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Summary

The vision of pervasive computing inspired the work of context-aware systems.

Now, at a time where smart phones are ubiquitously available, development

of context-aware mobile applications can drastically change how people think

and how people live. With the goal of improving people’s lives, this thesis

works towards several problems in building context-aware mobile applications,

specifically in building ontology-based context-aware mobile applications.

Firstly, in order to accelerate researches in this area, an ontology-based test

bench is constructed. This test bench enables a shorter research cycle because

new research ideas can now be tested on this test bench, saving the effort to build

a real system. In addition, this test bench covers the domain of context-awareness

extracted from hundreds of real mobile applications. Therefore, performance

measured in this test bench can be more reliable than the one measured in

existing benchmarks.

Secondly, one major problem in adopting ontology-based context model is

the slow reasoning speed that hinders real-time deployments. Server cloning,

which is a usual method to solve scalability problem, is not applicable for on-

tology databases due to the huge size of database and excessive synchronization

traffic. In this thesis, a completeness-proven partitioning algorithm is proposed

to enable a distributed computing scheme. In this scheme, sub-databases are ex-

tracted from the central database given the category of queries it is responsible

of answering. The sub-database is extracted in a careful way so that the yielded

ix



sub-database is “just-enough” to handle all queries of that category. This scheme

significantly reduces the size of sub-databases. It also drastically improves the

processing speed when an update if fired. The amount of synchronization traffic

is minimized as well. While this result is by itself acceptable already, we can

further reduce the cost by applying a trade-off, exchanging some overshooting

completeness for the benefit of smaller sub-databases.

Last but not least, this thesis works out a context-aware recommendation al-

gorithm that is applicable to context-aware mobile commerce applications. Con-

text information, after being captured by a sensor or a crawler, is represented as

a triple in the knowledge base. This triple is then quantified into a scale from 1 to

5, and it is plugged in the rating matrix. Following this, a modified collaborative

filtering algorithm with weighting scheme is adopted to take the context infor-

mation into account when making recommendations. The algorithm is tested

in a movie recommendation scenario. Experiment results show our approach

can decrease MAE and produce higher precision and recall. A prototype system

on the domain of music recommendation is constructed and multiple users are

invited to try and comment on it. The feedback from users shows the system is

promising and it gives them positive mobile commerce experiences.
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Chapter 1

Introduction

1.1 The History and Current State

Two decades ago, Mark Weiser[1], the harbinger of Pervasive Computing, envi-

sioned a highly intelligent world where computing resources are so ubiquitous

that they fade away from people’s focus. The “live board” that was advocated in

the paper very much resembles products that we have 20 years later—iPadTMand

other tablet devices. Numerous researchers are inspired by the vision and we do

have seen great advances in realizing this vision. But have we reached there yet?

Or, perhaps the vision is so ahead-of-time that we actually have just reached the

starting line?

I prefer the latter answer. That is, there is still a long way to go before

we reach our goal, and the most exciting part has just come in. Technology

revolution happens only when the infrastructure is set up and people’s minds are

ready. Twenty years ago few people have access to Personal Computers (PCs),
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not to mention weaving the technology into the background. Some of the very

novel ideas implemented for pervasive computing, like the Active Badge[2] and

the PARCTAB[3], failed to get commercialized or generalized partially because

of their user intrusiveness. You cannot expect users to carry around a palm-

size gadget that has only one functionality of tracking themselves. While at

the same time we cannot integrate many functionalities into one gadget due to

the limitation of computation power. These years have seen the proliferation

of PC, the exponential computing speed boost, and recently the emergence of

smart phones. The computational power of computers and devices has reached

a level that is sufficient to embody a decent amount of intelligence. Smart

phones and mobile data networks have become almost ubiquitously available,

and this enables a series of scenarios of pervasive computing. According to a

survey in 20121, there are a total of 1.08 billion smart phone users globally, and

Singapore has the highest smart phone penetration rate in the world of 54%.

The recent Google GlassTMand Apple iWatchTMfurther augment the varieties

of unobtrusive intelligent computation media. A new round of revolution of

pervasive computing is now ready to launch, starting from the revolution in

mobile applications.

The hardware infrastructure agrees with pervasive computing, the next ques-

tion is whether people’s minds are ready for the change. The fact is, people are

looking forward to the change and they are already practicing the change of

life style. According to the same survey as last paragraph, 89% of smart phone

1http://www.go-gulf.com/blog/smartphone/
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users use their phones throughout the day, and the amount of Internet data

usage reach as high as 582 MB a month per capita. Smart phones have inte-

grated themselves into our lives and users even cannot live without them. The

use of smart phone is no longer limited to calling, SMS, or browsing web pages.

