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Abstract
In the presence of caches, preemptive scheduling may incur a significant overhead referred to as
cache-related preemption delay (CRPD). CRPD is caused by preempting tasks evicting cached
memory blocks of preempted tasks, which have to be reloaded when the preempted tasks resume
their execution.

In this paper we experimentally evaluate state-of-the-art techniques to account for the CRPD
during timing analysis. We find that purely synthetically-generated task sets may yield misleading
conclusions regarding the relative precision of different CRPD analysis techniques and the impact
of CRPD on schedulability in general. Based on task characterizations obtained by static worst-
case execution time (WCET) analysis, we shed new light on the state of the art.
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1 Introduction

In real-time systems, it is often necessary to schedule tasks preemptively in order to meet all
tasks’ deadlines. Most work on preemptive scheduling is based on the assumption that the
overhead incurred by preemptions is negligible and may thus be subsumed into the worst-case
execution time of each task. When tasks are executed on complex microarchitectures with
caches, this assumption is problematic: Preempting tasks may alter the state of the cache,
leading to an increased execution time of preempted tasks once they are resumed, because
their data has been evicted from the cache and needs to be reloaded from main memory.
The additional execution time due to such reloads is known as cache-related preemption
delay (CRPD).
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7:2 Experimental Evaluation of CRPD-Aware Timing Analysis

As the CRPD depends both on the “low-level” cache aspect and on “higher-level” schedul-
ing decisions, it is tackled by a combination of low-level static analysis, characterizing each
task’s “cache footprint”, and CRPD-aware response-time analysis, bounding a task’s re-
sponse time using the low-level characterizations. Altmeyer et al. [1] provide an overview
of the state-of-the-art techniques to account for CRPD during response-time analysis. To
experimentally evaluate the different CRPD-aware response-time analyses, Altmeyer et al. [1]
use synthetically-generated task sets with synthetically-generated task characteristics.

In this paper, we experimentally evaluate the state of the art concerning CRPD-aware
timing analysis to gain further insights into where future research on CRPD may be profitable.
To this end, we attempt to answer the following questions:

Can we reproduce the results obtained in the experimental evaluation of Altmeyer et al. [1]
based on synthetic task sets?
Do we obtain similar per-task characteristics (worst-case execution time (WCET) values,
number of Evicting Cache Blocks (ECBs), and number of Useful Cache Blocks (UCBs))
as Altmeyer et al. [1] based on our low-level analysis toolchain?
If we base the experimental evaluation on task characterizations obtained by static WCET
analysis, do we observe similar trends as those observed in [1] based on synthetic task
sets? If not, why? Related to the previous question: Are the parameters for the synthetic
task set generation meaningful?

Our paper is structured as follows: We summarize the background concerning caches and
CRPD-aware timing analysis in Section 2. In Section 3 we discuss relevant details of our
analysis implementation. Then, in Section 4 we present the results of our experimental
evaluation, partially answering some of the questions listed above. We conclude the paper
with a summary of our findings in Section 5.

2 Background and Related Work

2.1 Caches
Caches are small but fast memories that store a subset of the main memory’s contents to
bridge the latency gap between processors and DRAM-based main memory.

To profit from spatial locality and to reduce management overhead, main memory is
logically partitioned into a set of memory blocks of a certain size. Blocks are cached as a
whole in cache lines of the same size. When accessing a memory block, the cache logic has to
determine whether the block is stored in the cache, a cache hit or not, a cache miss.

To enable an efficient look-up, each block can only be stored in a small number of cache
lines. For this purpose, caches are partitioned into equally-sized cache sets. The size of a
cache set is called the associativity of the cache. Caches of associativity one are called direct
mapped. Most work concerning CRPD-aware response time analysis has been conducted in
the context of direct-mapped caches. Such caches are also the focus of this work.

