic networks weights can be trained by algorithm as shown

in chapter 4, section 4.2.

5.2.1 Training Procedures for ADP Controller

The objective of the ADP controller is to provide an optimal control signal that

exhibits fast dynamics in tracking Id and Iq current references. The weights of the two

networks are updated at most Na and Nc times for action, and critic networks respectively

within each time step. It will also be stopped once the internal training error threshold Ta

and Tc have been met, using the gradient descent algorithm described in Section III. The

typical learning process of the ADP controller includes two trials as described in [104]. In

the first trial, NN is initialized with random weights. The simulation is repeated until no

further improvement in THD has been obtained. At the end of this process, the ADP

would learn a considerable amount of information about the system and state-action pairs.

This is called offline learning. In the second trial, or online learning, fully trained weights

are used. The online training procedure for the ADP controller is shown in Algorithm 1.

112

Algorithm 1 Online learning process of ADP controller

1: Initialize ADP with i=0, online learning based control action, u(0)(t) = [0,0], use
weights from offline training, and J(0) = 0.

2: Apply u(i)(t) in addition to the output of PI controller in power inverter and collect data
for state, X(t) from 3 most recent samples for ADP controller.

3: Obtain the cost function J(0)(t) by using Eq. (4.15).
4: Obtain the online learning based controller function, u(i)(t) by using Eq. (4.8).
5: Update critic and action NN weights using Eq. (4.16) and (4.9) respectively.
6: i = i+1. Repeat from Step 2 to 5 with until end of simulation.
7: Observe THD and repeat from Step 1 to 6 until no further improvement.
8: Save NN weights.

The weights evolution of the ADP controller is saved for the run with the best

performance in terms of THD. Fig. 5.6 shows the trajectories for a typical training

process. Fig. 5.6(a) shows the weight evolution of the action network from 6 input nodes

to 1 hidden node. Similarly, Fig. 5.6(b) shows the weight evolution of the action network

from 12 hidden nodes to 1 output node. Here, the power inverter and ADP are connected

at 0.11s at which there is a major adjustment of the weights because of transients in the

system. In addition, Fig. 5.6(c) shows the convergence of the J(t) function, and Fig. 5.6(d)

shows the convergence of the reinforcement signal, r(t). The convergence of both wa1 and

wa2 indicates the convergence of the learning process. The weights are saved at the end of

the simulation process and fine-tuned until there is no further improvement in the THD.

5.2.2 Stability Discussion of ADP Controller

There are several major approaches to analyze the stability of ADP controller. A

detailed Lyapunov stability analysis of the ADP based controller is presented in [70] to

support the ADP structure from a theoretical point of view. The authors demonstrated that

the auxiliary error and the error in the weights estimates are uniformly ultimately bounded

(UUB) using the Lyapunov stability construct. In [71], the proportional-integral-derivative

113

Time (s)
0.11 0.112 0.114 0.116

w
a1

-0.2

-0.1

0

0.1

0.2

Time (s)
0.11 0.112 0.114 0.116

w
a2

-0.2

-0.1

0

0.1

0.2

(a) (b)

Time (s)
0.11 0.112 0.114 0.116

J(
t)

-5

0

5

10

15

20

Time (s)
0.11 0.112 0.114 0.116

r(
t)

-4

-3

-2

-1

0

(c) (d)

Figure 5.6. The training process of ADP controller: (a) weights trajectories from 6 inputs to
1 hidden node in action network, (b) weights trajectories from 12 hidden to 1 output node
in action network, (c) trajectory of output of critic network, J(t), and (d) reinforcement
signal, r(t) during the training process.

(PID) control rule is incorporated into neural networks (NNs) and new results of UUB are

provided using a Lyapunov stability construct. The monotonic convergence of optimality

is discussed for the goal representation ADP control design in [72], and theoretical proof

of convergence is given in terms of both the internal reinforcement signal and the

performance index. In [73, 74, 141, 142], stability of the ADP controller is presented,

where the authors demonstrated the theoretical analysis that the estimation errors of NN

weights are UUB by the Lyapunov stability construct. The similar technique can be

114

followed to conduct the analysis. The similar algorithm is followed as in [73], and set the

parameters accordingly. From Corollary 4.4 in [73], the error in the NN weights estimate

are UUB, provided that the conditions are met. For this case, the discount factor is set as,

α=0.95, number of hidden nodes for both action and critic network=12, and learning

rates, la=lc=0.01. With these parameters, all criteria as described by Corollary 4.4 in [73]

are met. Thus, estimation errors of NN weights are UUB for the ADP controller designed

in this chapter. Experimentally, it can be observed from Fig. 5.6 that the weights and

parameters of the ADP controller are quickly converged and bounded after the system

transients.

5.3 Simulation Results

The performance of the learning control approach using ADP was accessed by

testing the integrated controller and the benchmark with the ADP embedded in the

S-function block in Simulink. Two case studies were performed: the first case study was

focused on the improvement of current harmonics by connecting the power inverter with

the traditional PI controller in an inner current control loop, and the subsequent

performance improvement by the ADP. The second case study was a performance

comparison between the traditional PI and the ADP based control approach during a

sudden step change in load as well as under different loading conditions. Note that,

“without power inverter” in the following subsections refers to the system without the

SAF connected in the system. “PI” is used for the traditional PI controller in inner loop of

the power inverter and “PI+ADP” is used for the integrated PI and ADP controller in the

inner loop of the power inverter.

115

5.3.1 Parameters Setup for ADP Controller

The following parameters were adjusted for training of the ADP: Inputs were

normalized in the range of [-1,1] after dividing the d-axis error by 3 and the q-axis error

by 2 since the input current was assumed to vary in the range of 0 to 3 A for a 1 kW

inverter. Outputs were amplified by a factor of 100 for the d-axis and 66.67 for the q-axis

since output of the PI controller varies from 0 to 400. Here, 25% adjustment was assumed

for the online learning based ADP controller. The coefficients of Eq. (5.13) were set as

follows: c=1, a1=0.4, a2=0.2 and a3=0.04, a4=0.4, a5=0.2 and a6=0.04. For both action

and critic network, weights were initialized in the range of [-0.1,0.1].

The following additional parameters are set in ADP.

Nc = internal cycle of the critic network;

Na = internal cycle of the action network;

Ta = internal training error threshold for the action network;

Tc = internal training error threshold for the critic network;

la = learning rate of the action network=0.01 for training and la(f)=0.001;

lc = learning rate of the critic network=0.01 for training and lc(f)=0.001.
For the training process, after the above parameters were set in MATLAB inside the

S-function block, the ADP controller was connected as shown in Fig. 5.4 to the power

inverter shown in Fig. 5.2. Then, these trained weights were used for improving the

transient and steady state operation for both of cases. If major system parameters changes,

normalization of input and amplification of output might change or ADP might need

training again.

