703 research outputs found

    Experimental Evaluation of Cache-Related Preemption Delay Aware Timing Analysis

    Get PDF
    In the presence of caches, preemptive scheduling may incur a significant overhead referred to as cache-related preemption delay (CRPD). CRPD is caused by preempting tasks evicting cached memory blocks of preempted tasks, which have to be reloaded when the preempted tasks resume their execution. In this paper we experimentally evaluate state-of-the-art techniques to account for the CRPD during timing analysis. We find that purely synthetically-generated task sets may yield misleading conclusions regarding the relative precision of different CRPD analysis techniques and the impact of CRPD on schedulability in general. Based on task characterizations obtained by static worst-case execution time (WCET) analysis, we shed new light on the state of the art

    Worst-Case Energy-Consumption Analysis by Microarchitecture-Aware Timing Analysis for Device-Driven Cyber-Physical Systems

    Get PDF
    Many energy-constrained cyber-physical systems require both timeliness and the execution of tasks within given energy budgets. That is, besides knowledge on worst-case execution time (WCET), the worst-case energy consumption (WCEC) of operations is essential. Unfortunately, WCET analysis approaches are not directly applicable for deriving WCEC bounds in device-driven cyber-physical systems: For example, a single memory operation can lead to a significant power-consumption increase when thereby switching on a device (e.g. transceiver, actuator) in the embedded system. However, as we demonstrate in this paper, existing approaches from microarchitecture-aware timing analysis (i.e. considering cache and pipeline effects) are beneficial for determining WCEC bounds: We extended our framework on whole-system analysis with microarchitecture-aware timing modeling to precisely account for the execution time that devices are kept (in)active. Our evaluations based on a benchmark generator, which is able to output benchmarks with known baselines (i.e. actual WCET and actual WCEC), and an ARM Cortex-M4 platform validate that the approach significantly reduces analysis pessimism in whole-system WCEC analyses

    Response-time analysis for fixed-priority systems with a write-back cache

    Get PDF
    This paper introduces analyses of write-back caches integrated into response-time analysis for fixed-priority preemptive and non-preemptive scheduling. For each scheduling paradigm, we derive four different approaches to computing the additional costs incurred due to write backs. We show the dominance relationships between these different approaches and note how they can be combined to form a single state-of-the-art approach in each case. The evaluation explores the relative performance of the different methods using a set of benchmarks, as well as making comparisons with no cache and a write-through cache. We also explore the effect of write buffers used to hide the latency of write-through caches. We show that depending upon the depth of the buffer used and the policies employed, such buffers can result in domino effects. Our evaluation shows that even ignoring domino effects, a substantial write buffer is needed to match the guaranteed performance of write-back caches

    Overhead-Aware Compositional Analysis of Real-Time Systems

    Get PDF
    Over the past decade, interface-based compositional schedulability analysis has emerged as an effective method for guaranteeing real-time properties in complex systems. Several interfaces and interface computation methods have been developed, and they offer a range of tradeoffs between the complexity and the accuracy of the analysis. However, none of the existing methods consider platform overheads in the component interfaces. As a result, although the analysis results are sound in theory, the systems may violate their timing constraints when running on realistic platforms. This is due to various overheads, such as task release delays, interrupts, cache effects, and context switches. Simple solutions, such as increasing the interface budget or the tasks’ worst-case execution times by a fixed amount, are either unsafe (because of the overhead accumulation problem) or they waste a lot of resources. In this paper, we present an overhead-aware compositional analysis technique that can account for platform overheads in the representation and computation of component interfaces. Our technique extends previous overhead accounting methods, but it additionally addresses the new challenges that are specific to the compositional scheduling setting. To demonstrate that our technique is practical, we report results from an extensive evaluation on a realistic platform

