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Abstract. The sheer complexity and number of functionalities embedded in many 
everyday devices already exceed the ability of most users to learn how to use them 
effectively. An approach to tackle this problem is to introduce ‘smart’ capabilities in 
technical products, to enable them to proactively assist and co-operate with humans 
and other products. In this paper we provide an overview of our approach to realizing 
networks of proactive and co-operating smart products, starting from the requirements 
imposed by real-world scenarios. In particular, we present an ontology-based 
approach to modeling proactive problem solving, which builds on and extends earlier 
work in the knowledge acquisition community on problem solving methods. We then 
move on to the technical design aspects of our work and illustrate the solutions, to do 
with semantic data management and co-operative problem solving, which are needed 
to realize our functional architecture for proactive problem solving in concrete 
networks of physical and resource-constrained devices.  Finally, we evaluate our 
solution by showing that it satisfies the quality attributes and architectural design 
patterns, which are desirable in collaborative multi-agents systems.  

Keywords: Proactive Problem Solving, Smart Products, Knowledge Systems, 
Ontology Engineering, Distributed Problem Solving. 

1 Introduction 

The sheer complexity and number of functionalities embedded in many everyday devices 
already exceed the ability of most users to learn how to use them effectively. This is not 
just the case for mass consumer devices, such as mobile phones, but it also applies to work 
settings, where the increased diversity within product lines introduces new complexities in 
both product assembly and maintenance processes [1].  An approach to tackle this problem 
is to introduce ‘smart’ capabilities in technical products, to enable them to better assist and 
co-operate with humans and other products [1]. In the context of the SmartProducts project1 
we have investigated these issues in a number of scenarios, drawn from the aerospace, car 
and home appliances industries. In particular, a key requirement for smart products 
imposed by our scenarios is that they need to be able to exhibit proactivity, both to improve 
the level of assistance to users and also to be able to co-operate effectively with other smart 
products in shared task scenarios. Proactivity can be informally characterized as the ability 
of a smart product to take initiative and perform some action, without having been 
specifically instructed to do so by a user or another smart product [2]. In addition, in order 
to be able to form and join networks with other smart products and engage in co-operative 
problem solving, smart products must also be capable of self-organisation. This second 
requirement is a cornerstone of our approach, to ensure that our solutions can be applied in 

                                                             
1 http://www.smartproducts-project.eu/ 



   

open, networked scenarios, where a closed, top-down design of co-operative problem 
solving solutions would be too restrictive, if not unfeasible [1]. 

While the SmartProducts project has looked at a whole range of issues, which need to be 
tackled to support effective networks of context-aware and proactive smart products, 
including user interaction [3], access control models [4], and distributed storage [5], in this 
paper we focus on the core challenge posed by the project scenarios: the design and 
implementation of a computational infrastructure to realize networks of proactive smart 
products. Hence we will provide a complete overview of our approach, covering both the 
knowledge level and the symbol level [6] elements of our solution and in particular showing 
how we have integrated semantic technologies with ubiquitous computing solutions, to 
equip resource-constrained physical devices with the capability of representing and 
reasoning with knowledge structures and engaging in co-operative problem solving.  

Specifically, the discussion in the paper will cover: i) our characterization of the notion 
of ‘proactive behaviour’, ii) the ontological basis of our framework, iii) a knowledge-level, 
task-centric problem solving architecture for characterizing co-operative and proactive 
problem solving in networks of smart products, and iv) a concrete realization of this 
functional architecture on networks of Android devices.  In addition, we will also show that 
v) our approach to proactive, distributed problem solving satisfies the quality attributes and 
architectural design patterns, which are desirable in collaborative multi-agents systems [7]. 

We will start the discussion in the next section, by introducing one of three real-world 
scenarios which have motivated the work in the SmartProducts project, which will then be 
used in the rest of the paper to illustrate our solutions.  

2 A Scenario  

The scenario we consider in this paper is one in which a user, whom we refer to as Ashley, 
is organizing a dinner for her friends. To this purpose she uses a Cooking Assistant 
application, available on a tablet device, which allows her to specify the parameters for the 
event, including dietary requirements, food preferences, the number of people attending, the 
date of the event, known people attending, etc. Ashley’s Smart Kitchen also includes a 
Smart Fridge and Smart Cupboards, which are aware of their contents and can contribute to 
the shared task scenario –e.g., by providing information about items which are due to expire 
soon, thus minimizing food wastage. Another smart product available to Ashley is the 
Shopping Assistant, an application2 which maintains a history of food purchases and is also 
able to provide information about currently discounted items at a supermarket of choice, 
which may be relevant to the current meal plan.  