Mobile Commerce (M-commerce) emerges as a result of user payment habit

shift. This includes near-field payments, M-ticketing, M-coupons, M-banking,

M-wallets, remittances and other Mobile Financial Services (MFS). According

to IDC Financial Insights 2012 Consumer Payments Survey, 34 percent of survey

respondents have made a purchase using their mobile phone compared to 19 per-

cent in 2011. The report also found that physical goods were the most common

mobile purchase, with more than 70 percent having purchased a physical good.

60 percent have purchased online services and digital goods instead. Japan, be-

ing the king of M-commerce, even has forecasted US$119 billion revenue in 2015.

This is about 8% of the total E-commerce market.

In such a background, now is the best time ever to promote the develop-

ment and deployment of pervasive computing techniques. And we start with

the context-aware mobile application approach. Context-aware systems and ap-

plications were initially designed to realize Weiser’s vision. Context-aware ap-

plication refers to an application that is able to detect the context of its user,

and to tune its behaviour according to the context, and further make an im-

pact on the user’s behaviour[4]. This is significantly different from the most of

the popular mobile applications we have on smart phones. While most of the

current mobile applications are merely a portable edition of the applications on
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stationary computers, context-aware mobile applications exploit the advantages

of smart phones that they are closer to the users and they are able to sense the

context of the users. By Dey[5, 6]’s definition, context is any information that

can be used to characterize the situation of an entity. This usually includes the

surrounding environment, the personal profile, and the preference settings of the

user. Context-aware systems, however, refer to the middleware that standardizes

and integrates different parts of context-aware applications. The effort is made

so that context-aware application developers can concentrate on the core logic

or business model instead of the low-level sensor data manipulation.

The thesis works on the domain of context-aware mobile applications. Specif-

ically, the work conducted can be divided into three parts. The first part solves

the problem of the lack of experimental test bench in this domain. The second

solves a problem in scaling up context-aware mobile systems by introducing a

distributed computing scheme. The third part proposes a context-aware recom-

mendation system that is of great importance in mobile commerce applications.

The motivation of these works is described in details below.

There are many research directions in the domain of context-aware systems,

among which the most basic one is how to represent and store context infor-

mation[7]. The method used for the knowledge representation and storage in

a machine processable form is called context model. Among various context

models, ontology-based model for context-aware systems has its strength in dis-

tributed composition[8], strict semantics, the ability to be verified and reasoned

and many more[9, 10]. Other models include key-value pair models[11, 12, 13],

4



mark-up scheme models[14, 15, 16], graphical models stored as UML (Unified

Modelling Language)[17, 18], and object-oriented models[19].

For the above mentioned reasons, ontology-based model is chosen as the

context model in our system and it is used throughout the thesis.

Though the ontology-based model has many advantages, research activities

are usually thwarted by the lack of an ontology-based test bench on the do-

main of context-aware systems. This is because research ideas in this domain

are usually highly data-dependent, and the performance measured in existing

ontology-based benchmarks would be unreliable. Researchers would have no

choice but to actually build one whole system in order to test out their ideas.

Seeing this, this thesis works on building a test bench specifically on this do-

main from scratch. Initially, a survey of hundreds of mobile applications is done.

Current mobile applications are quite similar to the concept of context-aware

applications. Or rather, some of the applications are already context-aware, to

some extent. By modelling the query types and data structures of these appli-

cations, we can extract fractions of the whole knowledge base. And these pieces

are finally integrated together to form the upper-level ontology in the domain of

context-aware systems. This upper-level ontology, together with other important

components, constitutes the test bench.

With the test bench ready, this thesis then works towards the scalability issue

in ontology-based context-aware systems. The major shortcoming of ontology-

based context-aware systems is that the ontology processor (aka. ontology rea-

soner) is relatively slow for real-time requirements. Thus, we are facing the scal-

5



ability problem when the number of users grows beyond the capability of one

central server. This thesis proposes a distributed computing scheme for ontology-

based context-aware systems. Under this scheme, monolithic ontology knowledge

bases are carefully examined and partitioned so that the query-answering task

can be distributed among a number of servers. This can greatly enhance the pro-

cessing speed, thus promoting the usage of ontologies in real-time context-aware

systems.

Mobile commerce emerges around 2000[20] and is now a pivotal component

in the domain of mobile applications. M-commerce is a subset of E-commerce

and is usually defined as “any transaction with monetary value that is conducted

via a mobile network”[21]. Back in 2009, Chang [22] surveys the features and

characteristics of contemporary popular smart phones, putting an emphasis on

the required and desirable features for mobile commerce. Though the smart

phone market grows with unprecedented speed past the release of this paper,

several points of this paper are proved to be quite insightful and predictive.