116

5.3.2 Case Study I: Non-linear Load

A three-phase diode bridge rectifier was used as the non-linear load (described in

Section II) as shown in Fig. 5.2 for case study I. The 700 W load was simulated using 105

Ω load resistance from Eq. (5.8). The three phase AC source with a frequency of 60 Hz

and line to line root-mean-square (RMS) voltage of 208 V was connected to this load.

Then, THD was calculated by using fast fourier transform (FFT) analysis tool of

‘powergui’ block in Simulink for 12 cycles of source current waveform. Here, Eq. (5.9)

with a sampling time of 1µs was used for THD calculation. The current (iS) supplied by

the source was distorted and had a high THD of 25.21% before connecting the power

inverter. Fig. 5.7 shows the performance comparison between the PI controller and the

PI+ADP controller with a tracking curve for the d-axis current, Id , and q-axis current, Iq.

These are denoted by “Id:PI” and “Id:PI+ADP” in Fig. 5.7(a), and “Iq:PI” and

“Iq:PI+ADP” in Fig. 5.7(b) respectively. “Idre f ” and “Iqre f ” represent the reference current

to be tracked. When the power inverter was connected at 0.11s, the initial charging of the

capacitor caused transient behavior for a few cycles as shown in Fig. 5.7. In this case with

the traditional PI controller, the THD of the source current was 3.69%. It can also seen

that proposed online learning based controller has a lower overshoot and more efficient

tracking than the PI controller which reduced the THD in the source current to 2.70%.

The reason why the ADP gave better results than the traditional PI controllers can

be explained with the help of Fig. 5.7(a) and Fig. 5.7(b). The ADP controller generated

adaptive control actions for the d-axis and q-axis currents, represented by ud and uq

respectively in Fig. 5.8(a) and Fig. 5.8(b). The transient dips in the d-axis and q-axis

117

Time (s)
0.108 0.109 0.11 0.111 0.112 0.113 0.114 0.115 0.116

C
ur

re
nt

, I
d (

A
m

ps
)

-2.5

-2

-1.5

-1

-0.5

0

I
d
:PI

I
d
:PI+ADP

I
dref

(a)

Time (s)
0.108 0.109 0.11 0.111 0.112 0.113 0.114 0.115 0.116

C
ur

re
nt

, I
q (

A
m

ps
)

-2

-1.5

-1

-0.5

0

0.5

1

I
q
:PI

I
q
:PI+ADP

I
qref

(b)

Figure 5.7. Performance comparison between two control techniques: PI and PI+ADP with
tracking curve for (a) direct axis current, Id , and (b) quadrature axis current, Iq.

Time (s)
0.108 0.109 0.11 0.111 0.112 0.113 0.114 0.115 0.116

A
D

P
co

nt
ro

l a
ct

io
n,

 u
d (

V
ol

ts
)

-60

-50

-40

-30

-20

-10

0

10

20

30

(a)
Time (s)

0.108 0.109 0.11 0.111 0.112 0.113 0.114 0.115 0.116

A
D

P
co

nt
ro

l a
ct

io
n,

 u
q (

V
ol

ts
)

-70

-60

-50

-40

-30

-20

-10

0

10

20

(b)

Figure 5.8. Control actions generated by ADP for (a) direct axis current, Id , and (b) quadra-
ture axis current, Iq.

currents were reduced by the compensating control actions generated by the ADP

controller from 0.11s to 0.111s as shown in Fig. 5.8(a) and Fig. 5.8(b). The tracking errors

for Iq are clearly visible at 0.1108s and 0.1135s in Fig. 5.7(b). The ADP controller

produced appropriate compensating control actions as shown in Fig. 5.8(b) to reduce these

tracking errors. These control actions were added to the output of the PI controller so that

the appropriate gate signals can be produced for the power inverter. This reduced the error

118

Figure 5.9. Dynamic experiment response of the power inverter connected system. First
figure shows source current with the power inverter (PI controller implemented) connected
at 0.11s. Second figure shows improved source current with the power inverter (PI+ADP
controller implemented) connected at 0.11s. All these currents are for the first A-phase.

between Iq and Iqre f . This error signal was also set as one of the components for the

reinforcement signal (represented by x4 in Eq. (5.13)), and this helped the ADP controller

to generate proper control actions. Similar reasons apply for Id as well.

The THD of 3.69% with the PI only was due to the non-efficient tracking of

reference Idre f and Iqre f currents as shown in Fig. 5.7. Here, 0.11s time was chosen for

connecting SAF to observe the best performance of proposed controller since this time

had high transients with PI controller alone. With the integration of the ADP controller,

the tracking became efficient. Thus, the source current became sinusoidal with less

harmonic components as shown in second figure of Fig. 5.9 with THD of 2.70%. Thus

from Eq. (5.9), THD was improved with ADP controller in comparison to traditional PI

controllers. This was the reason why ADP gave improved total harmonics in terms of

THD during the step response and changing of non-linear loads.

119

5.3.3 Case Study II: Different Loading Conditions

The same trained weights used for ADP from the case study I were used for case

study II as well. The non-linear load which was for case study I was reduced from 705 W

to 385 W at 0.35s to observe the transient performance of the proposed controller. This

was conducted by changing the value of the output resistance RL from 105 Ω to 192 Ω at

0.35s. The ADP controller generated the similar compensating control actions as

Fig. 5.8(a) and Fig. 5.8(b) during the step change in load. Thus, the online learning based

ADP controller showed consistent performance and improved transients as well, which

can be seen in Fig. 5.9. Figs. 5.9(a) and 5.9(b) show the zoomed-in plots for the

comparison of the transient performance of active and reactive power supplied by the

source with the power inverter connected at 0.11s. This type of oscillation in the active

and reactive power is normal in the case of power electronic circuits. However, the

adaptive control approach improved the transients in power drawn from the source. The

proposed system with an online learning based ADP controller performed well during

such conditions. Because of the efficient tracking of Id and Iq, the fluctuations and spikes

in the reactive power for the power inverter connected system were reduced by the

integration of the proposed online learning based ADP control system which can be seen

in Fig. 5.9(b) after 0.11s.

The proposed online learning based controller enabled the most efficient tracking of

both Id and Iq current in comparison to the PI controller alone. Thus, the fluctuations in

the active and reactive power for the PI controller were reduced by the integration of ADP.