2.2 Timing Analysis for Preemptive Scheduling
Timing analysis is traditionally separated into two phases:
1. Worst-case execution time (WCET) analysis, which determines bounds on each task’s

execution time. Usually Ci denotes the WCET bound of task τi.
2. Response-time analysis (RTA), which determines bounds on each task’s response time

under a particular scheduling algorithm; based on the tasks’ WCET bounds, minimum
inter-arrival times (also referred to as periods), denoted by Ti, and release jitter, denoted
by Ji.
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If no task’s response time may exceed its relative deadline Di, then the task set is determined
to be schedulable.

Traditional response-time analysis assumes that preemptions are free, i.e., context switches
are performed instantaneously and the execution times of tasks are not affected by the
execution of preempting tasks. For fixed-priority preemptive scheduling, the least solution of
the following recursive equation [3, 12] then determines a task’s response time:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
· Cj , (1)

where hp(i) denotes the indices of those tasks that have a higher priority than task τi.
Unfortunately, context switches cannot be performed instantaneously for several reasons:

1. The scheduler takes some time to select the next task to execute. 2. Upon a context
switch, the hardware needs to save the contents of registers and restore the contents of the
task whose execution is to be resumed. This process also results in flushing the pipeline.
It is commonly assumed that the cost of these two actions can be bounded by a constant,
which can then be taken into account by appropriately inflating each task’s WCET bound.

In the presence of caches, however, preemptive scheduling may incur an additional
overhead, called cache-related preemption delay (CRPD): The execution time of preempted
tasks may be prolonged due to additional cache misses caused by cache evictions of preempting
tasks.

To account for CRPD, Equation (1) can be extended by γi,j representing the preemption
cost due to each job of a higher-priority preempting task τj executing within the worst-case
response time of task τi [6]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + Jj

Tj

⌉
· (Cj + γi,j). (2)

Note, that the response time calculation inherently relies on timing compositionality [10] of
the cache-related preemption effects. Recent work in the area of multi-core timing analysis [9]
has shown that the compositionality assumption is often violated even on simple hardware
platforms. However, the analysis techniques of [9] could be adopted to still allow for a
compositional reasoning.

2.3 Characterizing a Task’s Cache Footprint
To bound γi,j one needs to bound the number of additional cache misses in preempted
tasks τi due to the execution of preempting tasks. The number of such cache misses, depends
on the memory-access behavior of both the preempted task and its preempting tasks.

To characterize preempting tasks, Busquets-Mataix et al. [6] introduced the notion of
ECBs: A memory block is an ECB of task τj if it may be accessed during τj ’s execution.
For the computation of cache-related preemption delays the precise identity of a memory
block is irrelevant. What is important is which cache set an ECB maps to, which is where
it may potentially evict cached memory blocks of a preempted task. Further, in case of
direct-mapped caches, if two or more ECBs map to the same cache set, they may not do
a greater damage than an individual ECB mapping to this cache set. Thus, in case of
direct-mapped caches – which we focus on in this paper – one may characterize the set of
ECBs of a task by a set ECBj ⊆ {0, . . . , N − 1}, capturing the subset of cache sets that a
task’s evicting cache blocks map to.

WCET 2018



7:4 Experimental Evaluation of CRPD-Aware Timing Analysis

To characterize preempted tasks, Lee et al. [13] introduced the notion of UCBs: A memory
block m is a UCB of task τi if there is a program point P within τi, such that m may be
cached at P and m may be reused at a later program point P ′, which may be reached from
P without eviction of memory block m along the execution from P to P ′. Intuitively, only
useful cache blocks may result in additional cache misses due to preemptions. As there may
be at most one useful cache block in each cache set of a direct-mapped cache at any point
in time, the set of UCBs of a task may be represented by a set UCBi ⊆ {0, . . . , N − 1},
capturing the cache sets that a task’s useful cache blocks map to.

Later, Altmeyer and Maiza [2] introduced the notion of definitely-cached useful cache
blocks (DC-UCBs): A memory block m is a DC-UCB of task τi if there is a program point P
within τi, such that m must be cached at P and m may be reused at a later program point P ′,
which may be reached from P without eviction of memory block m along the execution from
P to P ′, and, crucially, m is considered to be a cache hit at P ′ by the WCET analysis. The
set of DC-UCBs is always a subset of the set of UCBs. The observation in the definition of
DC-UCBs is that CRPD analysis needs to only account for preemption-induced cache misses
that are not already conservatively accounted for during WCET analysis.