Currently, there is an emerging trend that many banks and financial institutions

are making their moves to provide their services on users’ smart phones. For ex-

ample, Standard Chartered Bank provides Breeze2 to simplify personal banking

procedures. Chase introduces the mobile application Chase My New Home to

help home-buyers from the time they start looking at houses until they close on

their mortgages3. And these mobile applications are starting to embrace context

2http://www.standardchartered.com.sg/personal-banking/online-mobile-services/breeze-
mobile/en/

3https://www.chase.com/mortgage/home-loans
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information in their development.

This thesis works specifically on context-aware recommendation systems.

Recommendation systems adopted in E-commerce are proved to be of great

importance. The recommendations are given from a rating matrix, which is an

integration of all users’ history and preferences. In M-commerce, the recom-

mendations can be augmented with the extra information of the users’ context.

As such, a well-designed and specially-tuned context-aware M-commerce recom-

mendation system plays a critical role in promoting the usage of M-commerce.

Collaborative filtering (CF) has been a successive solution for recommenda-

tion systems. Adding contextual information to collaborative filtering has also

been actively studied for some time already. The basic context information is

time. It is important to determine what to deliver to the customer as well as

when. For example, one might prefer reading world news and stock market up-

dates on weekdays, but prefers reading movie reviews and shopping catalogues.

Location, budget, personal interest, friend collocation and many more contexts

can be exploited to provide better recommendations. There can be some types

of contexts that we are not even aware of their relevance to recommendation

choices. With the inclusion of context information, we can significantly improve

the accuracy of recommendations given.

On the domain of ontology-based context-aware systems and M-commerce,

many accomplishments have been achieved. But we still face many challenges.

Next I will formulate the challenges but leave the accomplishments in Chapter 3

Literature Review.
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1.2 Key Research Challenges

When implementing and deploying ontology-based context-aware systems, we

are facing the following challenges:

• Heterogeneous context information types. Context information can be

sensor data extracted that have a numerical form. It can also have a form of

a qualitative value. Things get more complicated with the introduction of

partial orders, entailments, and conjunction / disjoints / mutually exclusive

relationships. The design of an ontology that depicts all the details requires

effort.

• Slow reasoning speed for real-time requirements. Over decades researchers

have been working to build an efficient ontology reasoner. Implement-

ing the tableaux algorithm described in [23], many state-of-the-art ontol-

ogy reasoners are built, such as RacerPro, FaCT++, Pellet and HermiT.

Though we are pleased to see the advances in reasoning speed, we have to

admit that a single reasoner still cannot fulfil high-load real-time tasks[24].

• Convoluted ontology structure. The structure of an ontology is much more

complicated than a table view in relational databases. The knowledge base

is formed of a large sum of triples that are interwoven with each other.

Therefore, isolating “useful” and “useless” triples from an ontology base

can be difficult. It also makes the construction of a synthetic knowledge

base more difficult because all entities should be determined before rela-

tionships are added to the graph.
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On the domain of context-aware recommendation systems, the challenges we

face can be summarized as:

• The introduction of context information invalidates common recommen-

dation algorithms. Typical recommendation algorithms have the rating

matrix as the sole input. Context information cannot be represented in

such a framework.

• Existing context-aware recommendation systems have this and that prob-

lems. They typically introduce an extra dimension, then use certain filter

rules to project the 3-D spaces to 2-D ones. However, the selection of the

filter rules must be hand-picked, and that requires a lot of effort and it is

subject to errors. In addition, projecting the 3-D rating table to a 2-D one

is based on a yes-or-no filter. Thus, it loses the quantitative value of the

context information.

• The sparsity problem, which is a common challenge for recommendation

algorithms, also exists for context-aware recommendation systems. When

the data set of user inputs is small, the quality of the recommendation

algorithm can be severely degraded.

1.3 Contribution of the Thesis

The central idea of this thesis is to promote the development of context-aware

systems. All three parts in the thesis work towards the same goal, while they

are interconnected to each other. Specifically we have:
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1. Constructed a test bench for ontology-based context-aware systems. The

domain of context-aware systems is very different from legacy ontology

benchmarks. While maintaining the convoluted nature of existing bench-

marks, it has distinctive features. For example, ontology for context-

awareness generally has shallower structure with several deep branches.

This test bench includes an ontology that covers 20 different categories of

context-aware applications, a great many synthetic concrete triples that

are populated by a set of rules, additional triples to reflect distributed

composition, and a set of queries to mimic the behaviour of context-aware

applications.

2. Developed a completeness-proven algorithm to enable distributed comput-

ing scheme in ontology-based context-aware systems. Using the algorithm

described, we can extract application-specific sub-databases from the whole

knowledge base. It is also proved that the extracted sub-database can per-

fectly accommodate queries from that specific application, which is also

known as the completeness of the sub-database (or algorithm). The al-

gorithm also covers the synchronization process in distributed computing.

