159 research outputs found

    A new mixed model based on the enhanced-Refined Zigzag Theory for the analysis of thick multilayered composite plates

    Get PDF
    The Refined Zigzag Theory (RZT) has been widely used in the numerical analysis of multilayered and sandwich plates in the last decay. It has been demonstrated its high accuracy in predicting global quantities, such as maximum displacement, frequencies and buckling loads, and local quantities such as through-the-thickness distribution of displacements and in-plane stresses [1,2]. Moreover, the C0 continuity conditions make this theory appealing to finite element formulations [3]. The standard RZT, due to the derivation of the zigzag functions, cannot be used to investigate the structural behaviour of angle-ply laminated plates. This drawback has been recently solved by introducing a new set of generalized zigzag functions that allow the coupling effect between the local contribution of the zigzag displacements [4]. The newly developed theory has been named enhanced Refined Zigzag Theory (en- RZT) and has been demonstrated to be very accurate in the prediction of displacements, frequencies, buckling loads and stresses. The predictive capabilities of standard RZT for transverse shear stress distributions can be improved using the Reissner’s Mixed Variational Theorem (RMVT). In the mixed RZT, named RZT(m) [5], the assumed transverse shear stresses are derived from the integration of local three-dimensional equilibrium equations. Following the variational statement described by Auricchio and Sacco [6], the purpose of this work is to implement a mixed variational formulation for the en-RZT, in order to improve the accuracy of the predicted transverse stress distributions. The assumed kinematic field is cubic for the in-plane displacements and parabolic for the transverse one. Using an appropriate procedure enforcing the transverse shear stresses null on both the top and bottom surface, a new set of enhanced piecewise cubic zigzag functions are obtained. The transverse normal stress is assumed as a smeared cubic function along the laminate thickness. The assumed transverse shear stresses profile is derived from the integration of local three-dimensional equilibrium equations. The variational functional is the sum of three contributions: (1) one related to the membrane-bending deformation with a full displacement formulation, (2) the Hellinger-Reissner functional for the transverse normal and shear terms and (3) a penalty functional adopted to enforce the compatibility between the strains coming from the displacement field and new “strain” independent variables. The entire formulation is developed and the governing equations are derived for cases with existing analytical solutions. Finally, to assess the proposed model’s predictive capabilities, results are compared with an exact three-dimensional solution, when available, or high-fidelity finite elements 3D models. References: [1] Tessler A, Di Sciuva M, Gherlone M. Refined Zigzag Theory for Laminated Composite and Sandwich Plates. NASA/TP- 2009-215561 2009:1–53. [2] Iurlaro L, Gherlone M, Di Sciuva M, Tessler A. Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories. Composite Structures 2013;106:777–92. https://doi.org/10.1016/j.compstruct.2013.07.019. [3] Di Sciuva M, Gherlone M, Iurlaro L, Tessler A. A class of higher-order C0 composite and sandwich beam elements based on the Refined Zigzag Theory. Composite Structures 2015;132:784–803. https://doi.org/10.1016/j.compstruct.2015.06.071. [4] Sorrenti M, Di Sciuva M. An enhancement of the warping shear functions of Refined Zigzag Theory. Journal of Applied Mechanics 2021;88:7. https://doi.org/10.1115/1.4050908. [5] Iurlaro L, Gherlone M, Di Sciuva M, Tessler A. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses, Ibiza, Spain: 2013. [6] Auricchio F, Sacco E. Refined First-Order Shear Deformation Theory Models for Composite Laminates. J Appl Mech 2003;70:381–90. https://doi.org/10.1115/1.1572901

    Behavior of Metallic and Composite Structures (Second Volume)

    Get PDF
    Various types of metallic and composite structures are used in modern engineering practice. For aerospace, car industry, and civil engineering applications, the most important are thin-walled structures made of di erent types of metallic alloys, brous composites, laminates, and multifunctional materials with a more complicated geometry of reinforcement including nanoparticles or nano bres. The current applications in modern engineering require analysis of structures of various properties, shapes, and sizes (e.g., aircraft wings) including structural hybrid joints, subjected to di erent types of loadings, including quasi-static, dynamic, cyclic, thermal, impact, penetration, etc.The advanced metallic and composite structures should satisfy multiple structural functions during operating conditions. Structural functions include mechanical properties such as strength, sti ness, damage resistance, fracture toughness, and damping. Non-structural functions include electrical and thermal conductivities, sensing, actuation, energy harvesting, self-healing capability, electromagnetic shielding, etc.The aim of this SI is to understand the basic principles of damage growth and fracture processes in advanced metallic and composite structures that also include structural joints. Presently, it is widely recognized that important macroscopic properties, such as macroscopic sti ness and strength, are governed by processes that occur at one to several scales below the level of observation. A thorough understanding of how these processes influence the reduction of sti ffness and strength forms the key to the design of improved innovative structural elements and the analysis of existing ones

    Design of composite rectangular tubes for optimum crashworthiness performance via experimental and ANN techniques

