
Open Research Online
The Open University’s repository of research publications
and other research outputs

Realizing networks of proactive smart products
Conference or Workshop Item
How to cite:

d’Aquin, Mathieu; Motta, Enrico; Nikolov, Andriy and Thomas, Keerthi (2012). Realizing networks of proactive smart
products. In: 18th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2012),
8-12 Oct 2012, Galway, Ireland.

For guidance on citations see FAQs.

c© 2012 The Authors

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://ekaw2012.ekaw.org/node/135

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82974621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://ekaw2012.ekaw.org/node/135
http://oro.open.ac.uk/policies.html

Realizing Networks of Proactive Smart Products

Mathieu d’Aquin, Enrico Motta, Andriy Nikolov, and Keerthi Thomas

Knowledge Media Institute, The Open University, MK7 6AA, Milton Keynes, UK
{m.daquin, e.motta, a.nikolov, k.thomas}@open.ac.uk

Abstract. The sheer complexity and number of functionalities embedded in many
everyday devices already exceed the ability of most users to learn how to use them
effectively. An approach to tackle this problem is to introduce ‘smart’ capabilities in
technical products, to enable them to proactively assist and co-operate with humans
and other products. In this paper we provide an overview of our approach to realizing
networks of proactive and co-operating smart products, starting from the requirements
imposed by real-world scenarios. In particular, we present an ontology-based
approach to modeling proactive problem solving, which builds on and extends earlier
work in the knowledge acquisition community on problem solving methods. We then
move on to the technical design aspects of our work and illustrate the solutions, to do
with semantic data management and co-operative problem solving, which are needed
to realize our functional architecture for proactive problem solving in concrete
networks of physical and resource-constrained devices. Finally, we evaluate our
solution by showing that it satisfies the quality attributes and architectural design
patterns, which are desirable in collaborative multi-agents systems.

Keywords: Proactive Problem Solving, Smart Products, Knowledge Systems,
Ontology Engineering, Distributed Problem Solving.

1 Introduction

The sheer complexity and number of functionalities embedded in many everyday devices
already exceed the ability of most users to learn how to use them effectively. This is not
just the case for mass consumer devices, such as mobile phones, but it also applies to work
settings, where the increased diversity within product lines introduces new complexities in
both product assembly and maintenance processes [1]. An approach to tackle this problem
is to introduce ‘smart’ capabilities in technical products, to enable them to better assist and
co-operate with humans and other products [1]. In the context of the SmartProducts project1
we have investigated these issues in a number of scenarios, drawn from the aerospace, car
and home appliances industries. In particular, a key requirement for smart products
imposed by our scenarios is that they need to be able to exhibit proactivity, both to improve
the level of assistance to users and also to be able to co-operate effectively with other smart
products in shared task scenarios. Proactivity can be informally characterized as the ability
of a smart product to take initiative and perform some action, without having been
specifically instructed to do so by a user or another smart product [2]. In addition, in order
to be able to form and join networks with other smart products and engage in co-operative
problem solving, smart products must also be capable of self-organisation. This second
requirement is a cornerstone of our approach, to ensure that our solutions can be applied in

1 http://www.smartproducts-project.eu/

open, networked scenarios, where a closed, top-down design of co-operative problem
solving solutions would be too restrictive, if not unfeasible [1].

While the SmartProducts project has looked at a whole range of issues, which need to be
tackled to support effective networks of context-aware and proactive smart products,
including user interaction [3], access control models [4], and distributed storage [5], in this
paper we focus on the core challenge posed by the project scenarios: the design and
implementation of a computational infrastructure to realize networks of proactive smart
products. Hence we will provide a complete overview of our approach, covering both the
knowledge level and the symbol level [6] elements of our solution and in particular showing
how we have integrated semantic technologies with ubiquitous computing solutions, to
equip resource-constrained physical devices with the capability of representing and
reasoning with knowledge structures and engaging in co-operative problem solving.

Specifically, the discussion in the paper will cover: i) our characterization of the notion
of ‘proactive behaviour’, ii) the ontological basis of our framework, iii) a knowledge-level,
task-centric problem solving architecture for characterizing co-operative and proactive
problem solving in networks of smart products, and iv) a concrete realization of this
functional architecture on networks of Android devices. In addition, we will also show that
v) our approach to proactive, distributed problem solving satisfies the quality attributes and
architectural design patterns, which are desirable in collaborative multi-agents systems [7].

We will start the discussion in the next section, by introducing one of three real-world
scenarios which have motivated the work in the SmartProducts project, which will then be
used in the rest of the paper to illustrate our solutions.

2 A Scenario

The scenario we consider in this paper is one in which a user, whom we refer to as Ashley,
is organizing a dinner for her friends. To this purpose she uses a Cooking Assistant
application, available on a tablet device, which allows her to specify the parameters for the
event, including dietary requirements, food preferences, the number of people attending, the
date of the event, known people attending, etc. Ashley’s Smart Kitchen also includes a
Smart Fridge and Smart Cupboards, which are aware of their contents and can contribute to
the shared task scenario –e.g., by providing information about items which are due to expire
soon, thus minimizing food wastage. Another smart product available to Ashley is the
Shopping Assistant, an application2 which maintains a history of food purchases and is also
able to provide information about currently discounted items at a supermarket of choice,
which may be relevant to the current meal plan.