Once Ashley has selected a meal plan from the various suggestions provided by the 
Cooking Assistant with the co-operation of other smart products, a shopping list is produced 
by the Shopping Assistant, on the basis of what is required by the meal plan and what is 
already available in the house.  

                                                             
2 In this paper we use the term ‘smart product’ to refer both to physical products, such as a smart 

fridge, and also to software products, such as a meal planner, which is an application running on a 
particular device. Here, it is important to emphasize that we do not use the term ‘smart product’ to 
refer to generic computing platforms, such as a tablet device. These are characterized instead as 
‘containers’, in which numerous smart (software) products may be installed. 



   

Once at the supermarket, the Shopping Assistant interacts with Supermarket Agents to 
identify the best deals for the items in the shopping list. However, while Ashley is shopping 
at the supermarket, a member of the family removes the bowl of strawberries (an ingredient 
needed for one of the selected recipes) from the fridge. At this point Ashley receives a 
notification from the Smart Fridge that the strawberries are no longer available, and 
therefore she can choose to add strawberries to the shopping list.  

Hence, this scenario requires cooperation between a number of smart products, 
specifically: Cooking Assistant, Smart Fridge, Smart Cupboards, Shopping Assistant, and 
Supermarket Agents, with the interactions between these smart products occurring around 
shared tasks in two different ambiances3, a Smart Kitchen and a Supermarket.  The 
requirement for proactivity here means that the smart products must be able to proactively 
contribute to shared tasks, such as meal planning and shopping at the supermarket, both at 
the time when requests for information are broadcast but also, as in the example of the 
strawberries being removed from the fridge, when some event occurs which has 
implications for the tasks currently being executed.  

3 Proactivity in Networks of Smart Products 

For an agent to be proactive, it needs to be able to take action in scenarios in which such 
action has not been explicitly programmed in the agent, or explicitly delegated to the agent 
by a user or another agent. An approach to realizing proactive behaviour entails the 
development of personal assistants [8], which are able to monitor and learn from user 
behaviour, to anticipate their needs and exhibit proactive assistance. However, in the 
context of our project, we are less interested in these application-specific [2] solutions, than 
in enabling proactivity in open scenarios, where proactive problem solving takes place in 
the context of networks of smart products.  

So, what are the requirements for proactivity in such scenarios? As discussed in [9], in 
co-operative problem solving scenarios “the ability to anticipate information needs of 
teammates and assist them proactively is highly desirable…”. In particular, the ability to 
proactively provide task-related information to a task-performing smart product is 
especially useful in an open network of smart products, because it avoids the need to know 
a priori who can provide certain information or carry out a particular task, thus allowing the 
dynamic formation of networks of co-operating smart products. Hence, a key type of 
proactive behaviour we want to support concerns precisely this ability of a smart product to 
proactively contribute information to another smart product in a task-centric context.  

In addition, achieving proactive, co-operative problem solving and self-organization 
requires flexible mechanisms for representing and manipulating problem solving 
knowledge. Since networks of smart products do not have a predefined organizational 
structure with prescribed roles, and the capabilities of involved products may vary, smart 
products can contribute to shared tasks in various ways. For example, the meal planning 
task presented in Section 2 will be executed differently depending on which smart products 
are part of the Smart Kitchen ambiance, and their capabilities. Hence it is undesirable to 
design a complete process decomposition in advance and we require instead mechanisms 
for dynamic process composition, task assignment and proactive problem solving.  

                                                             
3 An ambiance denotes an environment comprising specific smart products, in which collaborative 

problem solving can take place – see Section 3 for more details. 



   

An ambiance denotes an environment comprising specific smart products, in which 
collaborative problem solving can take place. While in many cases ambiances reflect 
physical spaces, such as the ambiance comprising all smart products in a kitchen, the notion 
itself is flexible and simply denotes any collection of smart products which come together 
to engage in co-operative problem solving. Both the inclusion of products into an ambiance 
and the set of permissible behaviours are regulated by joining policies. For instance, within 
a supermarket ambiance, it may be desirable to allow smart products belonging to 
customers (i.e., on mobile devices) to join the ambiance and receive information, adverts 
and recommendations from supermarket agents (or even directly from smart food items), 
but these devices may not be allowed to expose arbitrary tasks to other customers' devices. 