When an update of information is received at the server, it can be quickly

decided (without going through an ontology reasoning process) whether

this update should be delivered to other servers.

3. Devised a new context-aware recommendation algorithm. This algorithm

managed to represent context information as well as user ratings in 2-D
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space, thus existing recommendation methodologies can be utilized with

minimal modifications. In addition, the dimension reduction in our ap-

proach is not based on a yes-or-no filter like previous works, it keeps the

quantitative information attached to context information, thus provides

richer data as well as higher precision.

The first part of the work, i.e. the test bench, serves as the glue to consolidate

the works. The distributed computing scheme for ontology-reasoning is evaluated

both on our own test bench and on other existing benchmarks. The mobile

application extends our test bench (an upper ontology) with expert knowledge

on music (domain-specific ontology).

1.4 Thesis Organization

Chapter 2 summarizes some preliminaries and the nomenclatures of First Or-

der Logic, Description Logic and Ontology. These are especially important in

comprehending the algorithm described in Chapter 5.

Chapter 3 gives a thorough literature review on the field this thesis is con-

cerned, specifically, context-aware systems, semantic web applications, M-commerce

and recommendation systems.

Chapter 4 first explains the motivation of building a test bench in the domain

of context-aware applications. Several existing ontology-based test benches are

then studied and their limitations are exposed. It is then followed by the overall

description and the details of the construction of the ontology-based test bench
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on the domain of context-awareness. And finally, a series of comparisons between

our test bench and existing ones are done to complete this work.

In Chapter 5, we proposed a fast and complete algorithm to extract sub-

ontologies from a base ontology for a given task, and also to keep the sub-ontology

updated whenever changes are issued to the base ontology. With this algorithm,

a distributed computing scheme is then applicable to the ontology-based context-

aware system. This scheme is achieved so that the processing speed of queries

and updates can be improved thousands of times, while the cost of the scheme

is usually constrained to tens of times of storage cost. After that, a tuning

process can be applied to further tune the performance of the algorithm. This

is essentially balancing a trade-off between excellent completeness and smaller

storage cost. Investigation reveals that most of the time we can achieve certain

amount of savings with no direct impact to the query-answering quality, while

further reducing storage cost can harm the query-answering accuracy.

Chapter 6 focuses on our works on context-aware recommendation systems.

In this chapter, we proposed a novel recommendation system that is able to

utilize context information. Context information, after being captured is quan-

tified and plugged into the rating matrix. A novel recommendation algorithm

that overcomes the shortcoming of existing systems is proposed. It managed

to process context information within 2-D space, while fully maintaining the

quantitative value of context information. This change rid us from setting an

arbitrary numerical threshold or a cut-off qualitative context, and we can ben-

efit from the quantitative effect of context information, which finally leads to a
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higher recommendation precision.

And finally in Chapter 7, we conclude this thesis by summarizing all the

works.
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Chapter 2

Preliminaries

2.1 First Order Logic

First order logic (FOL) is a formal system used in mathematics[25]. It is also

known as predicate logic. We introduce some preliminaries for first order logic

here because all of the logic concepts covered in this thesis are under the domain

of first order logic. All data models, including Description Logic and Ontology

are extensions of FOL.

FOL requires the parameter to its predicate to be only variables (no other

predicates or more quantifiers). The basic building block of FOL is variables

(like a) and functions of variables (like f(a1, . . . , an)), and this building block is

called as term. Terms can be combined with other elements to form formulas.

A formula is an expression in FOL that maps each possible variable value to a

truth value. The extension of a formula is the set of variable values that would be

mapped to TRUE. The composition of a formula is defined recursively. Suppose
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v is a variable, t, t1, t2 are terms, φ and ψ are formulas, the following are all

formulas:

1. P (t) where P (.) is a predicate. Predicate is the most basic formula that

represents a meaning.

2. t1 = t2. Equality can be considered as a special predicate that equates two

terms.

3. ¬φ. Any formula of FOL can be negated using the negation symbol.

4. φ ∧ ψ, φ ∨ ψ, φ → ψ are all formulas. Binary connectives of formulas are

also formulas.

5. ∀v.φ and ∃v.φ are both formulas. ∀ denotes universal restriction and ∃

denotes a existential restriction.

Each formula states a piece of information. Sometimes a number of pieces

of information can be combined together to derive new formulas. This is called

deductive reasoning. For example, suppose we have 2.1 stating that Socrates is

a philosopher. Adding in the knowledge stated in 2.2 that all philosophers are

mortal, we can derive 2.3 that Socrates is mortal.