Once Ashley has selected a meal plan from the various suggestions provided by the
Cooking Assistant with the co-operation of other smart products, a shopping list is produced
by the Shopping Assistant, on the basis of what is required by the meal plan and what is
already available in the house.

2 In this paper we use the term ‘smart product’ to refer both to physical products, such as a smart

fridge, and also to software products, such as a meal planner, which is an application running on a
particular device. Here, it is important to emphasize that we do not use the term ‘smart product’ to
refer to generic computing platforms, such as a tablet device. These are characterized instead as
‘containers’, in which numerous smart (software) products may be installed.

Once at the supermarket, the Shopping Assistant interacts with Supermarket Agents to
identify the best deals for the items in the shopping list. However, while Ashley is shopping
at the supermarket, a member of the family removes the bowl of strawberries (an ingredient
needed for one of the selected recipes) from the fridge. At this point Ashley receives a
notification from the Smart Fridge that the strawberries are no longer available, and
therefore she can choose to add strawberries to the shopping list.

Hence, this scenario requires cooperation between a number of smart products,
specifically: Cooking Assistant, Smart Fridge, Smart Cupboards, Shopping Assistant, and
Supermarket Agents, with the interactions between these smart products occurring around
shared tasks in two different ambiances3, a Smart Kitchen and a Supermarket. The
requirement for proactivity here means that the smart products must be able to proactively
contribute to shared tasks, such as meal planning and shopping at the supermarket, both at
the time when requests for information are broadcast but also, as in the example of the
strawberries being removed from the fridge, when some event occurs which has
implications for the tasks currently being executed.

3 Proactivity in Networks of Smart Products

For an agent to be proactive, it needs to be able to take action in scenarios in which such
action has not been explicitly programmed in the agent, or explicitly delegated to the agent
by a user or another agent. An approach to realizing proactive behaviour entails the
development of personal assistants [8], which are able to monitor and learn from user
behaviour, to anticipate their needs and exhibit proactive assistance. However, in the
context of our project, we are less interested in these application-specific [2] solutions, than
in enabling proactivity in open scenarios, where proactive problem solving takes place in
the context of networks of smart products.

So, what are the requirements for proactivity in such scenarios? As discussed in [9], in
co-operative problem solving scenarios “the ability to anticipate information needs of
teammates and assist them proactively is highly desirable…”. In particular, the ability to
proactively provide task-related information to a task-performing smart product is
especially useful in an open network of smart products, because it avoids the need to know
a priori who can provide certain information or carry out a particular task, thus allowing the
dynamic formation of networks of co-operating smart products. Hence, a key type of
proactive behaviour we want to support concerns precisely this ability of a smart product to
proactively contribute information to another smart product in a task-centric context.

In addition, achieving proactive, co-operative problem solving and self-organization
requires flexible mechanisms for representing and manipulating problem solving
knowledge. Since networks of smart products do not have a predefined organizational
structure with prescribed roles, and the capabilities of involved products may vary, smart
products can contribute to shared tasks in various ways. For example, the meal planning
task presented in Section 2 will be executed differently depending on which smart products
are part of the Smart Kitchen ambiance, and their capabilities. Hence it is undesirable to
design a complete process decomposition in advance and we require instead mechanisms
for dynamic process composition, task assignment and proactive problem solving.

3 An ambiance denotes an environment comprising specific smart products, in which collaborative

problem solving can take place – see Section 3 for more details.

An ambiance denotes an environment comprising specific smart products, in which
collaborative problem solving can take place. While in many cases ambiances reflect
physical spaces, such as the ambiance comprising all smart products in a kitchen, the notion
itself is flexible and simply denotes any collection of smart products which come together
to engage in co-operative problem solving. Both the inclusion of products into an ambiance
and the set of permissible behaviours are regulated by joining policies. For instance, within
a supermarket ambiance, it may be desirable to allow smart products belonging to
customers (i.e., on mobile devices) to join the ambiance and receive information, adverts
and recommendations from supermarket agents (or even directly from smart food items),
but these devices may not be allowed to expose arbitrary tasks to other customers' devices.

In sum, in order to comply with the requirements from our scenarios, the key aspect of
proactive behaviour we wish to support concerns the ability of smart products to engage in
distributed, collaborative, proactive problem solving, including the ability i) to expose and
be aware of shared tasks, ii) to proactively provide task-specific information to other smart
products in a particular problem solving context, and iii) to provide actual solutions through
problem solving for those tasks which fall within a smart product’s set of capabilities.

4 Semantic Technologies for Smart Products

4.1 The SmartProducts Network of Ontologies (SPO)

The SmartProducts Network of Ontologies (SPO)4 has been developed both to provide a
clear specification of the conceptual model underlying the work on the SmartProducts
project, and also to maximise interoperability not just among all SmartProducts
applications, but also between these and other applications in related domains. SPO
comprises three different sets of modules, which reflect different levels of abstraction and
reuse, from the most generic to the application-specific ones. Because each layer is itself
divided into several sub-modules, we obtain a highly modular design, which makes it
possible to reduce the parts to be used by a device, depending on its functionalities –e.g., no
need to use the process model on devices that only serve as data providers.