2.4 CRPD-Aware Response-Time Analysis for Fixed-priority Scheduling

Based on the sets of ECBs and UCBs of all tasks, there are different ways of defining γi,j , such
that the response times of tasks are correctly bounded by solutions of (2). In the following,
we briefly summarize the six state-of-the-art approaches from Altmeyer et al. [1] that apply
to direct-mapped caches. More details can be found in [1]. The methods can be extended to
be applied to set-associative caches with LRU replacement, but not to caches with FIFO or
PLRU replacement [5]. Those six approaches follow from two different interpretations of γi,j

that differ in case of nested preemptions:
1. “Effect of the preempting task”: In this case γi,j bounds the cost of additional misses in

the preempted tasks due to execution of the preempting task τj .
2. “Effect on the immediately preempted task”: In this case γi,j bounds the cost of additional

misses in the task immediately (i.e. not in a nested fashion) preempted by τj , due to τj ’s
execution and the execution of higher-priority tasks which may in turn have preempted τj .

Effect of the Preempting Task

Busquets-Mataix [6] and later Tomiyama and Dutt [16] used the number of ECBs of the
preempting task to bound the preemption cost, in what Altmeyer et al. [1] termed the
ECB-Only approach:

γECB
i,j = BRT · |ECBj |, (3)

where BRT denotes the block reload time, i.e., the time to fetch one memory block from main
memory into the cache.

Tan and Mooney [15] improved upon ECB-Only by also considering the set of UCBs of
all tasks that may be affected by the preemption by τj . This approach is termed UCB-Union
in [1]. Altmeyer et al. [1] introduced the UCB-Union-Multiset approach, which improves
upon UCB-Union by taking into account how often different tasks may preempt each other
based on their minimum inter-arrival times.
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Effect on the Immediately-Preempted Task

Lee et al. [13] introduced the UCB-Only approach, which bounds cost of a preemption in the
immediately-preempted task by considering its UCBs:

γUCB
i,j = BRT · max

∀k∈aff(i,j)
{|UCBk|}, (4)

where aff(i, j) = hep(i) ∩ lp(j) is the set of tasks that have a lower priority than task τj but
a higher-or-equal priority than task τi, the task under analysis. Thus aff(i, j) is the set of
tasks that task τj may immediately preempt during task τi’s response time.

Altmeyer et al. [1] later introduced the ECB-Union and the ECB-Union-Multiset ap-
proaches, which additionally take into account the ECBs of the preempting tasks, and the
number of times tasks may preempt each other based on their minimum inter-arrival times.

As the UCB-Union-Multiset and the ECB-Union-Multiset approaches are incomparable,
they may be combined by taking the minimum response time of the two approaches for each
task, to yield an approach, coined Combined-Multiset, that dominates the two [1].

3 Implementation

In this section we describe the tools used for the experiments presented later in this paper.
This includes the tools for analysis of tasks to determine task characteristics, for generation
of synthetic task sets and for running the schedulability analysis.

3.1 Obtaining Task Characteristics
We use our low-level timing analysis tool LLVMTA [9] to compute not only the worst-case
execution time bound for a given task, but also its preemption-related characteristics: ECBs,
UCBs, and DC-UCBs. LLVMTA supports the detailed microarchitectural analysis of different
processors. In this paper, we use the model of a conventional in-order pipeline with five
stages [11], static branch prediction, and native support for floating-point instructions. The
main memory is accessed via separate instruction cache and data scratchpad. We employ
standard must- and may-analyses [7] to predict the instruction cache behavior. Similar
to [2], our analyses are context sensitive: they (virtually) peel the first iteration of loops and
distinguish the different call sites for each function. This is important to achieve precise
analysis results [7].

The microarchitectural analysis results in a microarchitectural execution graph [9] whose
nodes correspond to abstract microarchitectural states and whose edges represent the possible
execution flow. To obtain the worst-case execution time bound, we use an integer linear
program to calculate the longest path through the microarchitectural execution graph – also
known as implicit path enumeration [14].