The system performed well even during a sudden load change from 705 W to 385 W at

120

0.11 0.1105 0.111 0.1115
Time (s)

700

800

900

1000

1100

1200
A

ct
iv

e
po

w
er

 s
up

pl
ie

d
by

 s
ou

rc
e

(W
)

PI

PI+ADP

(a)

0.11 0.111 0.112 0.113 0.114 0.115 0.116
Time (s)

-200

-150

-100

-50

0

50

100

150

R
ea

ct
iv

e
po

w
er

 s
up

pl
ie

d
by

 s
ou

rc
e

(V
A

R
)

PI

PI+ADP

(b)

Figure 5.9. Comparative study of PI and PI+ADP controller for (a) Active power transients,
and (b) Reactive power transients because of the power inverter connected at 0.11s. These
figures are zoomed-in to show superior performance of the ADP controller.

0.35s. THD of the system was reduced for 385 W load from 5.37% (PI controller only) to

4.33% by online learning based ADP.

The further analysis were performed to try different load conditions from 700 W to

100 W; however, the same ADP approaches were used. Fig. 5.10 shows the THD

comparison of the source current for above mentioned controllers under different loading

conditions. Without the power inverter connected, the THD was poor (above 25%) for all

loading conditions. Because, the THD increases with a decrease in load, the online

learning based ADP control produced the best THD results for the source current even

under low load conditions. Generally, the THD improvement from a high value to low

value can be easily achieved by connecting the power inverter. However, further

improvement of THD at lower level is a challenging task which is the major contribution

of the research in this chapter. For loads from 700 to 100 W, PI and the ADP controller

together achieved further THD improvement which proves the effectiveness of the

proposed controller under different operating modes unlike passive filters. On average, the

121

25.21% 25.74% 26.27% 26.84% 27.48% 28.26%
29.29%

3.64% 4.09% 4.62% 5.37%
6.51%

8.57%

13.26%

2.70% 3.08% 3.59% 4.33%
5.47%

7.54%

12.11%

700W (105 Ω) 600W (125 Ω) 500W (152 Ω) 400W (192 Ω) 300W (257 Ω) 200W (390 Ω) 100W (785 Ω)

Performance (THD) comparison of different controllers under different load conditions

Without power inverter PI PI+ADP

Figure 5.10. Performance comparison of PI and ADP under different loading conditions.

ADP controller reduced THD by 18.41%.

To observe a clear difference between the PI controller and ADP, the worst case

among all the above load conditions described previously (i.e., for a load of 100W) was

considered for detailed individual harmonic analysis. The individual harmonics of the PI

and ADP controllers were compared in Fig. 5.11. The 3rd harmonics is not presented here

since it was close to 0 in all cases. It can be seen that ADP outperformed PI even in this

worst-case condition and for different harmonic spectrums as well. According to the IEEE

recommendations for harmonic control in power systems defined in IEEE Std. 519 [119],

requirements on individual odd harmonic components of the source current were satisfied

by the PI controller up to the 19th harmonics i.e., it should be less than 1.5%. However,

for the 23rd to 31st harmonics, the PI controller violated the standard which mentions that

the harmonics should be less than 0.6%. That requirement was met by the proposed online

learning based ADP control approach. It can also be observed from Fig. 5.11 that the

PI+ADP could achieve significant improvement in harmonics beyond the 23rd harmonics.

122

22.86%

11.24%

9.17%

6.19% 5.63% 3.95% 3.82%
2.60% 2.60%

1.73%

0.76%

0.54%

1.05%
0.87%

1.15% 1.29%

2.06%

0.74%

2.45%
2.18%

0.55%
0.33%

0.64%
0.47%

0.70%

0.41% 0.59%
0.44% 0.51% 0.36%

5th

harmonic

7th

harmonic

11th

harmonic

13th

harmonic

17th

harmonic

19th

harmonic

23th

harmonic

25th

harmonic

29th

harmonic

31st

harmonic

Harmonic spectrum for different control methods with load=100W

Without SAF PI PI+ADP

Figure 5.11. Comparison of dominant harmonics for PI and ADP under load=100W. The
blue dashed line shows IEEE Std. 519 limits.

5.4 Summary

In this chapter, an online learning based ADP controller for a d-axis and q-axis

current control was proposed so that Id and Iq current effectively track their respective

reference currents. The increased speed of the PI controller with the online learning based

control improved the harmonic compensating capability of the power inverter. This

subsequently reduced the THD of the source current by an average of 18.41% compared

to a traditional PI controller alone. With the advantage of NN weights updating rules and a

properly defined reinforcement signal, the ADP controller adapted its key parameters

when the system was under different conditions. The ADP controller produced the fastest

response time, low overshoot and in general, the best performance in comparison to the

traditional PI controller. This controller improved the power quality problem of harmonics

in case of dynamic non-linear load conditions.

123

CHAPTER 6 Conclusions and Future Work

First, the history experience was successfully integrated into the traditional ADP

design. The key idea of proposed approach was to simplify the prior extensive training

and reduce training time associated with the ADP controller thereby preserving the online,

model-free learning capability of the ADP. A detailed design architecture and the

methodology adapted was presented. In addition, a systematic approach is proposed to

integrate history experience in both critic and action networks of ADP controller design.

Simulation analysis was performed on two case studies: a cart-pole model and a

triple-link inverted pendulum model to demonstrate the superior learning capability of the

integrated approach. The statistical results show that the proposed approach can improve

the required average number of trials to succeed and also the success rate. In general, the

proposed approach improved the required average trial to succeed by 26.5% for cart-pole

and 43% for triple-link balancing tasks. There are many future directions along this work.

The history experience based ADP can be tested on one of the challenging path planning

problems: maze navigation with obstacles. This new architecture also finds applications in

smart grid and power electronic converters for improving performance of existing

controllers. Currently, the short term memory of the history experience size of 10 is used

for simulations. However, the more efficient use of long term memory might further

improve the results. The time complexity of the proposed ADP controller can be solved

with parallel computing techniques in recent simulation environments which is one of our

future research projects.

Second, the prioritized experience replay was successfully integrated into the

124

traditional ADP design. The statistical results show that the proposed approach can

improve the required average number of trials to succeed and the success rate. The

proposed training method improved the required average trial to succeed compared to

traditional ADP controller by 60.56% for cart-pole and 56.89% for triple-link balancing

tasks. This method was far superior than experience replay integrated ADP, which could

achieve only 23% improvement for cart-pole and 43% improvement for triple-link case

studies. In addition stability of the proposed method has been verified by constructing the

Lyanupov function and detailed theoretical analysis has been presented to show that the

errors between the optimal network weights and their respective estimations are UUB.