Figure 1 shows the configuration of SPO, which was used for the smart kitchen scenario.
The other project scenarios were modelled in a similar way, reusing the external and
generic modules and plugging-in alternative application-specific ones.

SPO builds on established external ontologies, including the DOLCE Ultra Lite
Ontology (DUL)5, which provides the foundational layer to interpret SPO entities. For
example, SPO reuses the Quality-Region-Parameter design pattern from DUL to model
physical qualities of objects, and the Plan-PlanExecution pattern to distinguish between the
definition of problem-solving behaviour and its actual execution. Concepts and properties
dealing with representation of time are imported from the W3C time ontology6.

An essential part of SPO covers the context model, which is needed to ensure that smart
products are able to assess the available information about the state of the world. In
particular, the context model includes both ‘low-level’ contexts, i.e., atomic facts about the
state of the environment and its changes –e.g., smoke being detected, as well as ‘high-level’

4 http://projects.kmi.open.ac.uk/smartproducts/ontologies/.
5 http://www.loa-cnr.it/ontologies/DUL.owl
6 http://www.w3.org/2006/time

ones, i.e., abstracted information about a situation as a whole, which can be inferred from
aggregated low-level context facts –e.g., an emergency situation being recognised on the
basis of smoke detection. Sensing devices, which can be either embedded –e.g., a
thermometer in a fridge, or external –e.g., a weather service, serve as sources of low-level
context information. To model their output, SPO utilizes the recently proposed Semantic
Sensor Network (SSN)7 ontology, in particular by reusing its Observation design pattern.
This allows external sources of sensor data relevant to the products within an ambiance –
e.g., readings provided by a weather service, to be smoothly integrated and used alongside
data produced by embedded sensors.

Figure 1. The SmartProducts Network of Ontologies configured for the smart kitchen scenario

Figure 2. Modelling situational context

To model a high-level situational context, which is usually abstracted from low-level
context data, we reuse the design patterns developed in situational awareness research [10]
and we characterize a situation as an abstract interpretation of a specific state of the
environment. Examples of situations include a dinner party, a snowstorm on the driving
route, or a visit to a car workshop. Situations are characterized by their space and time

7 http://purl.oclc.org/NET/ssnx/ssn

constraints, participating objects, specific relations between these objects, and the situation
type [10]. Depending on the situation type, specific types of roles for objects and relations
can be defined. For example, a meal can have one or more guests, while a car service
operation may involve the car owner, one or more technicians, and a manager. In SPO, the
class SituationalContext (see Figure 2) defines generic descriptions for high-level contexts.
It extends the class dul:Situation, by localizing its instances in space and time. Specific
properties determining different types of relations between entities and situations are
defined by reusing relevant subproperties of the generic dul:isSettingFor relation –e.g.,
dul:includesAgent, dul:includesEvent, etc.

4.2 Task-based Problem Solving Architectures

Research on generic models of problem solving in knowledge engineering has developed a
number of libraries, architectures, languages and tools to support the specification of
generic and reusable problem-solving components [6 11 12 13 14]. A key feature of these
architectures is that they support a strong separation of the different building blocks for
intelligent systems, for example, distinguishing between task, method, domain and
application knowledge [11]. Thus, they provide a sound epistemological and architectural
basis for developing robust knowledge systems by reuse. In particular, here we build on the
problem solving architecture8 defined by the TMDA framework [11], which provides a rich
modelling framework, based on task and method ontologies [11], which supports the
specification of problem solving components in detail.

Although the TMDA architecture was originally conceived for ‘closed’ application
scenarios in knowledge-based systems, it has been modified in recent years to provide the
basis for an open distributed semantic web service architecture [15]. However, our
scenarios impose new requirements on the TMDA architecture, as methods and tasks are
executed and exposed by specific smart products, and problem solving takes place in
specific ambiances, where specific policies are enforced. Hence, as a first step we adapted
the TMDA framework to the SmartProducts scenarios, as discussed in the next section.

4.3 Ontological Modelling of Problem Solving Knowledge

A key element of SPO is the ontological support for modelling proactive and co-operative
problem solving in networks of smart products and to this purpose SPO extends the task
ontology provided by the TMDA library [11], by introducing the concepts needed to
characterize smart products and ambiances and integrating these notions with the modelling
of tasks and problem solving methods. At the core of the SPO ontology is the concept of
TaskInAmbiance (see Figure 3), which is defined in terms of input and output roles, a goal
specification, the ambiances in which it is exposed, and an optional closing time and
closing condition. Input and output roles define the information types specifying the input
and output of a task. A goal defines a condition that the output needs to fulfil, in order for
the task to be achieved, and it is represented in the ontology as a subclass of
owl:ObjectProperty, i.e., as a meta-property. This representation allows us to use specific
instances of class GoalProperty, i.e., specific goal-defining object properties, to represent
the goal of a particular task. The optional closing time and closing condition are used to

8 A problem solving architecture focuses on knowledge-level components for problem solving, in

contrast with a system architecture, which concerns technical design issues – see Section 5.

specify precise end points (as a time point or as a logical condition) for other smart
products to consider, if they are willing to provide information or tackle the task. In
particular closing conditions are also modelled as meta-properties, using the same
mechanism used for representing goals. If no closing time or condition are given, the goal
specification provides a default closing condition for a task.