This microarchitectural execution graph also contains detailed information about the
memory accesses initiated in the pipeline. Unlike the control-flow graph of a program,
it explicitly includes speculative accesses triggered by branch prediction or even access
reorderings in out-of-order pipelines. To ensure soundness, we thus perform the ECB and
DC-UCB analysis on this microarchitectural execution graph rather than on the control-flow
graph of the program. Our implementation follows the data-flow description of the analysis
in [2].

The set of useful cache blocks is a property of a particular program point. To be able
to use the sets in an efficient way in the schedulability analysis, we need to combine the
program-point-sensitive results. In accordance with [1], we calculate the set of those cache
sets that exhibit a useful cache block at any program point.

WCET 2018



7:6 Experimental Evaluation of CRPD-Aware Timing Analysis

Instructions that share a single cache line are usually executed consecutively in straight-
line code fragments (spatial locality). As a consequence, the cache line is useful at the
program point between two instruction of that cache line. In the program-point-insensitive
result, almost every cache line in the program is (definitely-cached) useful due to spatial
locality if the line size exceeds the word size. Similar to [2], blocks that are useful only due to
immediate spatial locality can be ignored in the low-level analysis, if they are compensated
for by one additional cache reload per preemption in the schedulability analysis.

3.2 Task Set Generation and Schedulability Analysis

The generation of synthetic task sets and the CRPD-aware schedulability analysis is done
using a new tool that we developed using the Rust programming language. This tool performs
CRPD-aware schedulability analyses of [2] on synthetically generated task sets using either
the task characteristics provided by LLVMTA or by synthetically generating them.

4 Evaluation

In this section we experimentally evaluate the differences between the various approaches
discussed in Section 2.4 using both synthetically-generated task characteristics and task
characteristics derived through our WCET analysis tool, LLVMTA. In the latter case, we use
the programs from the Mälardalen test bench [8] as tasks.

As in most previous work on cache-related preemption delay, including [1, 2], we assume
a direct-mapped instruction cache and a data scratchpad. The size of the data scratchpad is
sufficient to not cause preemption-induced reloads. To compare our results to [1], we use a
cache with a line size of 8 bytes and 256 sets, i.e. a total size of 2 kB.

In each of our evaluations, we have compared the six CRPD approaches listed in Section 2.4,
along with the optimistic No Preemption Cost case where preemptions are considered to the
completely free and the extremely pessimistic, Full Cache Reload case where each preemption
causes the entire cache of the preempted task to be reloaded.

4.1 Timing Analysis With Synthetically-Generated Task Characteristics

In order to replicate the results of [1], we used our tool to generate synthetic task sets with
the same parameters as in the original experiment. The task characteristics such as WCET,
UCB, and ECB values are also synthetically generated following the methodology used in [1].
Since, the clock frequency is not mentioned in the original study, we assumed a frequency of
100 Mhz1.

For the experimental evaluation, 1000 task sets with 10 tasks each were generated for
every utilization value from 0.025 to 1.000 in steps of 0.025 using the UUnifast [4] algorithm.
The task periods were generated according to a log-uniform distribution with the minimum
period as 500,000 cycles (5 ms) and a maximum period of 50,000,000 cycles (500 ms). The
cost of a cache miss, also known as the Block Reload Time, is considered to be 800 cycles
(8 µs). The cache utilization (CU) of a task is the ratio of the number of ECBs of a task
to the total number of cache sets available. The cache utilizations for the tasks in a task

1 As all task parameters are given in terms of wall-clock time, the particular processor frequency has a
negligible effect on the experimental results.
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(a) Block reload time, BRT = 800.
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Figure 1 Results using synthetic task sets with synthetically-generated task characteristics.

set were generating using UUnifast2, considering a total CU = 10. The number of ECBs
of a task are then computed using the generated cache utilization values. The ratio of the
number of UCBs of a task to the number of ECBs is defined as the reuse factor (RF). For
this experiment, the reuse factor for each task was picked uniformly at random within the
range [0, 0.3]. All of these values are taken from the parameters of the original study.