    Cache-Aware Real-Time Virtualization

    Get PDF
    Virtualization has been adopted in diverse computing environments, ranging from cloud computing to embedded systems. It enables the consolidation of multi-tenant legacy systems onto a multicore processor for Size, Weight, and Power (SWaP) benefits. In order to be adopted in timing-critical systems, virtualization must provide real-time guarantee for tasks and virtual machines (VMs). However, existing virtualization technologies cannot offer such timing guarantee. Tasks in VMs can interfere with each other through shared hardware components. CPU cache, in particular, is a major source of interference that is hard to analyze or manage. In this work, we focus on challenges of the impact of cache-related interferences on the real-time guarantee of virtualization systems. We propose the cache-aware real-time virtualization that provides both system techniques and theoretical analysis for tackling the challenges. We start with the challenge of the private cache overhead and propose the private cache-aware compositional analysis. To tackle the challenge of the shared cache interference, we start with non-virtualization systems and propose a shared cache-aware scheduler for operating systems to co-allocate both CPU and cache resources to tasks and develop the analysis. We then investigate virtualization systems and propose a dynamic cache management framework that hierarchically allocates shared cache to tasks. After that, we further investigate the resource allocation and analysis technique that considers not only cache resource but also CPU and memory bandwidth resources. Our solutions are applicable to commodity hardware and are essential steps to advance virtualization technology into timing-critical systems

    SACR: Scheduling-Aware Cache Reconfiguration for Real-Time Embedded Systems

    Full text link
    Dynamic reconfiguration techniques are widely used for efficient system optimization. Dynamic cache reconfiguration is a promising approach for reducing energy consumption as well as for improving overall system performance. It is a major challenge to introduce cache reconfiguration into real-time embedded systems since dynamic analysis may adversely affect tasks with real-time constraints. This paper presents a novel approach for implementing cache reconfiguration in soft real-time systems by efficiently leveraging static analysis during execution to both minimize energy and maximize performance. To the best of our knowledge, this is the first attempt to integrate dynamic cache reconfiguration in real-time scheduling techniques. Our experimental results using a wide variety of applications have demonstrated that our approach can significantly (up to 74%) reduce the overall energy consumption of the cache hierarchy in soft real-time systems. 1

    Cache-Aware Compositional Analysis of Real-Time Multicore Virtualization Platforms

    Get PDF
    Multicore processors are becoming ubiquitous, and it is becoming increasingly common to run multiple real-time systems on a shared multicore platform. While this trend helps to reduce cost and to increase performance, it also makes it more challenging to achieve timing guarantees and functional isolation. One approach to achieving functional isolation is to use virtualization. However, virtualization also introduces many challenges to the multicore timing analysis; for instance, the overhead due to cache misses becomes harder to predict, since it depends not only on the direct interference between tasks but also on the indirect interference between virtual processors and the tasks executing on them. In this paper, we present a cache-aware compositional analysis technique that can be used to ensure timing guarantees of components scheduled on a multicore virtualization platform. Our technique improves on previous multicore compositional analyses by accounting for the cache-related overhead in the components’ interfaces, and it addresses the new virtualization-specific challenges in the overhead analysis. To demonstrate the utility of our technique, we report results from an extensive evaluation based on randomly generated workload

    Improved CRPD analysis and a secure scheduler against information leakage in real-time systems

    Get PDF
    Real-time systems are widely applied to the time-critical fields. In order to guarantee that all tasks can be completed on time, predictability becomes a necessary factor when designing a real-time system. Due to more and more requirements about the performance in the real-time embedded system, the cache memory is introduced to the real-time embedded systems. However, the cache behavior is difficult to predict since the data will be loaded either on the cache or the memory. In order to taking the unexpected overhead, execution time are often enlarged by a certain (huge) factor. However, this will cause a waste of computation resource. Hence, in this thesis, we first integrate the cache-related preemption delay to the previous global earliest deadline first schedulability analysis in the direct-mapped cache. Moreover, several analyses for tighter G-EDF schedulability tests are conducted based on the refined estimation of the maximal number of preemptions. The experimental study is conducted to demonstrate the performance of the proposed methods. Furthermore, Under the classic scheduling mechanisms, the execution patterns of tasks on such a system can be easily derived. Therefore, in the second part of the thesis, a novel scheduler, roulette wheel scheduler (RWS), is proposed to randomize the task execution pattern. Unlike traditional schedulers, RWS assigns probabilities to each task at predefined scheduling points, and the choice for execution is randomized, such that the execution pattern is no longer fixed. We apply the concept of schedule entropy to measure the amount of uncertainty introduced by any randomized scheduler, which reflects the unlikelihood of for such attacks to success. Comparing to existing randomized scheduler that gives all eligible tasks equal likelihood at a given time point, the proposed method adjusted such values so that the entropy can be greatly increased --Abstract, page iii
    • …
    corecore