A task is solved by a Problem Solving Method (PSMInAmbiance), which defines a
procedure to solve a class of tasks and is defined as a subclass of dul:Plan. An
ApplicabilityCondition can be specified for a PSM9 to determine whether it can be applied
to a task in a specific problem solving context. An ApplicabilityCondition for a PSM is
defined as a relation object with two arguments: TaskType, which defines the class to which
the method can be applied (either the actual class or a set of restrictions describing a class
definition) and AmbianceType, which defines a class of ambiances in which the method can
be executed. TaskType and AmbianceType are defined as meta-classes: i.e., their instances
are themselves classes, which are subclasses of Task and Ambiance respectively. For
instance, an applicability condition may refer to the class of tasks MealPlanningTask and
restrict the class of ambiances to those which belong to the specific user (i.e., have the
value of hasOwner property set to a specific user ID).

Figure 3. Main classes and relations for modelling problem solving knowledge

A SmartProduct is defined as both a Product and a ProactiveAgent. Two subclasses of
SmartProduct are considered in the ontology, SmartProductizedDevice and
SmartSoftwareProduct, to cater for both physical and software products, as pointed out in
Footnote 2. A relation, hasCapability, is used to define a Capability for a ProactiveAgent
(and therefore for a SmartProduct). A Capability is defined as a quality of an agent and
represented as a tripartite relation object <PSMType, CapabilityMode, TaskType>, where
TaskType describes the class of tasks the agent can contribute to solve, PSMType describes
the method the agent in question will apply, to tackle the instance of TaskType, and
CapabilityMode specifies the modality by which the agent can contribute to solving the
task. Currently, we consider three types of CapabilityMode:

• ProactiveProblemSolving. This value specifies that the method can be applied
directly to solve the task.

9 For the sake of brevity, in the rest of this paper we will use the terms Task and PSM as synonyms

for TaskInAmbiance and PSMInAmbiance.

• ProactiveInformationSupplying. This value specifies that the method provides
information relevant to the task execution, by modifying some aspect of the task –
typically the input roles.

• TaskExposing. This value refers to the generic capability of an agent to expose a
task to an ambiance and is associated with a default method for exposing tasks.

The class Ambiance is used to specify networks of smart products, given that
collaboration between smart products is only allowed within a particular ambiance. The
following properties are defined for class Ambiance:

• containsSmartProduct: links the ambiance to a smart product, which is currently in
the ambiance in question.

• hasOwner: links the ambiance to its (human) administrator.
• hasJoiningPolicy: links the ambiance to a joining policy descriptor. There can be

several descriptors defined for the same ambiance.
Joining policies are necessary in order to regulate the inclusion of products into the

ambiances. For example, the owner might not want products belonging to non-trusted users
to join her home ambiance. Moreover, she may want to restrict certain capabilities of
products within it. For instance, within a supermarket ambiance, it may not be desirable to
allow smart products belonging to customers (mobile devices) to advertise arbitrary tasks to
other customers' smart products.

5 Realizing Networks of Proactive Smart Products

Here we describe how the conceptual framework presented in Section 4 (the knowledge
level) has been realized at symbol level. In particular, we focus on two critical technical
design issues: i) the realization of a protocol implementing proactive, distributed problem-
solving over networks of peer-to-peer devices, and ii) the realization of the semantic data
management components needed to store and manipulate knowledge in smart products.

5.1 The SmartProducts Task Messaging Protocol

To achieve a peer-to-peer model where all smart products are connected to each other in a
network, we implemented a system architecture where smart products are instantiated as
applications deployed on mobile computing devices, specifically smartphones and tablet
devices running Android OS. For the actual communication between smart products, we
chose the MundoCore [16] communication middleware, which provides facilities, such as
creation of network zones, which can be readily mapped to the concept of ambiance in our
framework. MundoCore also supports the notion of channels and implements a
publish/subscribe mechanism to enable agents to interact and exchange messages within a
zone. These features (zones and channels) were used to realize ambiances as networks
within which tasks, their outputs and related information can be exchanged between smart
products. Moreover, MundoCore also allows devices to subscribe to multiple channels in
multiple zones, therefore allowing smart products to participate in more than one ambiance
at a time –e.g., the Shopping Assistant in our scenario can be at the same time in the kitchen
and in the supermarket ambiance. Finally, MundoCore supports ‘device discovery’ in such
a way that it allows devices to join and leave the network at any time without having to
reconfigure the network or the devices.

Besides the straightforward reuse of the zone and channel mechanisms, the realization of
the distributed, proactive problem solving approach described in the previous sections was
achieved by implementing a dedicated protocol on top of MundoCore, which we refer to as
the SmartProducts Task Messaging Protocol (SPTM). SPTM implements the proactive
task-based problem solving approach described earlier by relying on a coordination
mechanism similar to the one used in contract-nets [17].