Philosopher(Socrates) (2.1)

∀a.(Philosopher(a) → Mortal(a)) (2.2)

Mortal(Socrates) (2.3)
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Table 2.1: Description Logic and First Order Logic Equivalences
DL FOL

concept class
role property

individual object

FOL has the following notions. These notions would be compared to the

ones in Description Logic and Ontology later:

object A specific value of a variable. For example, Socrates.

property A predicate. For example, Mortal and Philosopher.

class A set of objects. For example, all the philosophers.

2.2 Description Logic

Description Logic (DL) [23, 26] is a family of formal knowledge representation

languages. In fact, it is a sub-set of FOL. A Description Logic models concepts,

roles, individuals and their relationships.

In DL, a database is called a knowledge base. It can be divided into TBoxes

and ABoxes. TBox, short for Terminology Box, is a set of assertions that defines

the syntax of a language. These assertions are also called axioms. Specifically,

declaration of classes and properties constitute the TBox. TBox is also referred

to as the vocabulary of a knowledge base. ABox (Assertion Box) is the part

of a knowledge base other than the TBox. Assertions in ABox denote concrete

information that is written following the vocabulary of the language (TBox). For

example: In the TBox of a knowledge base, we defined classes (People, Location)
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Table 2.2: Description Logic Symbol Descriptions
Symbol Description

⊤ All concepts. A concept that includes all individuals.

⊥ Empty concept. A concept that has no individual.

⊓ Intersection/conjunction of concepts.

⊔ Union/disjunction of concepts.

¬ Negation/complement of concepts.

∀R.C Universal restriction. It means a concept whose individuals all
have the role of R and have the object of C.

∃R.C Existential restriction. It means a concept such that some of its
individuals have the role of R and the object of C.

C ⊏ D Concept inclusion. It means all C concepts are D concepts.

≡ Concept equivalence.

a : C Concept assertion. Individual a is a C.

(a, b) : R Role assertion. It means a is R-related to b.

and property (LocatedIn). Then we are able to include assertions like <Alice,

is, Girl>, <Singapore, is, Location>, and <Alice, LocatedIn, Singapore> in the

ABox of the knowledge base.

Some special symbols and expressions used in DL are listed in Table 2.2

Description Logic has many dialects, depending on their expressiveness. Please

refer to Table 2.3 for the naming convention. These dialect symbols each denotes

a type of expression allowed in the dialect. Combining these symbols can pro-

duce home-made Description Logic dialects. Among all of the DL dialects, three

of them are most often used. They are ALC, SHIF(D), and SHOIN (D).

2.3 Ontology

An ontology formally represents knowledge as a set of concepts within a domain,

and the relationships between pairs of concepts. It can be used to model a domain

and support reasoning (knowledge derivation) about concepts.

18



Table 2.3: Description Logic Expressiveness Naming Convention
Dialect Symbol Description

AL Attributive language. It allows atomic concept negation, concept
intersection, universal restriction and limited existential quantifi-
cation.

FL Frame-based language. It allows concept intersection, universal
restriction, limited existential quantification and role restriction.

EL This allows concept intersection and full existential restriction.
F Functional property.
E Full existential qualification.
U Concept union.
C Complex concept negation.
H Role hierarchy.
R Limited complex role inclusion axioms; reflexivity and irreflexiv-

ity; role disjointness.
O Classes with enumerated objects.
I Inverse property.
N Cardinality restriction.
Q Qualified cardinality restriction.
(D) Use of datatype properties, data values, or data types.
S An abbreviation of ALC with transitive roles.

OWL (Web Ontology Language)[27] language is frequently used to model

ontologies. OWL uses Resource Description Framework (RDF)[28, 29] as its

internal structure. In RDF, facts are denoted as triples consisting of a subject,

predicate and an object. For example, new classes and properties are defined

by putting the name of the class or property as subject, rdf:type as predicate,

and rdf:Class or rdf:Property as object. RDFS (RDF Schema)[30] extends RDF

by providing mechanisms for describing groups of related resources and the re-

lationships between these resources. RDF Schema vocabulary descriptions are

written in RDF using the terms described in this document. These resources are

used to determine characteristics of other resources, such as the domains and

ranges of properties. OWL extends RDF by adding a set of constraints and new
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vocabularies to it. In OWL, we can enforce more restrictions on properties like

owl:allValuesFrom, owl:someValuesFrom, etc.; we can also declare properties to

have new characteristics like transitivity, symmetry, or declare one property to

be inverse to another one; we are provided with mechanisms to enforce equality,

inequality and cardinality constraints as well.

Following is a brief listing of the terms we use in ontologies and OWL:

• Triple. Triple is the basic building block for RDF and OWL. It consists of

a subject, a predicate and an object. All facts can be abstracted as triples

just like we can use English sentences to denote information. Sometimes

triples are referred to as assertions because a triple asserts a fact.

