20 research outputs found

    Realizing networks of proactive smart products

    Get PDF
    The sheer complexity and number of functionalities embedded in many everyday devices already exceed the ability of most users to learn how to use them effectively. An approach to tackle this problem is to introduce ‘smart’ capabilities in technical products, to enable them to proactively assist and co-operate with humans and other products. In this paper we provide an overview of our approach to realizing networks of proactive and co-operating smart products, starting from the requirements imposed by real-world scenarios. In particular, we present an ontology-based approach to modeling proactive problem solving, which builds on and extends earlier work in the knowledge acquisition community on problem solving methods. We then move on to the technical design aspects of our work and illustrate the solutions, to do with semantic data management and co-operative problem solving, which are needed to realize our functional architecture for proactive problem solving in concrete networks of physical and resource-constrained devices. Finally, we evaluate our solution by showing that it satisfies the quality attributes and architectural design patterns, which are desirable in collaborative multi-agents systems

    Runtime reconfiguration of physical and virtual pervasive systems

    Full text link
    Today, almost everyone comes in contact with smart environments during their everyday’s life. Environments such as smart homes, smart offices, or pervasive classrooms contain a plethora of heterogeneous connected devices and provide diverse services to users. The main goal of such smart environments is to support users during their daily chores and simplify the interaction with the technology. Pervasive Middlewares can be used for a seamless communication between all available devices and by integrating them directly into the environment. Only a few years ago, a user entering a meeting room had to set up, for example, the projector and connect a computer manually or teachers had to distribute files via mail. With the rise of smart environments these tasks can be automated by the system, e.g., upon entering a room, the smartphone automatically connects to a display and the presentation starts. Besides all the advantages of smart environments, they also bring up two major problems. First, while the built-in automatic adaptation of many smart environments is often able to adjust the system in a helpful way, there are situations where the user has something different in mind. In such cases, it can be challenging for unexperienced users to configure the system to their needs. Second, while users are getting increasingly mobile, they still want to use the systems they are accustomed to. As an example, an employee on a business trip wants to join a meeting taking place in a smart meeting room. Thus, smart environments need to be accessible remotely and should provide all users with the same functionalities and user experience. For these reasons, this thesis presents the PerFlow system consisting of three parts. First, the PerFlow Middleware which allows the reconfiguration of a pervasive system during runtime. Second, with the PerFlow Tool unexperi- enced end users are able to create new configurations without having previous knowledge in programming distributed systems. Therefore, a specialized visual scripting language is designed, which allows the creation of rules for the commu- nication between different devices. Third, to offer remote participants the same user experience, the PerFlow Virtual Extension allows the implementation of pervasive applications for virtual environments. After introducing the design for the PerFlow system, the implementation details and an evaluation of the developed prototype is outlined. The evaluation discusses the usability of the system in a real world scenario and the performance implications of the middle- ware evaluated in our own pervasive learning environment, the PerLE testbed. Further, a two stage user study is introduced to analyze the ease of use and the usefulness of the visual scripting tool

    New Generation Sensor Web Enablement

    Get PDF
    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement

    Mobile Pen and Paper Interaction

    Get PDF
    Although smartphones, tablets and other mobile devices become increasingly popular, pen and paper continue to play an important role in mobile settings, such as note taking or creative discussions. However, information on paper documents remains static and usage practices involving sharing, researching, linking or in any other way digitally processing information on paper are hindered by the gap between the digital and physical worlds. A considerable body of research has leveraged digital pen technology in order to overcome this problem with respect to static settings, however, systematically neglecting the mobile domain. Only recently, several approaches began exploring the mobile domain and developing initial insights into mobile pen-and-paper interaction (mPPI), e.g., to publish digital sketches, [Cowan et al., 2011], link paper and digital artifacts, [Pietrzak et al., 2012] or compose music, [Tsandilas, 2012]. However, applications designed to integrate the most common mobile tools pen, paper and mobile devices, thereby combining the benefits of both worlds in a hybrid mPPI ensemble, are hindered by the lack of supporting infrastructures and limited theoretical understanding of interaction design in the domain. This thesis advances the field by contributing a novel infrastructural approach toward supporting mPPI. It allows applications employing digital pen technology in controlling interactive functionality while preserving mobile characteristics of pen and paper. In addition, it contributes a conceptual framework of user interaction in the domain suiting to serve as basis for novel mPPI toolkits. Such toolkits ease development of mPPI solutions by focusing on expressing interaction rather than designing user interfaces by means of rigid widget sets. As such, they provide the link between infrastructure and interaction in the domain. Lastly, this thesis presents a novel, empirically substantiated theory of interaction in hybrid mPPI ensembles. This theory informs interaction design of mPPI, ultimately allowing to develop compelling and engaging interactive systems employing this modality