For the results of the schedulability tests, see Figure 1a. Our first observation is that the
resulting schedulability graph closely matches the corresponding graph in Figure 9 of [1],
which confirms the correctness of the independent implementations of schedulability analyses
used in both papers.

The latency of actual main memory modules3 are at least an order of magnitude lower
than the 8 µs (800 cycles) used in the original experiment. In [2], Altmeyer et. al. use a
memory latency of just 4 cycles for their WCET analysis and yet the generation of synthetic
task characteristics uses a latency of 800 cycles. To gauge the effect of a more realistic memory
latency, we re-ran the experiment, however this time with a lower memory latency of 20 cycles.
The results of this experiment can be seen in Figure 1b. As is clearly evident from the figure,
reducing the memory latency almost completely eliminates the effect of CRPD on overall
schedulability. We must emphasize here that we do not claim that CRPD has a negligible
effect on the overall schedulability, but rather that the methods used to synthetically generate
task characteristics provide misleading results. With a lower memory latency, we see that
even in the case of having to pay the penalty of a full cache refresh for each preemption, the
schedulability of the task sets closely follows the case where preemption is considered to be
free. The reason for such behavior is that the generation of synthetic task characteristics does
not take into account the fact that both the WCET and the CRPD depend on the memory
latency, and are thus correlated. However, in our experiment, decreasing the memory latency
reduces the CRPD without similarly reducing the execution time of the tasks at all. At this
point, the WCET almost completely dominates the response time of the task.

2 UUnifast may generate values greater than one, indicating that the ECBs fill the entire cache. The
number should be capped to the number of cache sets. However, for the computation of UCBs, the
original value of ECBs is used.

3 As example, consider this automotive SDRAM https://www.micron.com/~/media/documents/
products/data-sheet/dram/mobile-dram/low-power-dram/lpddr/256mb_x8x16_at_ddr_t66a.pdf

WCET 2018

https://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr/256mb_x8x16_at_ddr_t66a.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr/256mb_x8x16_at_ddr_t66a.pdf


7:8 Experimental Evaluation of CRPD-Aware Timing Analysis

4.2 Comparison of Task Characteristics
In this section, we compare the per-task characteristics provided in [1, 2] for a subset of
the Mälardalen benchmarks with the numbers calculated using LLVMTA. The results are
shown in Table 1 for the subset of benchmarks analyzed in [1, 2] in the upper half and
for the remaining benchmarks in the lower half. The apparent gap between the WCET
bounds is mostly explained by different memory latencies. While we use a memory latency
of 20 cycles throughout the paper, they use a low latency of only 4 cycles as described in [2].
Furthermore, the different compilers (gcc versus clang+LLVM), hardware platforms, and
analysis settings (e.g. loop bound annotations) contribute to this gap. The lower WCET
bound (and significantly lower ECB value) – compared to [1] – for some benchmarks, such
as sqrt and qurt, are explained by the native floating point support of our pipeline model
in contrast to software emulation, which is assumed in [1].

Taking the above differences in the underlying model into account, our ECB values and
the cache utilizations resemble the ones provided by Altmeyer et al. [1].

As described in Section 3.1, column DC-UCB of Table 1 shows the size of the set containing
all cache sets that exhibit a useful cache block at some program point. In addition, column
Max DC-UCB shows the maximum number of cache blocks that are (definitely-cached) useful
at a single program point. This number can be used to improve the UCB-Only approach,
which we call UCBMax-Only. Note that DC-UCB and Max DC-UCB results from different
schemes to aggregate program-point specific information of the static cache analysis. Thus,
there is no reason in considering UCBMax-Only in Section 4.1 when task characteristics are
synthetically generated.

Unlike the ECB values, our DC-UCB values differ significantly from the values in [1].
Compiling our benchmarks with optimizations4 reduces the number of DC-UCBs, but also
the number of ECBs which resulted in significant gaps for ECBs and DC-UCBs. The only
way to get similarly low DC-UCB values using our toolchain is to disable the (virtual) loop
peeling which worsens the must cache analysis and thus decreases the number of DC-UCBs.
However, according to [2], their numbers were obtained with loop peeling enabled. As a
result of the higher number of DC-UCBs in our analysis, we also see a higher value of the
reuse factor in our tasks.