• Individual. An object or an instance. These are the most basic objects.

• Class. Class is an abstraction of a kind of individuals. In OWL, classes

can be used as subject or object in a triple. Individuals that belong to a

class can be used as subject or object of a triple as well.

• Property/Attributes. Property is a special type of predicate in triples. It

is used to manifest a property of an individual, either a relationship to

another individual, or an attribute of the stated individual. The domain

of a property is a class such that individuals that have this property are

instances of this class. Similarly, the range of a property is the class whose

individuals can be the object of the property. In OWL, there are mainly 2

types of properties. ObjectProperty is used to denote relationships between

individuals, while DataProperty is used to attach a typed literal to the
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subject individual.

• Restrictions. Formally stated descriptions of what must be true in order

for some assertion to be accepted as input. They are usually used in the

definition of classes.

• Axioms. Axioms are similar to the concept of TBox in Description Logic.

Axioms define classes and properties, and thus provide a vocabulary for

concrete information representation.

When an ontology is given, specific procedures should be undertaken to check

the consistency of the ontology. Most of the time, we may also want to derive

new knowledge from the existing ones, i.e., do reasoning on the ontology. These

are aided by Tableaux algorithms[31]. Tableaux algorithms are the currently

mostly used algorithms for ontology consistency checking and reasoning. Many

researchers have devoted themselves in building ontology reasoners with differ-

ent optimization techniques. These include Jena[32], Racer[33], FaCT++[34,

35], Minerva[36], Hermit[37] and many more. However, tableaux-based decision

procedure for the consistency of general ALC knowledge base runs in worst-case

non-deterministic double exponential time.

OWL2[38] is a successor work to OWL language. It introduces new features:

a. Syntactic sugar, b. New constructs for properties, c. Extended datatype

capabilities, d. Simple metamodelling capabilities, e. Extended annotation, etc.

A simple versioning technique is introduced also.
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2.3.1 Turtle Language

OWL, being a theoretical model for ontologies, does not directly specify the

serialization method. An XML-based serialization method is usually adopted to

store ontologies. This method is usually referred to as RDF/XML. However, this

method produces way too much expressiveness than OWL requires. Therefore,

the output file produced often contains too much redundancy. In order to reduce

this cost, Turtle (TTL, or Terse RDF Triple Language) is proposed to remove

the undesirably prolonged XML syntax. Fig 2.1 shows the representation form

of RDF/XML and TTL for the same property. Disregarding the imports and

prefixes, it is obvious that TTL produces a much more succinct presentation of

knowledge. In our works, we use TTL for all ontology serializations.

2.3.2 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is an RDF query lan-

guage, that is, a query language for databases, able to retrieve and manipulate

data stored in Resource Description Framework format. [39] defines the syntax

and semantics of the SPARQL query language for RDF. SPARQL is a language

designed to formally express queries upon diverse RDF data sources despite of

the native storage methods. Results of SPARQL queries can be result sets or

RDF graphs. The SELECT query returns variable bindings; the CONSTRUCT

query returns new RDF graphs; the ASK query returns a Boolean value indicat-

ing whether a pattern is found or not; and a DESCRIBE query returns an RDF

graph that describes the resource found. Variables are denoted with a initial
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<rdf:RDF xmlns="http://example.com/ontology#"

xml:base="http://example.com/ontology"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

<owl:ObjectProperty rdf:about="http://example.com/ontology#CoachOf">

<rdfs:domain rdf:resource="http://example.com/ontology#SportTeam"/>

<rdfs:range rdf:resource="http://example.com/ontology#Person"/>

</owl:ObjectProperty>

</rdf:RDF>

Above is in RDF/XML format.

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://example.com/ontology#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@base <http://example.com/ontology> .

:CoachOf rdf:type owl:ObjectProperty ;

rdfs:range :Person ;

rdfs:domain :SportTeam .

Above is in TTL format.

Figure 2.1: RDF/XML and TTL representing the same property
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PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX ns: <http://example.org/ns#>

SELECT ?title ?price

WHERE ?x ns:price ?price .

FILTER (?price < 30.5)

?x dc:title ?title .

Figure 2.2: SPARQL Query Example

question mark, e.g., ?x. We can also define restrictions on the pattern, or make

projection and sorting procedure over query results. Queries that involve more

than 1 RDF graph are supported as well. SPARQL adopts a syntax similar to

TTL as shown in Fig 2.2

SPARQL Update[40], aka. SPARUL, is an extension of the update function-

ality to SPARQL language. Update operations are performed on a collection

of graphs in Graph Store. SPARUL is currently NOT a standard yet. Jena

supports SPARUL.