In sum, in order to comply with the requirements from our scenarios, the key aspect of 
proactive behaviour we wish to support concerns the ability of smart products to engage in 
distributed, collaborative, proactive problem solving, including the ability i) to expose and 
be aware of shared tasks, ii) to proactively provide task-specific information to other smart 
products in a particular problem solving context, and iii) to provide actual solutions through 
problem solving for those tasks which fall within a smart product’s set of capabilities.   

4 Semantic Technologies for Smart Products  

4.1 The SmartProducts Network of Ontologies (SPO)  

The SmartProducts Network of Ontologies (SPO)4 has been developed both to provide a 
clear specification of the conceptual model underlying the work on the SmartProducts 
project, and also to maximise interoperability not just among all SmartProducts 
applications, but also between these and other applications in related domains. SPO 
comprises three different sets of modules, which reflect different levels of abstraction and 
reuse, from the most generic to the application-specific ones. Because each layer is itself 
divided into several sub-modules, we obtain a highly modular design, which makes it 
possible to reduce the parts to be used by a device, depending on its functionalities –e.g., no 
need to use the process model on devices that only serve as data providers.  

Figure 1 shows the configuration of SPO, which was used for the smart kitchen scenario. 
The other project scenarios were modelled in a similar way, reusing the external and 
generic modules and plugging-in alternative application-specific ones.  

SPO builds on established external ontologies, including the DOLCE Ultra Lite 
Ontology (DUL)5, which provides the foundational layer to interpret SPO entities. For 
example, SPO reuses the Quality-Region-Parameter design pattern from DUL to model 
physical qualities of objects, and the Plan-PlanExecution pattern to distinguish between the 
definition of problem-solving behaviour and its actual execution. Concepts and properties 
dealing with representation of time are imported from the W3C time ontology6. 

An essential part of SPO covers the context model, which is needed to ensure that smart 
products are able to assess the available information about the state of the world. In 
particular, the context model includes both ‘low-level’ contexts, i.e., atomic facts about the 
state of the environment and its changes –e.g., smoke being detected, as well as ‘high-level’ 

                                                             
4  http://projects.kmi.open.ac.uk/smartproducts/ontologies/. 
5 http://www.loa-cnr.it/ontologies/DUL.owl 
6 http://www.w3.org/2006/time 



   

ones, i.e., abstracted information about a situation as a whole, which can be inferred from 
aggregated low-level context facts –e.g., an emergency situation being recognised on the 
basis of smoke detection. Sensing devices, which can be either embedded –e.g., a 
thermometer in a fridge, or external –e.g., a weather service, serve as sources of low-level 
context information. To model their output, SPO utilizes the recently proposed Semantic 
Sensor Network (SSN)7 ontology, in particular by reusing its Observation design pattern. 
This allows external sources of sensor data relevant to the products within an ambiance –
e.g., readings provided by a weather service, to be smoothly integrated and used alongside 
data produced by embedded sensors.  

 
Figure 1. The SmartProducts Network of Ontologies configured for the smart kitchen scenario 

 
Figure 2. Modelling situational context 

To model a high-level situational context, which is usually abstracted from low-level  
context data, we reuse the design patterns developed in situational awareness research [10] 
and we characterize a situation as an abstract interpretation of a specific state of the 
environment. Examples of situations include a dinner party, a snowstorm on the driving 
route, or a visit to a car workshop. Situations are characterized by their space and time 

                                                             
7 http://purl.oclc.org/NET/ssnx/ssn 



   

constraints, participating objects, specific relations between these objects, and the situation 
type [10]. Depending on the situation type, specific types of roles for objects and relations 
can be defined. For example, a meal can have one or more guests, while a car service 
operation may involve the car owner, one or more technicians, and a manager.  In SPO, the 
class SituationalContext (see Figure 2) defines generic descriptions for high-level contexts. 
It extends the class dul:Situation, by localizing its instances in space and time. Specific 
properties determining different types of relations between entities and situations are 
defined by reusing relevant subproperties of the generic dul:isSettingFor relation –e.g., 
dul:includesAgent, dul:includesEvent, etc.  