Figure 4. SmartProducts Task Messaging protocol

As shown in Figure 4, SPTM provides mechanisms i) to broadcast and assign tasks; ii)
to request and gather contributions to tasks; iii) to handle the management of tasks within
multiple ambiances –e.g., the Shopping Assistant is able to receive messages in both the
kitchen and supermarket ambiances; and iv) to react to events affecting ongoing tasks in an
ambiance –e.g., a change in the content of the fridge triggering an alert. In particular,
Figure 4 shows a subset of the flow of messages in our scenario, where the Cooking
Assistant first broadcasts a meal planning task (type RequestTaskSolver in the figure), to
which the Meal Planner responds by sending a message of type OfferSolveTask. The Meal
Planner is then delegated to tackle the meal planning task (type AssignTask in the figure)
and to this purpose it broadcasts a message of type RequestTaskInfo, to which the Smart
Fridge responds by providing information about its contents (type ResponseTaskInfo).

Since tasks are sent to the environment without pre-compiled knowledge or assumptions
about the capabilities of other smart products, they carry associated closure conditions –in
the simplest form, a time delay. The protocol is relatively lightweight, as it relies on only 10
types of messages (6 of which are shown in the diagram on the left-hand-side of Figure 4),
and we have not observed any significant messaging overheads compared to similar designs
based on the contract-net protocol.

The implementation of the conceptual framework for distributed proactive problem
solving into the concrete SPTM protocol allows us to achieve a number of useful
properties, as will be discussed in detail in Section 6. In a nutshell, this implementation
reflects the flexibility of the framework, making it possible to add smart products to an
ambiance without any need for reconfiguration of the network. The implementation also
optimizes the distribution of knowledge amongst smart products, as information is stored
locally in each node of the network and exchanged only when needed for a specific task.

5.2 Semantic Data Management Infrastructure

A key issue related to the realization of our approach in concrete networks of smart
products concerns the need to equip resource-limited devices, such as mobile phones, with

the ability to store and reason with semantic data. In [18] we compared different
frameworks for semantic data management on resource-limited devices, and showed that
small to medium scale data could be handled adequately on modern smartphones. In
particular, we chose the Sesame10 triple-store for its low requirements in terms of memory
usage. Unsurprisingly, this study also showed that computational demands increased
linearly with the amount of data stored, and with the use of advanced features, such as
embedded inference engines. Hence, this study provided us with a basis to assess the
amount of resources needed for a particular smart product depending on its required local
knowledge and capabilities. For example the Smart Fridge only requires the limited
resources that can be found on a smartphone, while the Cooking Assistant, which applies
potentially complex inferences on thousands of cooking recipes, requires the extra memory
and CPU capacity typically available on a tablet device.

Consistently with these findings, we developed a modular, Sesame-based architecture
which can easily be scaled-up or down depending on the specific needs of a smart product
and the resources available on a device, while ensuring a homogeneous architecture across
heterogeneous devices. In particular we adapted the Sesame triple store for the Android
system, and successfully applied it, through dedicated wrappers, on Android smartphones
and tablet devices [19]. If required, this infrastructure component can be extended by
enabling basic ontology reasoning or, when needed, a dedicated forward-chaining reasoner.
In particular, following the results of the evaluation presented in [20], we have successfully
used BaseVISor11 to provide such inferencing support.

6 Evaluation

An evaluation of the SPO network of ontology can be found in [21]. Here, we focus instead
on the evaluation of our technical architecture for realizing networks of smart products and
we employ an approach based on the ATAM methodology [7], which is designed for
evaluating architectures of collaborating agents. In particular, we consider the three
following aspects12, which are commonly used to evaluate distributed architectures –see
also [22]:
(i) Extensibility: this aspect refers to the ability to add agents to the network which

may implement additional capabilities.
(ii) Reliability: this aspect refers to the extent to which the failure of one or more

agents in the network might affect the network as a whole.
(iii) Security: this aspect refers to the extent to which attacks on one or more elements

of the network might expose the collective knowledge of the whole network.
In order to evaluate how our design choices impact on the properties considered above,

we compare our architecture with the most obvious alternative solution, where ambiances
are managed by a central ‘facilitator’ agent, which has the role of gathering the collective
knowledge of the ambiance and providing matchmaking mechanisms to associate agents’
needs to the capabilities of other agents. This solution differs from our approach because:

10 http://www.openrdf.org/
11 http://vistology.com/basevisor/basevisor.html
12 Here we do not evaluate the performance of the architecture, as this is highly dependent on the

implementation of each agent, as well as on the properties of the physical network used for
communication between agents.

• It is less distributed –i.e., not fully connected [22]. In particular, the knowledge of
each agent is not stored locally but at a central server.

• It is reactive, rather than proactive, as agents request features from other agents,
rather than having smart products proactively contributing to shared tasks.

To evaluate the two alternative solutions, we consider four scenarios, which jointly cover
the three properties mentioned earlier, and for each of them we assess qualitatively to what
extent the two alternative architectures satisfy the relevant requirements. The scenarios
have been chosen to illustrate generic situations that can be assessed independently from
specific implementation details, and where the characteristics of the alternative
architectures have a significant impact, as for example, when considering the security and
privacy issues created by the introduction of a malevolent smart product.