4.3 Timing Analysis With Analysis-Derived Task Characteristics
In this section, we conduct schedulability experiments with task characteristics derived using
LLVMTA rather than generated synthetically. For deriving task characteristics, we used the
programs in the Mälardalen suite and derived the WCET and the ECB and DC-UCB sets
for each task as described in Section 3.1 and discussed in Section 4.2. These characteristics
were then used to generate synthetic task sets. In addition to the approaches outlined in
Section 4, in this section, we also consider the UCBMax-Only approach which was introduced
in Section 4.2.

As before, 1000 task sets were generated for each utilization value from 0.025 to 1.000 in
steps of 0.025. Each task set consists of 10 randomly selected tasks from the set of tasks
found in Table 1. The utilization Ui of each of the 10 tasks within a task set was generated
using the UUnifast algorithm [4] and the periods were computed based on the following
equation: Ti = Ci/Ui. Since the WCETs of the tasks were derived through analysis, we did
not have control over the range of task periods. Implicit task deadlines, i.e. Di = Ti, were

4 It is not specified whether the programs in [1] have been compiled with or without optimizations.
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Table 1 Comparison of task characteristics. In parenthesis: results without virtual loop peeling.
* denotes use of floating-point calculations.

WCET ECB DC-UCB Max CU RF
Theirs Ours Theirs Ours Theirs5 Ours DC-UCB Theirs Ours Theirs Ours

bs 445 3052 35 43 5 23 (9) 20 0.137 0.168 0.143 0.535
bsort100 1567222 3146185 62 57 8 40 (11) 30 0.242 0.223 0.129 0.702
crc 290782 1621246 144 127 14 63 (28) 35 0.562 0.496 0.097 0.496
fibcall 1351 8406 24 28 5 16 (6) 16 0.094 0.109 0.208 0.571
fir 29160 12406071 105 90 9 41 (16) 22 0.410 0.352 0.086 0.456
insertsort 6573 11291 41 29 10 16 (5) 15 0.160 0.113 0.244 0.552
matmult 742585 1447379 100 85 23 51 (26) 31 0.391 0.332 0.230 0.600
ns 43319 126865 64 55 13 37 (12) 34 0.250 0.215 0.203 0.673
qsort-exam * 22146 163089 170 142 15 83 (38) 39 0.664 0.555 0.088 0.585
qurt * 214076 71655 484 130 14 40 (32) 26 1.891 0.508 0.029 0.308
select * 17088 6306 151 159 15 73 (35) 55 0.590 0.621 0.099 0.459
sqrt * 39962 22436 477 53 14 21 (13) 12 1.863 0.207 0.029 0.396

adpcm - 82368867 - 256 - 229 108 - 1.000 - 0.895
cnt - 127558 - 123 - 58 44 - 0.480 - 0.472
compress - 1098331 - 247 - 149 57 - 0.965 - 0.603
cover - 71967 - 256 - 38 15 - 1.000 - 0.148
edn - 739514 - 256 - 220 120 - 1.000 - 0.859
expint - 2144875 - 113 - 63 36 - 0.441 - 0.558
fdct - 10258 - 126 - 113 62 - 0.492 - 0.897
fft1 * - 257657 - 222 - 154 63 - 0.867 - 0.694
janne_complex - 33778 - 39 - 28 27 - 0.152 - 0.718
jfdctint - 21742 - 132 - 122 54 - 0.516 - 0.924
lcdnum - 6129 - 50 - 14 10 - 0.195 - 0.280
lms * - 10793664 - 242 - 134 38 - 0.945 - 0.554
ludcmp * - 116312 - 210 - 168 44 - 0.820 - 0.800
minver * - 67157 - 256 - 178 47 - 1.000 - 0.695
ndes - 1050167 - 253 - 178 38 - 0.988 - 0.704
nsichneu - 201969 - 256 - 183 2 - 1.000 - 0.715
prime - 7726328 - 79 - 50 38 - 0.309 - 0.633
st * - 3763684 - 192 - 95 52 - 0.750 - 0.495
statemate - 41776 - 256 - 111 2 - 1.000 - 0.434
ud - 349120 - 188 - 161 42 - 0.734 - 0.856