    Get PDF
    This paper examines the crashworthiness performance of composite rectangular tubes using experimental and artificial neural network (ANN) techniques. Based on experimentally obtained values of different crashworthiness parameters under various loading conditions, ANN models are constructed to identify the optimum cross-sectional aspect ratio of cotton fiber/epoxy laminated composite to achieve the targeted mechanical properties such as load carrying and energy absorption capability. Experimental findings show that axially and laterally loaded rectangular tubes were significantly affected by their aspect ratio. Furthermore, the predictions obtained from the ANN models showed consistency with the experimental data. In addition, the developed ANN captured the complicated nonlinear relationship among crashworthiness parameters to obtain insight into the practical design of the composite materials. 2021 The Author(s)This paper was made possible by NPRP grant No 10-0205-170347 from the Qatar National Research Fund (a member of the Qatar Foundation).Scopu

    An investigation on the vibroacoustic behavior of systems in similitude

    Get PDF
    Similitude theory allows engineers to establish the necessary conditions to design a scaled - up or down - model of a full-scale prototype structure. In recent years, the research on similitude methods, which allow to design the models and establish similitude conditions and scaling laws, has grown so that many obstacles associated with full-scale testing, such as cost and setup, may be overcome. This thesis aims at, on the one hand, expanding the possibilities of similitude methods by means of their application to new structural configurations; on the other hand, at the investigation of new approaches. Therefore, similitude conditions and scaling laws of thin aluminium plates with clamped-free-clamped-free boundary conditions, first, and aluminium foam sandwich plates with simply supported and free-free boundary conditions, then, are derived. Particularly, two sets of conditions are derived for the sandwich plates: the first by expliciting all the geometrical and material properties, the second by combining some parameters into just one with physical meaning, that is, the bending stiffness. These conditions and laws are successively validated by means of dynamic experimental tests, in which reconstructions of the natural frequencies and the velocity response of the prototype are attempted. Also the prediction of the radiated acoustic power is performed for the sandwich plates. All the tests highlight that these laws do not work fine when the models are distorted, i.e., when the similitude conditions are not satisfied. Therefore, the potentialities of machine learning are investigated and used to establish degrees of correlation between similar systems, without invoking governing equations and/or solution schemes. In particular, artificial neural networks are used in order to predict the dynamic characteristics, first, and the scaling parameters, then, of beams, as test (since they do not exhibit distorted models), and plates. In the latter case, the predictions of the artificial neural networks are validated by the results provided by the experimental tests. The networks prove to be robust to noise, very helpful in predicting the response characteristics, and identifying the model type. Finally, the similitude methods are used as a tool for supporting, and eventually validating, noisy experimental measurements, not for predicting the prototype behavior. In this way, they can help to understand if a set of measurements is reliable or not. Therefore, the sandwich plates are analysed with digital image correlation cameras. Then, with the help of an algorithm for blind source separation, the force spectra and velocity responses are reconstructed. It is demonstrated that the similitude results are coherent with the quality of the experimental measurements, since the curves overlap when the spatial patterns are recognizable. Instead, when the displacement field is too polluted by noise, the reconstruction exhibits discrepancies. This proves that the application of similitude methods should not be underestimated, especially in the light of the expanding range of approaches which can extract important information from noisy observations

    A systematic approach for integrated product, materials, and design-process design

    Get PDF
    Designers are challenged to manage customer, technology, and socio-economic uncertainty causing dynamic, unquenchable demands on limited resources. In this context, increased concept flexibility, referring to a designer s ability to generate concepts, is crucial. Concept flexibility can be significantly increased through the integrated design of product and material concepts. Hence, the challenge is to leverage knowledge of material structure-property relations that significantly affect system concepts for function-based, systematic design of product and materials concepts in an integrated fashion. However, having selected an integrated product and material system concept, managing complexity in embodiment design-processes is important. Facing a complex network of decisions and evolving analysis models a designer needs the flexibility to systematically generate and evaluate embodiment design-process alternatives. In order to address these challenges and respond to the primary research question of how to increase a designer s concept and design-process flexibility to enhance product creation in the conceptual and early embodiment design phases, the primary hypothesis in this dissertation is embodied as a systematic approach for integrated product, materials and design-process design. The systematic approach consists of two components i) a function-based, systematic approach to the integrated design of product and material concepts from a systems perspective, and ii) a systematic strategy to design-process generation and selection based on a decision-centric perspective and a value-of-information-based Process Performance Indicator. The systematic approach is validated using the validation-square approach that consists of theoretical and empirical validation. Empirical validation of the framework is carried out using various examples including: i) design of a reactive material containment system, and ii) design of an optoelectronic communication system.Ph.D.Committee Chair: Allen, Janet K.; Committee Member: Aidun, Cyrus K.; Committee Member: Klein, Benjamin; Committee Member: McDowell, David L.; Committee Member: Mistree, Farrokh; Committee Member: Yoder, Douglas P
    • …
    corecore