4.2 Task-based Problem Solving Architectures  

Research on generic models of problem solving in knowledge engineering has developed a 
number of libraries, architectures, languages and tools to support the specification of 
generic and reusable problem-solving components [6 11 12 13 14]. A key feature of these 
architectures is that they support a strong separation of the different building blocks for 
intelligent systems, for example, distinguishing between task, method, domain and 
application knowledge [11]. Thus, they provide a sound epistemological and architectural 
basis for developing robust knowledge systems by reuse.  In particular, here we build on the 
problem solving architecture8 defined by the TMDA framework [11], which provides a rich 
modelling framework, based on task and method ontologies [11], which supports the 
specification of problem solving components in detail. 

Although the TMDA architecture was originally conceived for ‘closed’ application 
scenarios in knowledge-based systems, it has been modified in recent years to provide the 
basis for an open distributed semantic web service architecture [15]. However, our 
scenarios impose new requirements on the TMDA architecture, as methods and tasks are 
executed and exposed by specific smart products, and problem solving takes place in 
specific ambiances, where specific policies are enforced. Hence, as a first step we adapted 
the TMDA framework to the SmartProducts scenarios, as discussed in the next section.  

4.3 Ontological Modelling of Problem Solving Knowledge 

A key element of SPO is the ontological support for modelling proactive and co-operative 
problem solving in networks of smart products and to this purpose SPO extends the task 
ontology provided by the TMDA library [11], by introducing the concepts needed to 
characterize smart products and ambiances and integrating these notions with the modelling 
of tasks and problem solving methods. At the core of the SPO ontology is the concept of 
TaskInAmbiance (see Figure 3), which is defined in terms of input and output roles, a goal 
specification, the ambiances in which it is exposed, and an optional closing time and 
closing condition. Input and output roles define the information types specifying the input 
and output of a task. A goal defines a condition that the output needs to fulfil, in order for 
the task to be achieved, and it is represented in the ontology as a subclass of 
owl:ObjectProperty, i.e., as a meta-property.  This representation allows us to use specific 
instances of class GoalProperty, i.e., specific goal-defining object properties, to represent 
the goal of a particular task. The optional closing time and closing condition are used to 

                                                             
8  A problem solving architecture focuses on knowledge-level components for problem solving, in 

contrast with a system architecture, which concerns technical design issues – see Section 5.  



   

specify precise end points (as a time point or as a logical condition) for other smart 
products to consider, if they are willing to provide information or tackle the task. In 
particular closing conditions are also modelled as meta-properties, using the same 
mechanism used for representing goals. If no closing time or condition are given, the goal 
specification provides a default closing condition for a task.  

A task is solved by a Problem Solving Method (PSMInAmbiance), which defines a 
procedure to solve a class of tasks and is defined as a subclass of dul:Plan. An 
ApplicabilityCondition can be specified for a PSM9 to determine whether it can be applied 
to a task in a specific problem solving context. An ApplicabilityCondition for a PSM is 
defined as a relation object with two arguments: TaskType, which defines the class to which 
the method can be applied (either the actual class or a set of restrictions describing a class 
definition) and AmbianceType, which defines a class of ambiances in which the method can 
be executed. TaskType and AmbianceType are defined as meta-classes: i.e., their instances 
are themselves classes, which are subclasses of Task and Ambiance respectively. For 
instance, an applicability condition may refer to the class of tasks MealPlanningTask and 
restrict the class of ambiances to those which belong to the specific user (i.e., have the 
value of hasOwner property set to a specific user ID).  

 
Figure 3. Main classes and relations for modelling problem solving knowledge 

A SmartProduct is defined as both a Product and a ProactiveAgent.  Two subclasses of 
SmartProduct are considered in the ontology, SmartProductizedDevice and 
SmartSoftwareProduct, to cater for both physical and software products, as pointed out in 
Footnote 2. A relation, hasCapability, is used to define a Capability for a ProactiveAgent 
(and therefore for a SmartProduct). A Capability is defined as a quality of an agent and 
represented as a tripartite relation object <PSMType, CapabilityMode, TaskType>, where 
TaskType describes the class of tasks the agent can contribute to solve, PSMType describes 
the method the agent in question will apply, to tackle the instance of TaskType, and 
CapabilityMode specifies the modality by which the agent can contribute to solving the 
task. Currently, we consider three types of CapabilityMode:  

• ProactiveProblemSolving. This value specifies that the method can be applied 
directly to solve the task. 

                                                             
9 For the sake of brevity, in the rest of this paper we will use the terms Task and PSM as synonyms 

for TaskInAmbiance and PSMInAmbiance. 



   

• ProactiveInformationSupplying. This value specifies that the method provides 
information relevant to the task execution, by modifying some aspect of the task –
typically the input roles.  