Third, a supplementary ADP controller for d-axis current control is proposed so that

Id current effectively tracks reference current. It plays an important role for the effective

application of VSM, not only under sudden step change condition, but also under the fault

in three-phase system such as unbalanced single line to ground fault. The ADP controller

produced the fastest response time, low overshoot and in general, the best performance in

comparison to the traditional PI controller. With the advantage of NN weights updating

rules, the ADP controller adopted its key parameters when the system is under different

faults. More robust results were obtained by ADP controller in comparison with the

conventional PI controller. This VSM system with adaptive control has long-term benefit

to micro-grids and data center applications. The coordinated control for both inner current

loop and outer frequency loop of VSM is expected to be more effective for the real

application. One of the future work might be on the supplementary ADP design for

coordinated control in this problem.

Finally, an online learning based ADP controller for a d-axis and q-axis current

125

control was proposed so that Id and Iq current effectively track their respective reference

currents. The proposed controller works alongside existing proportional integral (PI)

controllers to efficiently track the reference currents in the d−q domain. It can generate

adaptive control actions to compensate PI controller. We have also included the simulation

results without connecting the traditional PI control based power inverter for reference

comparison. The proposed system was simulated under different non-linear (three-phase

full wave rectifier) load conditions. The grid connected inverter system was simulated in

MATLAB/Simulink to analyze transient stability problems. The performance of the

proposed approach was compared with the traditional approach. The increased speed of

the PI controller with the online learning based control improved the harmonic

compensating capability of the power inverter. This subsequently reduced the THD of the

source current by an average of 18.41% compared to a traditional PI controller alone.

With the advantage of NN weights updating rules and a properly defined reinforcement

signal, the ADP controller adapted its key parameters when the system was under different

conditions. The ADP controller produced the fastest response time, low overshoot and in

general, the best performance in comparison to the traditional PI controller. This

controller improved the power quality problem of harmonics in case of dynamic

non-linear load conditions. The improvement in the dynamics of the inner current control

loop achieved in this work can have a number of applications for other power electronic

systems such as grid-connected inverters, STATCOMs, virtual synchronous machines, etc.

For future work, a hardware experiment system for the verification of these simulation

results is in planning for development.

126

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, 1st ed.

MIT press, Cambridge, MA, 1998.

[2] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic

programming for feedback control,” IEEE circuits and systems magazine, vol. 9,

no. 3, pp. 32–50, 2009.

[3] T. M. Mitchell, “Machine learning. 1997,” Burr Ridge, IL: McGraw Hill, vol. 45,

1997.

[4] S. Lange, M. Riedmiller, and A. Voigtländer, “Autonomous reinforcement learning

on raw visual input data in a real world application,” in The 2012 International

Joint Conference on Neural Networks (IJCNN), 2012, pp. 1–8.

[5] T. Matiisen, “Guest Post (Part I): Demystifying Deep Reinforcement Learning -

Nervana,” 2016. [Online]. Available:

https://www.nervanasys.com/demystifying-deep-reinforcement-learning/

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.

529–533, 2015.

https://www.nervanasys.com/demystifying-deep-reinforcement-learning/

127

[7] Y. B. Yann LeCun and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444,

2015.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” in NIPS Deep

Learning Workshop, 2013.

[9] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning with

model-based acceleration,” arXiv preprint arXiv:1603.00748, 2016.

[10] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double

q-learning,” arXiv:1509.06461, 2015.

[11] P. J. Werbos, “Backpropagation through time: What it does and how to do it,”

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 2002.

[12] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in reinforcement

learning,” in The 2010 International Joint Conference on Neural Networks

(IJCNN), 2010, pp. 1–8.

[13] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep

visuomotor policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp.

1–40, 2016.

[14] D. Ernst, R. Marée, and L. Wehenkel, “Reinforcement learning with raw image

pixels as input state,” in Advances in Machine Vision, Image Processing, and

Pattern Analysis. Springer, 2006, pp. 446–454.

128

[15] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for

robotic manipulation,” arXiv preprint arXiv:1610.00633, 2016.

[16] L. Tai, S. Li, and M. Liu, “A deep-network solution towards modelless obstacle

avoidance,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2016.

[17] F. Lewis and D. Liu, Eds., Reinforcement Learning and Approximate Dynamic

Programming for Feedback Control. Piscataway, NJ, USA: Wiley-IEEE Press,

2013.

[18] J. Si, A. G. Barto, W. B. Powell, and D. C. Wunsch, Handbook of learning and

approximate dynamic programming, 1st ed. IEEE Press, Hoboken, NJ, 2004.

[19] W. Powell, Approximate Dynamic Programming: Solving the curses of

dimensionality. Wiley-Blackwell, 2007.

[20] H. He, Self-Adaptive Systems for Machine Intelligence. Wiley, 2011.

[21] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An

introduction,” IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 39–47,

2009.

[22] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans. on

Neural Netw., vol. 8, no. 5, pp. 997–1007, 1997.

129

[23] H.-G. Zhang, X. Zhang, L. Yan-Hong, and Y. Jun, “An overview of research on

adaptive dynamic programming,” Acta Automatica Sinica, vol. 39, no. 4, pp.

303–311, 2013.

[24] J. Si and Y.-T. Wang, “Online learning control by association and reinforcement,”

IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 264–276, 2001.

[25] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and

optimization based on adaptive dynamic programming,” Neurocomputing, vol. 78,

no. 1, pp. 3–13, 2012.

[26] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual

critic network design,” IEEE Trans. on Neural Networks and Learning Systems,

vol. 24, no. 6, pp. 913–928, 2013.

[27] D. Liu, D. Wang, D. Zhao, Q. Wei, and N. Jin, “Neural-network-based optimal

control for a class of unknown discrete-time nonlinear systems using globalized

dual heuristic programming,” IEEE Transactions on Automation Science and

Engineering, vol. 9, no. 3, pp. 628–634, 2012.

[28] D. Wang, D. Liu, Q. Wei, D. Zhao, and N. Jin, “Optimal control of unknown

nonaffine nonlinear discrete-time systems based on adaptive dynamic

programming,” Automatica, vol. 48, no. 8, pp. 1825–1832, 2012.

[29] S. Ray, G. K. Venayagamoorthy, B. Chaudhuri, and R. Majumder, “Comparison of

adaptive critics and classical approaches based wide area controllers for a power

130

system,” IEEE Trans. on Syst. Man, Cybern., Part B, vol. 38, no. 4, pp. 1002–1007,

2008.

[30] W. Qiao, G. Venayagamoorthy, and R. Harley, “DHP-based wide-area coordinating

control of a power system with a large wind farm and multiple FACTS devices,” in

Proc. IEEE Int. Conf. Neural Netw., 2007, pp. 2093–2098.