Scenario 1 (Extensibility): Adding a smart product with capabilities and knowledge
unknown to the network.
In our framework, adding a smart product to an ambiance simply requires the
corresponding device to join the peer-to-peer network. As knowledge is being held locally
on the device and its capabilities used proactively to contribute to advertised tasks, there is
no need to exchange any additional information. On the contrary, in a network where a
facilitator maintains a directory of the available services/capabilities and aggregates the
collective knowledge of the network, adding a smart product to an ambiance requires that
the smart product registers its capabilities with the facilitator and constantly sends updates
about newly generated knowledge. Besides the added complexity and communication
overhead, this solution also requires that the facilitator either possesses a representation of
any type of capability and knowledge that might be useful in a network, or is able to update
its representation regularly, to comprise new capabilities and knowledge as they are
introduced by smart products.

Extensibility in this sense is therefore one of the strong points of our proactive problem
solving architecture: new smart products can contribute problem solving methods and
knowledge directly as they join an ambiance, without the need for other agents in the
network to have been explicitly programmed to manage such knowledge and capabilities.

Scenario 2 (Extensibility): Generating an ambiance by aggregating smart products.
Because it is based on peer-to-peer communication, our framework supports the ability to
create new ambiances by simply aggregating smart products in a network. In particular, this
means that ad-hoc ambiances can be created ‘on the fly’, for example to connect the
Shopping Assistants of a group of shoppers to allow them to share dynamically and
proactively information in a supermarket –e.g., about what they are buying, the location of
products in the shop, etc. Again, it is obvious that realizing this scenario would be far more
complex if we were relying on a centralized, global knowledge architecture, where a
selected smart product plays a controlling or facilitating role. The network would disappear
as soon as this particular device becomes unavailable.

Another important aspect is that, because a smart product may inhabit multiple
ambiances at the same time, it can transfer knowledge generated in one ambiance to another
one –e.g., the Shopping Assistant inhabits both the supermarket and the kitchen ambiance,
thus being able to share knowledge about special offers with other smart products in the
kitchen ambiance. If a centralized approach were used, communication between

‘facilitators’ would be needed to achieve this result, creating an overhead in the best case
and being simply unfeasible in most realistic scenarios.

Scenario 3 (Reliability): One of the smart products in the network suddenly stops being
operational.
In our framework, as in any other, the impact of a particular agent’s failure depends on the
type of the agent. If this were a smart product with only an information-providing
capability, such as the Smart Fridge, the impact would only be that the knowledge it
contains would stop being available to the rest of the network, resulting in sub-optimal
decision making. However, if the failing agent has more sophisticated capabilities (such as
providing methods for meal planning), such problem solving capability would stop being
available to the network, unless another smart product realizes a similar capability.

The situation is similar in networks relying on a facilitator agent, with some added
complexity for the facilitator to handle situations in which registered features are requested,
but are not available because of the corresponding device not being operational. A worst-
case scenario in this type of network however is when the facilitator itself stops being
operational, therefore invalidating all the capabilities and knowledge of all the smart
products in the network.

Scenario 4 (Security): A malevolent smart product is included in an ambiance.
Here, we assume that a smart product has been created to join an ambiance in order to
‘attack’ it, meaning that its goal is to extract as much information as possible from the other
agents in the network, or to disrupt collaborative problem solving. In the case of our
framework, as all knowledge is localized in individual smart products and only shared
when necessary for a particular task, the malevolent agent would need to be able to
broadcast the right task and interpret properly the contributions from other agents to try and
reconstruct the knowledge of other agents in the network. In addition, policies can be put in
place on each device regarding the tasks they might contribute to, depending on the
ambiance and the smart product that originated the task. For example, the Shopping
Assistant might contribute to any task for which its capabilities are relevant in the kitchen
ambiance, as it constitutes a trusted network, but may prefer to ignore tasks broadcast in the
supermarket ambiance, as it has no reason to contribute there, and cannot verify whether
these tasks are legitimate.

Of course, similar mechanisms can be put in place in the case of a facilitator-based
network. Once again however, added complexity would be generated, as the facilitator
would be required to implement mechanisms to consistently handle and manage policies for
all smart products in the network. Obviously, the worst-case scenario here is when the
problematic agent is the facilitator itself, since, as long as other agents can be tricked into
joining its network, it would naturally collect all the knowledge of the other smart products
in the ambiance. This is especially problematic in those cases where ad-hoc networks are
formed (as discussed in Scenario 2), as one of the devices that might not be trustable will
have to take the role of the facilitator, and could also potentially obtain information from
the facilitators of other ambiances which have some devices in common with the one
managed by the ‘rogue’ smart product.

7 Related Work

Proactive behaviour in artificial agents has been studied in the distributed AI community
since the 70s and implementations of agents, which are able to exhibit proactivity, are often
based on different variations of the belief-desire-intention framework (BDI) [23]. Problem-
solving knowledge is usually decoupled into goals (what should be achieved) and plans
(how to achieve it), in a similar way to the task-method decoupling in PSM research [11].
However, the notion of goal, while representing a necessary condition for achieving
proactivity, does not per se reflect the behavioural patterns commonly associated with
proactive behaviour –an agent can pursue a goal simply because it is asked to do so, as
opposed to exhibiting proactivity, which requires that the agent actually takes the initiative
in problem solving.