• TaskExposing. This value refers to the generic capability of an agent to expose a 
task to an ambiance and is associated with a default method for exposing tasks.  

The class Ambiance is used to specify networks of smart products, given that 
collaboration between smart products is only allowed within a particular ambiance. The 
following properties are defined for class Ambiance: 

• containsSmartProduct: links the ambiance to a smart product, which is currently in 
the ambiance in question. 

• hasOwner: links the ambiance to its (human) administrator.  
• hasJoiningPolicy: links the ambiance to a joining policy descriptor. There can be 

several descriptors defined for the same ambiance. 
Joining policies are necessary in order to regulate the inclusion of products into the 

ambiances. For example, the owner might not want products belonging to non-trusted users 
to join her home ambiance. Moreover, she may want to restrict certain capabilities of 
products within it. For instance, within a supermarket ambiance, it may not be desirable to 
allow smart products belonging to customers (mobile devices) to advertise arbitrary tasks to 
other customers' smart products. 

5 Realizing Networks of Proactive Smart Products 

Here we describe how the conceptual framework presented in Section 4 (the knowledge 
level) has been realized at symbol level. In particular, we focus on two critical technical 
design issues: i) the realization of a protocol implementing proactive, distributed problem-
solving over networks of peer-to-peer devices, and ii) the realization of the semantic data 
management components needed to store and manipulate knowledge in smart products. 

5.1 The SmartProducts Task Messaging Protocol 

To achieve a peer-to-peer model where all smart products are connected to each other in a 
network, we implemented a system architecture where smart products are instantiated as 
applications deployed on mobile computing devices, specifically smartphones and tablet 
devices running Android OS. For the actual communication between smart products, we 
chose the MundoCore [16] communication middleware, which provides facilities, such as 
creation of network zones, which can be readily mapped to the concept of ambiance in our 
framework. MundoCore also supports the notion of channels and implements a 
publish/subscribe mechanism to enable agents to interact and exchange messages within a 
zone. These features (zones and channels) were used to realize ambiances as networks 
within which tasks, their outputs and related information can be exchanged between smart 
products. Moreover, MundoCore also allows devices to subscribe to multiple channels in 
multiple zones, therefore allowing smart products to participate in more than one ambiance 
at a time –e.g., the Shopping Assistant in our scenario can be at the same time in the kitchen 
and in the supermarket ambiance. Finally, MundoCore supports ‘device discovery’ in such 
a way that it allows devices to join and leave the network at any time without having to 
reconfigure the network or the devices.  



   

Besides the straightforward reuse of the zone and channel mechanisms, the realization of 
the distributed, proactive problem solving approach described in the previous sections was 
achieved by implementing a dedicated protocol on top of MundoCore, which we refer to as 
the SmartProducts Task Messaging Protocol (SPTM). SPTM implements the proactive 
task-based problem solving approach described earlier by relying on a coordination 
mechanism similar to the one used in contract-nets [17].   

 
Figure 4. SmartProducts Task Messaging protocol 

As shown in Figure 4, SPTM provides mechanisms i) to broadcast and assign tasks; ii) 
to request and gather contributions to tasks; iii) to handle the management of tasks within 
multiple ambiances –e.g., the Shopping Assistant is able to receive messages in both the 
kitchen and supermarket ambiances; and iv) to react to events affecting ongoing tasks in an 
ambiance –e.g., a change in the content of the fridge triggering an alert. In particular, 
Figure 4 shows a subset of the flow of messages in our scenario, where the Cooking 
Assistant first broadcasts a meal planning task (type RequestTaskSolver in the figure), to 
which the Meal Planner responds by sending a message of type OfferSolveTask. The Meal 
Planner is then delegated to tackle the meal planning task (type AssignTask in the figure) 
and to this purpose it broadcasts a message of type RequestTaskInfo, to which the Smart 
Fridge responds by providing information about its contents (type ResponseTaskInfo). 

Since tasks are sent to the environment without pre-compiled knowledge or assumptions 
about the capabilities of other smart products, they carry associated closure conditions –in 
the simplest form, a time delay. The protocol is relatively lightweight, as it relies on only 10 
types of messages (6 of which are shown in the diagram on the left-hand-side of Figure 4), 
and we have not observed any significant messaging overheads compared to similar designs 
based on the contract-net protocol. 