considered and tasks priorities were assigned in deadline-monotonic order. We considered
two values for the block reload time, BRT: 20 cycles and 800 cycles, which are used both in
the calculation of the WCET and the CRPD bounds. The resulting schedulability graphs
can be found in Figures 2b and 2a respectively.

The first observation is that the results in Figures 2a and 2b look very similar; very
much unlike those in Figures 1a and 1b. As the BRT value is taken into account both during
WCET and during CRPD analysis, the WCET and CRPD values in the BRT=800 case are
both about 40 times higher than in the BRT=20 case. As the task periods are generated
based on the WCET values, the periods are similarly 40 times higher on the average, and
thus the relative impact of the preemptions is essentially the same in both cases.

In contrast to the results based on synthetically-generated task characteristics, the UCB-
Only approach performs considerably worse than the other approaches, in particular much
worse than ECB-Only. This is due to the higher number of DC-UCBs in our analysis as we

5 Note, that the authors of [1] refer to DC-UCBs as UCBs in their evaluation.

WCET 2018
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(a) Block reload time, BRT = 800.
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Full Cache Reload

(b) Block reload time, BRT = 20.

Figure 2 Results using synthetic task sets with experimentally determined task characteristics.

have explained in Section 4.2. The UCBMax-Only approach however, performs similarly well
as the rest of the approaches.

In contrast to the results based on synthetically-generated task characteristics, the
ECB-Only approach performs similarly to the more sophisticated approaches that take into
account both ECBs and DC-UCBs. This happens due to the fact that the high number of
DC-UCBs does not help to improve the performance of these other approaches much.

Comparing Figure 2b with Figure 1b, we observe a wider gap between the optimistic No
Preemption Cost and the pessimistic Full Cache Reload approaches. This implies that there
is a greater CRPD overhead in the task sets than is apparent in the case of synthetically-
generated task characteristics at BRT=20, but less than at BRT=800.

5 Conclusions and Open Questions

In this paper, we experimentally evaluate state-of-the-art CRPD-aware timing analysis
approaches. First, we reproduce the response-time analysis results of prior work [1] for purely
synthetic task sets based on our own independent implementation of schedulability analyses,
thereby increasing confidence in the correctness of both implementations.

Choosing a more realistic value for the block reload time than prior work, we obtain
very different results that superficially seem to indicate that the CRPD overhead would
be negligible. To further investigate this issue, we next obtain task characterizations using
static analysis for all benchmarks in the Mälardalen suite. Our analysis results closely match
prior analysis results in case of ECBs, but, surprisingly, not in case of DC-UCBs. Based on
these task characterizations, we generate synthetic task sets and use them to evaluate the
state-of-the-art approaches. We find that
1. The effect of the cache-related preemption delay on the overall response times – and

thus overall schedulability – is not negligible, but smaller than suggested by the original
results in [1].

2. The block reload time does not significantly influence the impact of the CRPD on overall
schedulability, if it is taken into account both during WCET and CRPD analysis.

3. The simple ECB-Only approach is competitive with the more sophisticated alternatives,
such as the UCB-Union-Multiset approach. This is due to the fact that our static analysis
classifies more blocks as DC-UCBs than prior work.

Our findings lead us to conclude that either synthetic task sets should be generated from
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characteristics derived by low-level analysis of actual programs rather than synthetically-
generated characteristics; or better task characteristics generators are required that do not
miss important dependencies between different characteristics such as WCET and number
of ECBs/UCBs. Analogously, we suspect existing synthetically-generated task sets are not
representative of real-world system-level workloads. Thus, obtaining real-world system-level
benchmarks together with the low-level characteristics of the involved tasks is an important
future step.
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