As already mentioned, an area of agent research, which specifically focuses on these
issues, deals with the development of user assistant agents –e.g., see [2 8]. These studies
consider proactivity as the capability of an agent “to anticipate needs, opportunities, and
problems, and then act on its own initiative to address them” [2].

Our approach differs from the aforementioned ones in several respects. First, the use of
standard Semantic Web representation makes it easier to integrate additional domain-
specific information in our applications and take it into account during reasoning –e.g., as
we do with information about food and recipes in our smart kitchen application [24].
Second, our approach involves exposing tasks as part of the shared context information,
rather than by direct pairwise communication between agents. The reason for this is the
need to deal with open environments, in which agents do not have prescribed roles. Thus,
additional reasoning about whom to tell certain information is avoided and, while
broadcasting may be considered in principle less efficient than direct agent to agent
communication, in practice we have not found this to be an issue and we expect that even
with reasonably large networks, our solution is unlikely to cause performance issues. In
addition, we would also claim that our approach is more suitable for resource-constrained
environments, as it uses more lightweight decision models than those used in most theories
based on the BDI framework. In particular, we believe that unless we consider application-
specific proactivity [2], where strong task models and learning mechanisms can be realized,
our approach, which only requires task-based collaboration and does away with reasoning
about other agents’ beliefs and desires, provides a more ‘agile’ architecture to realise
collaborative and proactive problem solving in networks of smart products.

In the ubiquitous computing area several approaches involving the use of ontologies and
Semantic Web technologies have emerged, and some of them model the agent’s activities
[25 26]. However, these approaches pay less attention to the capabilities aspect, and the
corresponding context broker implementations choose actions to perform using condition-
action rules. The ontology developed in the CoDAMoS project [27] models user tasks and
activities, as well as services provided by devices. Similarly, in the AMIGO project12

process modelling is based on the notion of services, and a standard process representation
ontology (OWL-S) is used to represent processes. These models allow matching tasks with
device functionalities/services and representing process decomposition structures. Thus,
decisions about when to contribute to a task can be made. However, they do not consider
different capability modes, nor the participation of agents to multiple ambiances.

12 http://www.hitech-projects.com/euprojects/amigo/

Several works have also targeted the integration of semantic data in small and mobile
devices. In [28] an ad-hoc mechanism for storing and querying semantic web data on a
mobile phone running iOS is presented, while [29] and [30] also describe mechanisms to
integrate the use of semantic data within Android mobile phones. However, these solutions
are restricted to the storage and manipulation of semantic data within ‘closed’ applications,
while our approach provides the mechanisms needed to allow devices to exchange semantic
data. Moreover, in contrast with our solution, which integrates Sesame with BaseVisor,
none of these works consider the integration of inference engines. Tools such as μOR [31]
exist for lightweight ontological reasoning on small devices, but do not integrate with
common semantic data management infrastructures or with other types of reasoners.

8 Conclusions

In this paper we have provided an extensive overview of our work on smart products, in
particular presenting a computational framework for realizing networks of smart products.
The architecture is fully implemented and a demo of the smart kitchen application can be
found at http://projects.kmi.open.ac.uk/smartproducts/demos/. For the future we plan to
extend this work by investigating the augmentation of smart products with ‘social
intelligence’, e.g., to enable them to act as ‘social mediators’ between users in open
ambiances, such as a supermarket. In parallel we are also discussing with commercial
partners the deployment of our architecture in large retail settings, where the ability for
smart products to engage in proactive problem solving promises to open up new
opportunities for customer-centric services.

References
1. Mühlhäuser, M. Smart Products: An Introduction. In Mühlhäuser et al. (eds), Constructing

Ambient Intelligence. Comm. in Computer and Information Science, 11(4), 158-164, 2008.
2. Yorke-Smith, N., Saadati, S., Myers, K. and Morley, D. Like an Intuitive and Courteous Butler: A

Proactive Personal Agent for Task Management. Eighth Int. Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS’09), Budapest, Hungary, 2009.

3. Vildjiounaite, E., Kantorovitch, J., Kyllönen, V., Niskanen, I., et al. Designing Socially
Acceptable Multimodal Interaction in Cooking Assistants. International Conference on Intelligent
User Interfaces (IUI 2011), Palo Alto, 2011.

4. Beckerle, M., Martucci, L. A., Ries, S. Interactive Access Rule Learning: Generating Adapted
Access Rule Sets. Second International Conference on Adaptive and Self-adaptive Systems and
Applications (ADAPTIVE 2010), Lisbon, Portugal, 2010.

5. Miche, M., Baumann, K., Golenzer, J., Brogle, M. A Simulation Model for Evaluating
Distributed Storage Services for Smart Product Systems. 8th International ICST Conference on
Mobile and Ubiquitous Systems, Copenhagen, Denmark, 2011.

6. Schreiber, A. T. Pragmatics of the Knowledge Level. Ph.D. Thesis, University of Amsterdam.
Available at http://www.few.vu.nl/~guus/papers/Schreiber92c.pdf.