The implementation of the conceptual framework for distributed proactive problem 
solving into the concrete SPTM protocol allows us to achieve a number of useful 
properties, as will be discussed in detail in Section 6. In a nutshell, this implementation 
reflects the flexibility of the framework, making it possible to add smart products to an 
ambiance without any need for reconfiguration of the network. The implementation also 
optimizes the distribution of knowledge amongst smart products, as information is stored 
locally in each node of the network and exchanged only when needed for a specific task. 

5.2 Semantic Data Management Infrastructure  

A key issue related to the realization of our approach in concrete networks of smart 
products concerns the need to equip resource-limited devices, such as mobile phones, with 



   

the ability to store and reason with semantic data. In [18] we compared different 
frameworks for semantic data management on resource-limited devices, and showed that 
small to medium scale data could be handled adequately on modern smartphones. In 
particular, we chose the Sesame10 triple-store for its low requirements in terms of memory 
usage. Unsurprisingly, this study also showed that computational demands increased 
linearly with the amount of data stored, and with the use of advanced features, such as 
embedded inference engines. Hence, this study provided us with a basis to assess the 
amount of resources needed for a particular smart product depending on its required local 
knowledge and capabilities. For example the Smart Fridge only requires the limited 
resources that can be found on a smartphone, while the Cooking Assistant, which applies 
potentially complex inferences on thousands of cooking recipes, requires the extra memory 
and CPU capacity typically available on a tablet device. 

Consistently with these findings, we developed a modular, Sesame-based architecture 
which can easily be scaled-up or down depending on the specific needs of a smart product 
and the resources available on a device, while ensuring a homogeneous architecture across 
heterogeneous devices. In particular we adapted the Sesame triple store for the Android 
system, and successfully applied it, through dedicated wrappers, on Android smartphones 
and tablet devices [19]. If required, this infrastructure component can be extended by 
enabling basic ontology reasoning or, when needed, a dedicated forward-chaining reasoner. 
In particular, following the results of the evaluation presented in [20], we have successfully 
used BaseVISor11 to provide such inferencing support.  

6 Evaluation 

An evaluation of the SPO network of ontology can be found in [21]. Here, we focus instead 
on the evaluation of our technical architecture for realizing networks of smart products and 
we employ an approach based on the ATAM methodology [7], which is designed for 
evaluating architectures of collaborating agents. In particular, we consider the three 
following aspects12, which are commonly used to evaluate distributed architectures –see 
also [22]: 
(i) Extensibility: this aspect refers to the ability to add agents to the network which 

may implement additional capabilities. 
(ii) Reliability: this aspect refers to the extent to which the failure of one or more 

agents in the network might affect the network as a whole. 
(iii) Security: this aspect refers to the extent to which attacks on one or more elements 

of the network might expose the collective knowledge of the whole network. 
In order to evaluate how our design choices impact on the properties considered above, 

we compare our architecture with the most obvious alternative solution, where ambiances 
are managed by a central ‘facilitator’ agent, which has the role of gathering the collective 
knowledge of the ambiance and providing matchmaking mechanisms to associate agents’ 
needs to the capabilities of other agents.  This solution differs from our approach because:  

                                                             
10 http://www.openrdf.org/ 
11 http://vistology.com/basevisor/basevisor.html 
12 Here we do not evaluate the performance of the architecture, as this is highly dependent on the 

implementation of each agent, as well as on the properties of the physical network used for 
communication between agents. 



   

• It is less distributed –i.e., not fully connected [22]. In particular, the knowledge of 
each agent is not stored locally but at a central server.  

• It is reactive, rather than proactive, as agents request features from other agents, 
rather than having smart products proactively contributing to shared tasks. 

To evaluate the two alternative solutions, we consider four scenarios, which jointly cover 
the three properties mentioned earlier, and for each of them we assess qualitatively to what 
extent the two alternative architectures satisfy the relevant requirements. The scenarios 
have been chosen to illustrate generic situations that can be assessed independently from 
specific implementation details, and where the characteristics of the alternative 
architectures have a significant impact, as for example, when considering the security and 
privacy issues created by the introduction of a malevolent smart product.  
 