    Fourth ERCIM workshop on e-mobility

    Get PDF

    Interactive storytelling in mixed reality

    Get PDF

    Realizing pervasive compution vision: A context-aware mobile application approach.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Dual reality framework : enabling technologies for monitoring and controlling cyber-physical environments

    Get PDF
    Diese Promotionsarbeit untersucht die Thematik des Monitoring und der Steuerung von Cyber-Physischen Umgebungen (CPE). In diesem Zusammenhang wird das Konzept und die Umsetzung eines Dual Reality (DR) Frameworks präsentiert, welches sich aus zwei Komponenten zusammensetzt: dem Dual Reality Management Dashboard (DURMAD) zur interaktiven dreidimensionalen Visualisierung von CPE und dem Event Broadcasting Service (EBS), einer modularen Kommunikationsinfrastruktur. Hierbei stellt DURMAD basierend auf dem DR-Konzept den aktuellen Status der Umgebung in einem 3D-Modell visuell dar. Gleichzeitig umfasst es weitere Auswertungs- und Darstellungsformen, welche verschiedene Formen der Entscheidungsunterstützung für Manager der Umgebung bieten. Speziell entwickelte Filtermechanismen für den EBS ermöglichen eine Vorverarbeitung der Informationen vor dem Versenden bzw. nach dem Empfangen von Events. Durch offene Strukturen können externe Applikationen an das DR-Framework angeschlossen werden. Dies wird anhand von Objektgedächtnissen, semantischen Beschreibungen und Prozessmodellen präsentiert. Basierend auf einer Formalisierung von Dual Reality wird der Begriff Erweiterte Dual Reality (DR++) definiert, welcher auch die Auswirkungen von Simulationen in DR-Applikationen umfasst. Durch eine Integration des DR-Frameworks in das Innovative Retail Laboratory werden die Potenziale der erarbeiteten Konzepte anhand einer beispielhaften Implementierung in der Einzelhandelsdomäne aufgezeigt.Within the scope of this dissertation, the issues of monitoring and control of Cyber-Physical Environments (CPE) have been investigated. In this context, the concept and implementation of a Dual Reality (DR) framework is presented, consisting of two components: the Dual Reality Management Dashboard (DURMAD) for interactive three-dimensional visualization of instrumented environments and the Event Broadcasting Service (EBS), a modular communication infrastructure. DURMAD is based on the DR-concept and thus visually represents the current status of the environment in a 3D model. Simultaneously, it includes more analysis and presentation tools providing various forms of decision-making support for managers of these environments. Specially developed filter mechanisms for the EBS allow preprocessing of the information before sending or after receiving events. By means of open structures external applications can be connected to the DR framework. This is pointed out by digital object memories, semantic descriptions and process models. Based on a formalization of Dual Reality, the term Advanced Dual Reality (DR ++) is defined, which includes the impact of simulations in DR applications. By integrating the DR framework in the Innovative Retail Laboratory, the potential of the developed concepts on the basis of an exemplary implementation in the retail domain are shown

    A Digital Game Maturity Model

    Get PDF
    Game development is an interdisciplinary concept that embraces artistic, software engineering, management, and business disciplines. Game development is considered as one of the most complex tasks in software engineering. Hence, for successful development of good-quality games, the game developers must consider and explore all related dimensions as well as discussing them with the stakeholders involved. This research facilitates a better understanding of important dimensions of digital game development methodology. The increased popularity of digital games, the challenges faced by game development organizations in developing quality games, and severe competition in the digital game industry demand a game development process maturity assessment. Consequently, this study presents a Digital Game Maturity Model to evaluate the current development methodology in an organization. The objective is first to identify key factors in the game development process, then to classify these factors into target groups, and eventually to use this grouping as a theoretical basis for proposing a maturity model for digital game development. In doing so, the research focuses on three major stakeholders in game development: developers, consumers, and business management. The framework of the proposed model consists of assessment questionnaires made up of key identified factors from three empirical studies, a performance scale, and a rating method. The main goal of the questionnaires is to collect information about current processes and practices. This research contributes towards formulating a comprehensive and unified strategy for game development process maturity assessment. The proposed model was evaluated with two case studies from the digital game industry
    corecore