[31] D. Wang, C. Mu, H. He, and D. Liu, “Event-driven adaptive robust control of

nonlinear systems with uncertainties through NDP strategy,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 2016.

[32] D. Wang, C. Li, D. Liu, and C. Mu, “Data-based robust optimal control of

continuous-time affine nonlinear systems with matched uncertainties,” Information

Sciences, vol. 366, pp. 121–133, 2016.

[33] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct

heuristic dynamic programming,” Neural Networks, vol. 32, pp. 229–235, 2012.

[34] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear hjb

solution using approximate dynamic programming: Convergence proof,” IEEE

Transactions on System, Man and Cybernetics, Part B, vol. 38, no. 4, pp. 943–949,

2008.

[35] H. G. Zhang, Q. L. Wei, and Y. H. Luo, “A novel infinite-time optimal tracking

control scheme for a class of discrete-time nonlinear systems via the greedy hdp

iteration algorithm,” IEEE Transactions on System, Man and Cybernetics, Part B,

vol. 38, no. 4, pp. 937–942, 2008.

131

[36] H. G. Zhang, Y. H. Luo, and D. Liu, “Neural-network-based near-optimal control

for a class of discrete-time affine nonlinear systems with control constraints,” IEEE

Transactions on Neural Networks, vol. 20, no. 9, pp. 1490–1503, 2009.

[37] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral reinforcement

learning and experience replay for adaptive optimal control of partially-unknown

constrained-input continuous-time systems,” Automatica, vol. 50, no. 1, pp.

193–202, 2014.

[38] S. Adam, L. Busoniu, and R. Babuska, “Experience replay for real-time

reinforcement learning control,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol. 42, no. 2, pp. 201–212, 2012.

[39] C. W. Anderson, M. Lee, and D. L. Elliott, “Faster reinforcement learning after

pretraining deep networks to predict state dynamics,” in 2015 International Joint

Conference on Neural Networks (IJCNN), 2015, pp. 1–7.

[40] B. Wang, D. Zhao, J. Cheng, Y. Xu, and Y. Li, “A general adaptive dynamic

programming approach with experience replay,” in Neural Networks (IJCNN), 2016

International Joint Conference on, 2016, pp. 3550–3555.

[41] D. Zhao, Q. Zhang, D. Wang, and Y. Zhu, “Experience replay for optimal control of

nonzero-sum game systems with unknown dynamics,” IEEE transactions on

cybernetics, vol. 46, no. 3, pp. 854–865, 2016.

[42] R. Bellman, Dynamic Programming, 1st ed. Princeton University Press, 1957.

132

[43] S. Sharma, I. Umar, L. Ospina, D. Wong, and H. Tizhoosh, “Stacked autoencoders

for medical image search,” arXiv preprint arXiv:1610.00320, 2016.

[44] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International Journal of

Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

[45] P. Mirowski, M. Ranzato, and Y. LeCun, “Dynamic auto-encoders for semantic

indexing,” in Proceedings of the NIPS 2010 Workshop on Deep Learning, 2010, pp.

1–9.

[46] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[47] C. Harrigan, “Deep reinforcement learning with regularized convolutional neural

fitted Q iteration,” differences, vol. 14, pp. 1–12.

[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[49] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for

simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

[50] “Unsupervised feature learning and deep learning tutorial.” [Online]. Available:

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

[51] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D. Maria,

V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg, V. Mnih,

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/

133

K. Kavukcuoglu, and D. Silver, “Massively parallel methods for deep

reinforcement learning,” CoRR, vol. abs/1507.04296, 2015.

[52] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning,

planning and teaching,” Machine learning, vol. 8, no. 3-4, pp. 293–321, 1992.

[53] T. de Bruin, J. Kober, K. Tuyls, and R. Babuška, “The importance of experience

replay database composition in deep reinforcement learning,” in Deep

Reinforcement Learning Workshop, NIPS, 2015.

[54] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR, vol.

abs/1509.02971, 2015.

[55] X. Wang, “Deep reinforcement learning,” Master’s thesis, Technische Universiteit

Eindhoven, Eindhoven, 2016.

[56] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement learning and

dynamic programming using function approximators. CRC press, 2010, vol. 39.

[57] P. WawrzyńSki and A. K. Tanwani, “Autonomous reinforcement learning with

experience replay,” Neural Networks, vol. 41, pp. 156–167, 2013.

[58] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation

learning: The RPROP algorithm,” in IEEE International Conference on Neural

Networks, 1993, pp. 586–591.

134

[59] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” CoRR,

vol. abs/1602.01783, 2016.

[60] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude,” COURSERA: Neural Networks for Machine

Learning, vol. 4, no. 2, 2012.

[61] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep

reinforcement learning,” CoRR, vol. abs/1511.06581, 2015.

[62] W. Guo, F. Liu, J. Si, D. He, R. Harley, and S. Mei, “Approximate dynamic

programming based supplementary reactive power control for DFIG wind farm to

enhance power system stability,” Neurocomputing, vol. 170, pp. 417–427, 2015.

[63] Z. Ni, H. He, X. Zhong, and D. V. Prokhorov, “Model-free dual heuristic dynamic

programming,” IEEE transactions on neural networks and learning systems,

vol. 26, no. 8, pp. 1834–1839, 2015.

[64] B. Luo, D. Liu, T. Huang, and D. Wang, “Model-free optimal tracking control via

critic-only Q-learning,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 27, no. 10, pp. 2134–2144, 2016.

[65] B. Luo, D. Liu, H.-N. Wu, D. Wang, and F. L. Lewis, “Policy Gradient Adaptive

Dynamic Programming for Data-Based Optimal Control,” IEEE Transactions on

Cybernetics, 2016.

135

[66] S. Poudel, Z. Ni, and N. Malla, “Real-time cyber physical system testbed for power

system security and control,” International Journal of Electrical Power & Energy

Systems, vol. 90, pp. 124–133, 2017.

[67] N. Malla, U. Tamrakar, D. Shrestha, Z. Ni, and R. Tonkoski, “Online learning

control for harmonics reduction based on current controlled voltage source power

inverters,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 3, pp. 447–457,

2017.

[68] N. Malla, D. Shrestha, Z. Ni, and R. Tonkoski, “Supplementary control for virtual

synchronous machine based on adaptive dynamic programming,” in 2016 IEEE

Congress on Evolutionary Computation (CEC), 2016, pp. 1998–2005.

[69] B. Xu, C. Yang, and Z. Shi, “Reinforcement learning output feedback NN control

using deterministic learning technique,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 25, no. 3, pp. 635–641, 2014.