Scenario 1 (Extensibility): Adding a smart product with capabilities and knowledge 
unknown to the network. 
In our framework, adding a smart product to an ambiance simply requires the 
corresponding device to join the peer-to-peer network. As knowledge is being held locally 
on the device and its capabilities used proactively to contribute to advertised tasks, there is 
no need to exchange any additional information. On the contrary, in a network where a 
facilitator maintains a directory of the available services/capabilities and aggregates the 
collective knowledge of the network, adding a smart product to an ambiance requires that 
the smart product registers its capabilities with the facilitator and constantly sends updates 
about newly generated knowledge. Besides the added complexity and communication 
overhead, this solution also requires that the facilitator either possesses a representation of 
any type of capability and knowledge that might be useful in a network, or is able to update 
its representation regularly, to comprise new capabilities and knowledge as they are 
introduced by smart products.  

Extensibility in this sense is therefore one of the strong points of our proactive problem 
solving architecture: new smart products can contribute problem solving methods and 
knowledge directly as they join an ambiance, without the need for other agents in the 
network to have been explicitly programmed to manage such knowledge and capabilities.  
 
Scenario 2 (Extensibility): Generating an ambiance by aggregating smart products.  
Because it is based on peer-to-peer communication, our framework supports the ability to 
create new ambiances by simply aggregating smart products in a network. In particular, this 
means that ad-hoc ambiances can be created ‘on the fly’, for example to connect the 
Shopping Assistants of a group of shoppers to allow them to share dynamically and 
proactively information in a supermarket –e.g., about what they are buying, the location of 
products in the shop, etc.  Again, it is obvious that realizing this scenario would be far more 
complex if we were relying on a centralized, global knowledge architecture, where a 
selected smart product plays a controlling or facilitating role. The network would disappear 
as soon as this particular device becomes unavailable.  

Another important aspect is that, because a smart product may inhabit multiple 
ambiances at the same time, it can transfer knowledge generated in one ambiance to another 
one –e.g., the Shopping Assistant inhabits both the supermarket and the kitchen ambiance, 
thus being able to share knowledge about special offers with other smart products in the 
kitchen ambiance. If a centralized approach were used, communication between 



   

‘facilitators’ would be needed to achieve this result, creating an overhead in the best case 
and being simply unfeasible in most realistic scenarios.  
 
Scenario 3 (Reliability): One of the smart products in the network suddenly stops being 
operational.  
In our framework, as in any other, the impact of a particular agent’s failure depends on the 
type of the agent. If this were a smart product with only an information-providing 
capability, such as the Smart Fridge, the impact would only be that the knowledge it 
contains would stop being available to the rest of the network, resulting in sub-optimal 
decision making.  However, if the failing agent has more sophisticated capabilities (such as 
providing methods for meal planning), such problem solving capability would stop being 
available to the network, unless another smart product realizes a similar capability.  

The situation is similar in networks relying on a facilitator agent, with some added 
complexity for the facilitator to handle situations in which registered features are requested, 
but are not available because of the corresponding device not being operational. A worst-
case scenario in this type of network however is when the facilitator itself stops being 
operational, therefore invalidating all the capabilities and knowledge of all the smart 
products in the network. 
 
Scenario 4 (Security): A malevolent smart product is included in an ambiance. 
Here, we assume that a smart product has been created to join an ambiance in order to 
‘attack’ it, meaning that its goal is to extract as much information as possible from the other 
agents in the network, or to disrupt collaborative problem solving. In the case of our 
framework, as all knowledge is localized in individual smart products and only shared 
when necessary for a particular task, the malevolent agent would need to be able to 
broadcast the right task and interpret properly the contributions from other agents to try and 
reconstruct the knowledge of other agents in the network. In addition, policies can be put in 
place on each device regarding the tasks they might contribute to, depending on the 
ambiance and the smart product that originated the task. For example, the Shopping 
Assistant might contribute to any task for which its capabilities are relevant in the kitchen 
ambiance, as it constitutes a trusted network, but may prefer to ignore tasks broadcast in the 
supermarket ambiance, as it has no reason to contribute there, and cannot verify whether 
these tasks are legitimate. 

Of course, similar mechanisms can be put in place in the case of a facilitator-based 
network. Once again however, added complexity would be generated, as the facilitator 
would be required to implement mechanisms to consistently handle and manage policies for 
all smart products in the network. Obviously, the worst-case scenario here is when the 
problematic agent is the facilitator itself, since, as long as other agents can be tricked into 
joining its network, it would naturally collect all the knowledge of the other smart products 
in the ambiance. This is especially problematic in those cases where ad-hoc networks are 
formed (as discussed in Scenario 2), as one of the devices that might not be trustable will 
have to take the role of the facilitator, and could also potentially obtain information from 
the facilitators of other ambiances which have some devices in common with the one 
managed by the ‘rogue’ smart product.  