7. Woods, S. and Barbacci, M. Architectural evaluation of collaborative agent-based systems.
Technical Report CMU/SEI-99-TR-025, SEI, Carnegie Mellon University, Pittsburgh, USA,
1999. Available at http://www.sei.cmu.edu/reports/99tr025.pdf.

8. Maes, P. Agents that reduce work and information overload. CACM 37(7), pp. 30-40, 1994.
9. Zhang, Y., Volz, R. A., Loerger, T. R., and Yen, J. A decision-theoretic approach for designing

proactive communication in multi-agent teamwork. SAC 2004, pp. 64-71, 2004.

10. Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W. BeAware! -
Situation awareness, the ontology-driven way. Data & Knowledge Engineering, 69, 2010.

11. Motta, E. Reusable Components for Knowledge Modelling: Case Studies in Parametric Design
Problem Solving. IOS Press, Amsterdam, The Netherlands, 1999.

12. Chandrasekaran, B. Generic tasks in knowledge-based reasoning: High-level building blocks for
expert system design. IEEE Expert, 1(3), pp. 23-30, 1986

13. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., et al. Knowledge Engineering and
Management: The CommonKADS Methodology. MIT Press. 2000.

14. Murdock, J. W. and Goel, A. K. Meta-case-based reasoning: self-improvement through self-
understanding. J. Exp. Theor. Artif. Intell. 20, 1 (March 2008), 1-36.

15. Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., et al. IRS-III: A Broker-based Approach to
Semantic Web Services, Journal of Web Semantics, 6, 2, pp. 109-132, Elsevier, 2008.

16. Aitenbichler, E., Kangasharju, J. and Mühlhäuser, M. MundoCore: A light-weight infrastructure
for pervasive computing. Pervasive Mobile Computing, 2007. 3(4): p. 332-361.

17. Smith, R.G. The Contract Net Protocol: High-Level Communication and Control in a Distributed
Problem Solver. IEEE Transactions on Computers 29(12), December 1980.

18. d'Aquin, M., Nikolov, A. and Motta, E. How much semantic data on small devices? 17th Int.
Conference on Knowledge Engineering and Knowledge Management, EKAW 2010.

19. d'Aquin, M., Nikolov, A. and Motta, E. (2011) Building SPARQL-Enabled Applications with
Android Devices. Demo at 10th International Semantic Web Conference (ISWC 2011).

20. Nikolov, A., Li, N., d’Aquin, M., Motta, E. Evaluating semantic data infrastructure components
for small devices. Int. Workshop on Evaluation of Semantic Technologies (IWEST 2010) at 9th
International Semantic Web Conference (ISWC2010), 2010.

21. Nikolov, A., d’Aquin, M., , Li, N., Lopez, V., et al. Evaluation of active components.
SmartProducts Project Deliverable, D.2.5.1. Available at http://www.smartproducts-
project.eu/media/stories/smartproducts/publications/SmartProducts_D2.5.1_Final.pdf.

22. Lee, S.K. and Hwang, C.S. Architecture modeling and evaluation for design of agent-based
system. Journal of Systems and Software, 72 (2). pp. 195-208, 2004.

23. Rao, A.S., and George, M.P. Modeling rational agents within a BDI-architecture. 2nd Int.
Conference on Principles of Knowledge Representation and Reasoning (KR'91), 1991.

24. Fernandez, M., Zang, Z., Lopez, V., Uren, V., Motta, E. Ontology Augmentation: Towards
Healthy Meal Planning. 6th Int. Conf. on Knowledge Capture (K-CAP 2011) Banff, Canada.

25. Chen, H., Finin, T., and Joshi, A., The SOUPA Ontology for Pervasive Computing In: Ontologies
for Agents: Theory and Experiences, pp. 233-258. Birkhӓuser, 2005.

26. Wang, X. H., Zhang, D. Q., Gu, T., and Pung, H. K. Ontology Based Context Modeling and
Reasoning using OWL. In 2nd IEEE Annual Conference on Pervasive Computing and
Communications Workshops, pp. 18-22, 2004.

27. Preuveneers, D. et al. Towards an extensible context ontology for ambient intelligence. 2nd
European Symposium on Ambient Intelligence, pp. 148-159, 2004.

28. Weiss, C., Bernstein, A., Boccuzzo, S.: i-MoCo: Mobile conference guide – storing and querying
huge amounts of Semantic Web data on the iPhone/iPod Touch. Billion Triple Challenge ISWC
2008, Karlsruhe, Germany.

29. David, J., Euzenat, J.: Linked data from your pocket: The Android RDFContent-Provider. Demo
at 9th International Semantic Web Conference (ISWC 2010).

30. Le-Phuoc, D., Parreira, J.X., Reynolds, V., Hauswirth, M.: Rdf on the go: A rdf storage and query
processor for mobile devices. Demo at 9th International Semantic Web Conference (ISWC 2010).

31. Ali, S., Kiefer, S.: muOR - A Micro OWL DL Reasoner for Ambient Intelligent Devices. In: 4th
International Conference on Advances in Grid and Pervasive Computing (GPC 2009).