2.4 Chapter Summary

This chapter mainly refreshes the background on First Order Logic, Description

Logic and Ontology. In the following chapters, these materials can be of help in

understanding some of the abbreviations and terminologies.
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Chapter 3

Literature Review

3.1 Existing Mobile Application Platforms

Smart phones are the ideal and practical media for the vision of pervasive com-

puting. Their ubiquitous availability, computational power, and wireless com-

munication capacity enable them to host context-aware applications. However,

current mobile application platforms are not yet ready for incubating context-

aware applications of higher complexity. In this section, we discuss the features

of several existing mobile application platforms and demonstrate why a middle-

ware for context-awareness is required.

Google released Android [41, 42] in November 2007 with the goal of being an

open source arena for software development on mobile platform. At the time

of writing, the newest release of Android Software Development Kit (SDK) is

revision 17 for Android 4.2. Android is an open source mobile operating sys-

tem based on the Linux kernel. The operating system facilitates developers
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to write managed code in Java using Google developed Java libraries. Mo-

bile applications written for Android are run on a Java virtual machine named

Dalvik, which is specially designed for Android by Google. When develop-

ing context-aware mobile applications on Android system, developers could use

android.hardware.SensorManager to read sensor data and subscribe to sensor

events. In other words, the Android platform itself does not provide any sen-

sor aggregation support. Developers will need to cope with raw sensor data

directly, which is undesirable. Android uses remote procedure calls (RPC) as a

mechanism for interprocess communications (IPC). This mechanism enables ap-

plications to share information with other applications. But this tightly-coupled

communication between processes severely restricts the scope of data sharing.

Developers are looking for a more loosely-coupled sharing mechanism between

applications.

Another popular mobile application platform is iOS. iOS is initially designed

for iPhone in 2007, and it has evolved ever since then. At the time of writing,

the newest version is iOS 7. iOS is derived from OS X, which is the operating

system for Apple computers. Developers use Xcode on Mac OS to develop mobile

applications for iOS[43]. The programming language used is Object-C. Similar

to Android, iOS SDK does not support sensor data aggregation[44]. Though it

allows developers to access accelerometer, gyroscope, GPS, proximity and other

sensor data, it is difficult to manage various kinds of sensor data. The battery

drains very fast if each application tries to directly access sensor readings.

Windows Phone (WP) is another common mobile application platform[45]. It
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is developed by Microsoft and it is a successive work following Windows Mobile.

The latest version is WP 8. Featuring a different user interface (UI), Windows

Phone uses Visual Studio as the development environment. The language used

in the development is C++/C#. This paper [46] compares several different

mobile application platforms in multiple perspectives. Windows Phone supports

multiple sensors that allow apps to determine the orientation and motion of the

device. Windows Phone provides with a combined motion API that processes

input from all sensors. This API can be seen as a type of sensor data aggregation.

However, the way these sensor data are aggregated is fixed beforehand and it is

not programmable by developers. Windows Phone also provides API for each

single sensor data reading.

In order to simplify the development of context-aware mobile applications,

a more sophisticated platform is called for. Alternatively, these platforms can

be augmented by a context managing middleware. In the following section, we

describe the common forms of context-aware systems.

3.2 Context-aware Systems

There have been numerous studies on the design, implementation, analysis and

optimization of context-aware systems. Through the time-line from [10], [9], [47],

to [7], their surveys on this area have summarized what we have learned from

previous research, and what are left to be done.

In this subsection, we will demonstrate the different context modelling ap-

proaches recently used in context-aware systems in terms of their advantages
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and disadvantages. We then proceeds to discuss the various context-aware sys-

tem architectures that have been proposed, outlining their main features, the

differences between these architectures and the approach proposed in this thesis,

and the ways in which these architectures could be improved by our proposed

distributed computing scheme.

“In order to better understand how we can use the context and facilitate

the building of context-aware applications, we need to more fully understand

what constitutes a context-aware application and what context is.” By Dey[5]’s

definition, context is any information that can be used to characterize the sit-

uation of an entity. The author also provides an initial set of primary context

types—location, identity, time and activity. This is the pioneering work in the

field of context-aware systems.

3.2.1 Context modelling Methods

Knowledge in context-aware systems requires a unified method of modelling and

representation. The different types of clients and providers that need to un-

derstand each other require that context information be represented uniformly

throughout the system. The system must also be flexible and extensible enough

to handle the wide range of context types, as well as the relationships between

them. Most context-aware systems are distributed; it is therefore necessary for

context models to be easily shared especially in our architecture, given its use

of profiles and views. Models should also have a high level of formality and be

able to represent existing context relationships. For these reasons, researchers
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have developed a number of different methods for modelling context information.