   

7 Related Work 

Proactive behaviour in artificial agents has been studied in the distributed AI community 
since the 70s and implementations of agents, which are able to exhibit proactivity, are often 
based on different variations of the belief-desire-intention framework (BDI) [23]. Problem-
solving knowledge is usually decoupled into goals (what should be achieved) and plans 
(how to achieve it), in a similar way to the task-method decoupling in PSM research [11]. 
However, the notion of goal, while representing a necessary condition for achieving 
proactivity, does not per se reflect the behavioural patterns commonly associated with 
proactive behaviour –an agent can pursue a goal simply because it is asked to do so, as 
opposed to exhibiting proactivity, which requires that the agent actually takes the initiative 
in problem solving.  

As already mentioned, an area of agent research, which specifically focuses on these 
issues, deals with the development of user assistant agents –e.g., see [2 8]. These studies 
consider proactivity as the capability of an agent “to anticipate needs, opportunities, and 
problems, and then act on its own initiative to address them” [2].  

Our approach differs from the aforementioned ones in several respects. First, the use of 
standard Semantic Web representation makes it easier to integrate additional domain-
specific information in our applications and take it into account during reasoning –e.g., as 
we do with information about food and recipes in our smart kitchen application [24]. 
Second, our approach involves exposing tasks as part of the shared context information, 
rather than by direct pairwise communication between agents. The reason for this is the 
need to deal with open environments, in which agents do not have prescribed roles. Thus, 
additional reasoning about whom to tell certain information is avoided and, while 
broadcasting may be considered in principle less efficient than direct agent to agent 
communication, in practice we have not found this to be an issue and we expect that even 
with reasonably large networks, our solution is unlikely to cause performance issues. In 
addition, we would also claim that our approach is more suitable for resource-constrained 
environments, as it uses more lightweight decision models than those used in most theories 
based on the BDI framework. In particular, we believe that unless we consider application-
specific proactivity [2], where strong task models and learning mechanisms can be realized, 
our approach, which only requires task-based collaboration and does away with reasoning 
about other agents’ beliefs and desires, provides a more ‘agile’ architecture to realise 
collaborative and proactive problem solving in networks of smart products.  

In the ubiquitous computing area several approaches involving the use of ontologies and 
Semantic Web technologies have emerged, and some of them model the agent’s activities 
[25 26]. However, these approaches pay less attention to the capabilities aspect, and the 
corresponding context broker implementations choose actions to perform using condition-
action rules. The ontology developed in the CoDAMoS project [27] models user tasks and 
activities, as well as services provided by devices. Similarly, in the AMIGO project12 

process modelling is based on the notion of services, and a standard process representation 
ontology (OWL-S) is used to represent processes. These models allow matching tasks with 
device functionalities/services and representing process decomposition structures. Thus, 
decisions about when to contribute to a task can be made. However, they do not consider 
different capability modes, nor the participation of agents to multiple ambiances.  

                                                             
12 http://www.hitech-projects.com/euprojects/amigo/ 



   

Several works have also targeted the integration of semantic data in small and mobile 
devices. In [28] an ad-hoc mechanism for storing and querying semantic web data on a 
mobile phone running iOS is presented, while [29] and [30] also describe mechanisms to 
integrate the use of semantic data within Android mobile phones. However, these solutions 
are restricted to the storage and manipulation of semantic data within ‘closed’ applications, 
while our approach provides the mechanisms needed to allow devices to exchange semantic 
data. Moreover, in contrast with our solution, which integrates Sesame with BaseVisor,  
none of these works consider the integration of inference engines. Tools such as μOR [31] 
exist for lightweight ontological reasoning on small devices, but do not integrate with 
common semantic data management infrastructures or with other types of reasoners. 

8 Conclusions 

In this paper we have provided an extensive overview of our work on smart products, in 
particular presenting a computational framework for realizing networks of smart products. 
The architecture is fully implemented and a demo of the smart kitchen application can be 
found at http://projects.kmi.open.ac.uk/smartproducts/demos/.  For the future we plan to 
extend this work by investigating the augmentation of smart products with ‘social 
intelligence’, e.g., to enable them to act as ‘social mediators’ between users in open 
ambiances, such as a supermarket. In parallel we are also discussing with commercial 
partners the deployment of our architecture in large retail settings, where the ability for 
smart products to engage in proactive problem solving promises to open up new 
opportunities for customer-centric services. 
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