[70] Z. Ni, H. He, and J. Wen, “Adaptive learning in tracking control based on the dual

critic network design,” IEEE transactions on neural networks and learning systems,

vol. 24, no. 6, pp. 913–928, 2013.

[71] X. Luo and J. Si, “Stability of direct heuristic dynamic programming for nonlinear

tracking control using PID neural network,” in The 2013 International Joint

Conference on Neural Networks (IJCNN), 2013, pp. 1–7.

136

[72] X. Zhong, Z. Ni, and H. He, “A Theoretical Foundation of Goal Representation

Heuristic Dynamic Programming,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 27, no. 12, pp. 2513–2525, 2016.

[73] F. Liu, J. Sun, J. Si, W. Guo, and S. Mei, “A boundedness result for the direct

heuristic dynamic programming,” Neural Networks, vol. 32, pp. 229–235, 2012.

[74] L. Yang, J. Si, K. S. Tsakalis, and A. A. Rodriguez, “Direct heuristic dynamic

programming for nonlinear tracking control with filtered tracking error,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39,

no. 6, pp. 1617–1622, 2009.

[75] Y. Zhu and D. Zhao, “Comprehensive comparison of online ADP algorithms for

continuous-time optimal control,” Artificial Intelligence Review, pp. 1–17, 2017.

[76] P. Cichosz, “TD (λ) learning without eligibility traces: a theoretical analysis,”

Journal of Experimental & Theoretical Artificial Intelligence, vol. 11, no. 2, pp.

239–263, 1999.

[77] P. Wawrzyński, “Real-time reinforcement learning by sequential actor–critics and

experience replay,” Neural Networks, vol. 22, no. 10, pp. 1484–1497, 2009.

[78] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,” in

Reinforcement learning. Springer, 2012, pp. 45–73.

[79] J. McCaffrey, “How to use resilient back propagation to train neural networks –

visual studio magazine.” [Online]. Available: https://visualstudiomagazine.com/

Articles/2015/03/01/Resilient-Back-Propagation.aspx?Page=1

https://visualstudiomagazine.com/Articles/2015/03/01/Resilient-Back-Propagation.aspx?Page=1
https://visualstudiomagazine.com/Articles/2015/03/01/Resilient-Back-Propagation.aspx?Page=1

137

[80] H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line learning and

optimization based on adaptive dynamic programming,” Neurocomputing, vol. 78,

no. 1, pp. 3–13, 2012.

[81] Z. Ni, H. He, D. Zhao, X. Xu, and D. V. Prokhorov, “GrDHP: A general utility

function representation for dual heuristic dynamic programming,” IEEE

transactions on neural networks and learning systems, vol. 26, no. 3, pp. 614–627,

2015.

[82] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”

CoRR, vol. abs/1511.05952, 2015. [Online]. Available:

http://arxiv.org/abs/1511.05952

[83] A. W. Moore and C. G. Atkeson, “Prioritized sweeping: Reinforcement learning

with less data and less time,” Machine learning, vol. 13, no. 1, pp. 103–130, 1993.

[84] Y. Li, “Deep reinforcement learning: An overview,” CoRR, vol. abs/1701.07274,

2017. [Online]. Available: http://arxiv.org/abs/1701.07274

[85] J. Zhai, Q. Liu, Z. Zhang, S. Zhong, H. Zhu, P. Zhang, and C. Sun, “Deep

q-learning with prioritized sampling,” in International Conference on Neural

Information Processing. Springer, 2016, pp. 13–22.

[86] “Let’s make a DQN: Double Learning and Prioritized Experience Replay,” 2017.

[Online]. Available: https://jaromiru.com/2016/11/07/

lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1701.07274
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

138

[87] “Introduction to prioritized experience replay,” 2017. [Online]. Available: http:

//www.slideshare.net/ssuser07aa33/introduction-to-prioritized-experience-replay

[88] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and

N. de Freitas, “Sample efficient actor-critic with experience replay,” CoRR, vol.

abs/1611.01224, 2016. [Online]. Available: http://arxiv.org/abs/1611.01224

[89] N. Malla and Z. Ni, “A new history experience replay design for model-free

adaptive dynamic programming,” Neurocomputing, vol. 266, pp. 141–149, 2017.

[90] R. AbouSleiman, “Roulette Wheel Selection - File Exchange - MATLAB Central,”

2017. [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/

45735-roulette-wheel-selection?requestedDomain=www.mathworks.com

[91] A. Gurung, R. Tonkoski, D. Galipeau, and I. Tamrakar, “Feasibility Study of

Photovoltaic-Hydropower Microgrids,” in 5th International Conference on Power

and Energy Systems (ICPS), 2014.

[92] Q. C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous

generators,” IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp.

1259–1267, 2011.

[93] H. Bevrani, T. Ise, and Y. Miura, “Virtual synchronous generators: A survey and

new perspectives,” International Journal of Electrical Power & Energy Systems,

vol. 54, pp. 244–254, 2014.

http://www.slideshare.net/ssuser07aa33/introduction-to-prioritized-experience-replay
http://www.slideshare.net/ssuser07aa33/introduction-to-prioritized-experience-replay
http://arxiv.org/abs/1611.01224
https://www.mathworks.com/matlabcentral/fileexchange/45735-roulette-wheel-selection?requestedDomain=www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/45735-roulette-wheel-selection?requestedDomain=www.mathworks.com

139

[94] S. Li, M. Fairbank, C. Johnson, D. C. Wunsch, E. Alonso, and J. L. Proao,

“Artificial neural networks for control of a grid-connected rectifier/inverter under

disturbance, dynamic and power converter switching conditions,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 25, no. 4, pp.

738–750, 2014.

[95] S. Li, M. Fairbank, X. Fu, D. C. Wunsch, and E. Alonso, “Nested-loop neural

network vector control of permanent magnet synchronous motors,” in The 2013

International Joint Conference on Neural Networks (IJCNN), 2013, pp. 1–8.

[96] Y. Tang, J. Yang, J. Yan, and H. He, “Intelligent load frequency controller using

GrADP for island smart grid with electric vehicles and renewable resources,”

Neurocomputing, vol. 170, pp. 406–416, 2015.

[97] S. Li, D. C. Wunsch, M. Fairbank, and E. Alonso, “Vector control of a

grid-connected rectifier/inverter using an artificial neural network,” in The 2012

International Joint Conference on Neural Networks (IJCNN), 2012, pp. 1–7.

[98] M. Fairbank, S. Li, X. Fu, E. Alonso, and D. Wunsch, “An adaptive recurrent

neural-network controller using a stabilization matrix and predictive inputs to solve

a tracking problem under disturbances,” Neural Networks, vol. 49, pp. 74–86, 2014.

[99] X. Fu, S. Li, M. Fairbank, D. C. Wunsch, and E. Alonso, “Training recurrent neural

networks with the Levenberg–Marquardt algorithm for optimal control of a

grid-connected converter,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 26, no. 9, pp. 1900–1912, Sep. 2015.

140

[100] M. Suresh, A. K. Panda, Y. Suresh et al., “Fuzzy controller based 3phase 4wire

shunt active Filter for mitigation of current harmonics with combined pq and Id-Iq

control strategies,” Energy and Power Engineering, vol. 3, no. 01, pp. 43–52, 2011.

[101] J. Dai, G. K. Venayagamoorthy, R. G. Harley, Y. Deng, and S. M. Potter,

“Adaptive-critic-based control of a synchronous generator in a power system using

biologically inspired artificial neural networks,” in 2015 International Joint

Conference on Neural Networks (IJCNN), 2015, pp. 1–8.

[102] Z. Ni, Y. Tang, H. He, and J. Wen, “Multi-machine power system control based on

dual heuristic dynamic programming,” in 2014 IEEE Symposium on Computational

Intelligence Applications in Smart Grid (CIASG), 2014, pp. 1–7.

[103] Z. Ni, Y. Tang, X. Sui, H. He, and J. Wen, “An adaptive neuro-control approach for

multi-machine power systems,” International Journal of Electrical Power &

Energy Systems, vol. 75, pp. 108–116, 2016.

[104] C. Lu, J. Si, and X. Xie, “Direct heuristic dynamic programming for damping

oscillations in a large power system,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 38, no. 4, pp. 1008–1013, 2008.

[105] W. Guo, F. Liu, J. Si, D. He, R. Harley, and S. Mei, “Online supplementary ADP

learning controller design and application to power system frequency control with

large-scale wind energy integration,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 27, no. 8, pp. 1748–1761, Aug 2016.

141

[106] Y. Tang, H. He, Z. Ni, J. Wen, and X. Sui, “Reactive power control of

grid-connected wind farm based on adaptive dynamic programming,”

Neurocomputing, vol. 125, pp. 125–133, 2014.

[107] Y. Tang, H. He, Z. Ni, J. Wen, and T. Huang, “Adaptive modulation for DFIG and

STATCOM with high-voltage direct current transmission,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 27, no. 8, pp. 1762–1772, Aug 2016.

[108] Y. Tang, H. He, Z. Ni, X. Zhong, D. Zhao, and X. Xu, “Fuzzy-based goal

representation adaptive dynamic programming,” IEEE Transactions on Fuzzy

Systems, vol. 24, no. 5, pp. 1159–1175, 2016.

[109] U. Tamrakar, D. Galipeau, R. Tonkoski, and I. Tamrakar, “Improving transient

stability of photovoltaic-hydro microgrids using virtual synchronous machines,” in

Proceedings of 2015 IEEE Eindhoven PowerTech, 2015, pp. 1–6.

[110] J. C. Daly, “Overshoot as a function of phase margin,” 2003. [Online]. Available:

http://www.ele.uri.edu/∼daly/535/margin.html

[111] U. Tamrakar, “Improvement of transient stability of photovoltaic-hydro microgrids

using virtual synchronous machines,” Master’s thesis, South Dakota State

University, Brookings, SD, USA, 2015.

[112] P. J. Werbos, “Neurocontrol and supervised learning: An overview and evaluation,”

Handbook of intelligent control, vol. 65, p. 89, 1992.

http://www.ele.uri.edu/~daly/535/margin.html

142

[113] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation

of current controllers for distributed power generation systems,” IEEE Transactions

on Power Electronics, vol. 24, no. 3, pp. 654–664, 2009.

[114] ECPE Europen Center for Power Electronics, EPE European power Electronics and

Drives Association. Position paper on energy efficiency-the role of power

electronics, in European Workshop on Energy Efficiency-the Role of Power

Electronics, February 2007.

[115] D. O. Abdeslam, P. Wira, J. Mercklé, D. Flieller, and Y.-A. Chapuis, “A unified

artificial neural network architecture for active power filters,” IEEE Transactions on

Industrial Electronics, vol. 54, no. 1, pp. 61–76, 2007.

[116] F. S. dos Reis, J. Ale, F. D. Adegas, R. Tonkoski, S. Slan, and K. Tan, “Active shunt

filter for harmonic mitigation in wind turbines generators,” in Power Electronics

Specialists Conference, 2006, pp. 1–6.

[117] L. Asiminoaei, F. Blaabjerg, and S. Hansen, “Detection is key-harmonic detection

methods for active power filter applications,” IEEE Industry Applications

Magazine, vol. 13, no. 4, pp. 22–33, 2007.

[118] L. Marconi, F. Ronchi, and A. Tilli, “Robust nonlinear control of shunt active filters

for harmonic current compensation,” Automatica, vol. 43, no. 2, pp. 252–263, 2007.

[119] “IEEE recommended practice and requirements for harmonic control in electric

power systems,” IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1–29,

June 2014.

143

[120] J. Vazquez and P. Salmeron, “Active power filter control using neural network

technologies,” IEE Proceedings-Electric Power Applications, vol. 150, no. 2, pp.

139–145, 2003.

[121] H. Akagi, A. Nabae, and S. Atoh, “Control strategy of active power filters using

multiple voltage-source PWM converters,” IEEE Transactions on Industry

Applications, no. 3, pp. 460–465, 1986.

[122] V. Soares, P. Verdelho, and G. D. Marques, “An instantaneous active and reactive

current component method for active filters,” IEEE Transactions on Power

Electronics, vol. 15, no. 4, pp. 660–669, 2000.

[123] S. Buso, L. Malesani, and P. Mattavelli, “Comparison of current control techniques

for active filter applications,” IEEE Transactions on Industrial Electronics, vol. 45,

no. 5, pp. 722–729, 1998.

[124] L. L. Lai, Intelligent system applications in power engineering: evolutionary

programming and neural networks. John Wiley & Sons, Inc., 1998.

[125] M. M. A. Radzi and N. A. Rahim, “Neural network and bandless hysteresis

approach to control switched capacitor active power filter for reduction of

harmonics,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp.

1477–1484, 2009.

[126] R. Aguilera, P. Acuna, P. Lezana, G. Konstantinou, B. Wu, S. Bernet, and

V. Agelidis, “Selective harmonic elimination model predictive control for

144

multilevel power converters,” IEEE Transactions on Power Electronics, vol. 32,

no. 3, pp. 2416–2426, March 2017.

[127] H. A. Young, M. A. Perez, and J. Rodriguez, “Analysis of finite-control-set model

predictive current control with model parameter mismatch in a three-phase

inverter,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp.

3100–3107, 2016.

[128] Q. Wei, D. Liu, Q. Lin, and R. Song, “Adaptive dynamic programming for

discrete-time zero-sum games,” IEEE Transactions on Neural Networks and

Learning Systems, to be published, doi: 10.1109/TNNLS.2016.2638863.

[129] Z. Ni, H. He, J. Wen, and X. Xu, “Goal representation heuristic dynamic

programming on maze navigation,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 24, no. 12, pp. 2038–2050, 2013.

[130] J. Na and G. Herrmann, “Online adaptive approximate optimal tracking control

with simplified dual approximation structure for continuous-time unknown

nonlinear systems,” IEEE/CAA Journal of Automatica Sinica, vol. 1, no. 4, pp.

412–422, 2014.

[131] W. Guo, F. Liu, J. Si, and S. Mei, “Incorporating approximate dynamic

programming-based parameter tuning into PD-type virtual inertia control of

DFIGs,” in The 2013 International Joint Conference on Neural Networks (IJCNN),

2013, pp. 1–8.

145

[132] Z. Ni, Y. Tang, H. He, and J. Wen, “Multi-machine power system control based on

dual heuristic dynamic programming,” in 2014 IEEE Symposium on Computational

Intelligence Applications in Smart Grid (CIASG), 2014, pp. 1–7.

[133] ——, “Multi-machine power system control based on dual heuristic dynamic

programming,” in 2014 IEEE Symposium on Computational Intelligence

Applications in Smart Grid (CIASG), Dec. 2014, Orlando, FL, pp. 1–7.

[134] Q. Wei, D. Liu, G. Shi, and Y. Liu, “Multibattery optimal coordination control for

home energy management systems via distributed iterative adaptive dynamic

programming,” IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp.

4203–4214, 2015.

[135] Y. Tang, H. He, J. Wen, and J. Liu, “Power system stability control for a wind farm

based on adaptive dynamic programming,” IEEE Transactions on Smart Grid,

vol. 6, no. 1, pp. 166–177, 2015.

[136] L. Dong, Y. Tang, H. He, and C. Sun, “An Event-Triggered Approach for Load

Frequency Control With Supplementary ADP,” IEEE Transactions on Power

Systems, vol. 32, no. 1, pp. 581–589, 2017.

[137] Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic programming for

optimal control of discrete-time nonlinear systems,” IEEE Transactions on

cybernetics, vol. 46, no. 3, pp. 840–853, 2016.

146

[138] Q. Wei, D. Liu, and X. Yang, “Infinite horizon self-learning optimal control of

nonaffine discrete-time nonlinear systems,” IEEE transactions on neural networks

and learning systems, vol. 26, no. 4, pp. 866–879, 2015.

[139] Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local value

iteration adaptive dynamic programming: Convergence analysis,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, to be published, doi:

10.1109/TSMC.2016.2623766.

[140] Q. Wei, D. Liu, and Q. Lin, “Discrete-time local iterative adaptive dynamic

programming: Terminations and admissibility analysis,” IEEE Transactions on

Neural Networks and Learning Systems, to be published, doi:

10.1109/TNNLS.2016.2593743.

[141] H. Zhang, J. Zhang, G.-H. Yang, and Y. Luo, “Leader-based optimal coordination

control for the consensus problem of multiagent differential games via fuzzy

adaptive dynamic programming,” IEEE Transactions on Fuzzy Systems, vol. 23,

no. 1, pp. 152–163, 2015.

[142] Q. Wei, R. Song, and P. Yan, “Data-driven zero-sum neuro-optimal control for a

class of continuous-time unknown nonlinear systems with disturbance using adp,”

IEEE transactions on neural networks and learning systems, vol. 27, no. 2, pp.

444–458, 2016.

	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2017

	Intelligent Learning Control System Design Based on Adaptive Dynamic Programming
	Naresh Malla
	Recommended Citation

	ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	INTRODUCTION
	Background
	Reinforcement Learning and Adaptive Dynamic Programming
	Markov Decision Process
	Reinforcement Learning
	Adaptive Dynamic Programming

	Computational Intelligence Techniques in Online Learning and Optimal Control
	Autoencoder and Deep Autoencoder
	Convolutional Neural Networks
	Deep Q Network
	Experience Replay

	Discussion of Opportunities for Deep Learning Enabled Adaptive Dynamic Programming
	Feasibility for Integration of Experience Replay for RL Structure
	Maze Navigation Problem
	Human Level Control
	Future Directions

	Contributions and Organization of This Thesis
	Contributions
	Thesis Outline

	Design of History Experience Replay for Model Free Adaptive Dynamic Programming Controller
	Background of History Experience
	Batch Learning
	Benefits of History Experience
	Discussion of Time Complexity

	Proposed ADP Controller and Implementation
	Overall Framework
	Design of Model-Free History Experience
	Design of Critic Network
	Design of Action Network

	Online Learning Alogrithms
	Simulation Results
	Cart-pole Balancing Problem
	Triple-link Inverted Problem

	Summary

	Integration of Prioritized Experience Replay Design for Model Free Adaptive Dynamic Programming with Stability Analysis
	Design of Experience Replay
	Prioritized Sampling in Experience Replay and Integration Into ADP Design
	Prioritized Sampling of Experience Replay
	Integration of Prioritized Experience Replay in Critic Network
	Integration of Prioritized Experience Replay in Action Network
	On-line Learning Algorithms
	Stability Analysis

	Simulation and Evaluation
	Cart-pole Balancing Problem
	Triple-link Inverted Pendulum Balancing Problem

	Summary

	Smart Grid Application 1: Supplementary Adaptive Dynamic Programming Controller for Virtual Synchronous Machine
	Benchmark VSM System
	Controller Design Based on Adaptive Dynamic Programming
	Simulation and Evaluation
	Training The Adaptive Dynamic Programming Controller
	Case Study I: Step Change in The d-axis Reference Current
	Case Study II: Single-phase Ground Fault

	Summary

	Smart Grid Application 2: Harmonic Reduction Using Shunt Active Filter and Online Learning based Control
	Benchmark and System Configuration
	Proposed Controller Design for Benchmark System
	Training Procedures for ADP Controller
	Stability Discussion of ADP Controller

	Simulation Results
	Parameters Setup for ADP Controller
	Case Study I: Non-linear Load
	Case Study II: Different Loading Conditions

	Summary

	Conclusions and Future Work