Some of these models do not meet the requirements imposed by context-aware

systems, while others can be used as the basis for our ontology. In the following

text, we provide an overview of available context models.

CC/PP (Composite Capability/Preference Profiles)[14] is based on RDF and

focuses mainly on describing capabilities and preferences for wireless devices and

mobile phones. Indulska[48] extends the vocabulary of CC/PP from description

of device/user profiles to basic classes of context information needed in the infras-

tructure of pervasive systems. However, the way in which CC/PP is structured

makes it difficult to capture and represent all context information such as ac-

curacy, resolution, as well as the temporal characteristics needed to model the

freshness of acquired context. The Component-Attribute model used in CC/PP

causes many difficulties for multi-layered attributes, and the process of profile

creation. CC/PP does not have the ability to constrain the list of elements

within a container for a certain cardinality or type. Finally, CC/PP does not

support any relational constraints for attributes within a profile component.

[15] investigates CC/PP and IETF’s media feature sets. It reveals that

CC/PP fails to achieve some of the design goals. IETF’s media feature sets

are not decomposable and not extensible. Hence, the Comprehensive Structured

Context Profiles (CSCP)[49] is raised. CSCP overcomes the shortcomings of

CC/PP in structuring and extends the external references and defaults mech-

anism. CSCP also provides a mechanism extending user preferences to incor-

porate conditional and prioritized attributes. However, the use of RDF syntax
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for profile representation makes it an unlikely candidate for context represen-

tation due to the existence of more powerful ontology languages such as RDFS

and OWL. Secondly, CSCP is still limited by its vocabulary to a limited set of

context concepts and relationships.

Henricksen et al.[17] introduced his ORM-based (Object-Role Model) graph-

ical context model, in hoping of overcoming the lack of formality and expressive-

ness present in the available context modelling approaches. Existing graphical

models, such as UML and ER (Entity-Relationship), have some difficulties in

modelling all features associated with context information. These features in-

clude uncertainties, histories, and dependencies between different types of infor-

mation. In [18], several issues on context-aware software engineering are studied.

The authors proposed a set of conceptual models to address these issues.

Graphical models like ORM have a strong ability to describe structures of

context knowledge and to derive the required code, such as the one associated

with ORM’s relational code. Unfortunately, merging distributed context mod-

els is not fully effective, given the constraints associated with the act of merg-

ing relational databases. Since graphical models are used mainly to facilitate

human readability, most graphical-based context modelling approaches present

difficulties in merging different context models and would not be suitable for

resource-deficient mobile devices.

Jean Bacon et al.[50] proposed a rule-based context modelling method utiliz-

ing formal logic in their location-oriented multimedia system. They developed

a system that used an event-based mechanism to support location awareness.
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Bacon extended the Interface Definition Language (IDL) to handle the occur-

rence of events such that servers could declare the events they were capable of

notifying.

Logic-based context models have a high level of formality and express context

information in the form of facts, expressions and rules where context informa-

tion facts are added, deleted or updated within the system. However, creating a

complete set of rules capable of representing the wide range of concepts, relation-

ships, and properties within context-aware environments is a complex and time

consuming task, rendering the use of logic-based context models unfavorable.

Ontologies, as a promising means for knowledge representation and sharing,

have gained recognition in multiple disciplines. This is mainly because ontologies

can represent concepts and relationships by employing a computer-usable data

structure while sharing a common understanding of the domains in which the

context-aware system has interest. There are many survey papers on employing

ontology model for context information representation, and here we only name a

few[9, 47, 7]. Since this part has been researched extensively, we here only briefly

explain it. Ontological knowledge is usually represented through a set of entities,

functions, instances and axioms. Ontologies are also known for their normaliza-

tion abilities and formality, making them a favorable candidate for modelling

context knowledge. Most proposed ontology-based context models have adopted

the OWL language as a means of ontology representation. This is due to OWL’s

superior expressive abilities over other languages, such as XML, RDF, RDFS,

or DAML+OIL. OWL also allows the exchange and comprehension of context
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Figure 3.1: Upper-layer ontology of SOCAM

information between different entities within context-aware systems. The avail-

ability of a number of OWL-based reasoning engines that can interpret context

information present within the ontology, or that can infer new context from ex-

isting context and relationships, makes OWL an especially effective language for

context modelling.

Service-Oriented Context-Aware Middleware (SOCAM)[51, 52] have employed

an OWL-based ontology that takes the idea presented within COMANTO one

step further. SOCAM’s ontology employs a similar division of a generalized up-

per ontology and a set of domain-specific low-level ontologies. The latter can be

dynamically plugged and unplugged from the upper ontology, based on changes

in the environment, such a user’s movement from one domain to another. The

upper ontology is broken down into four subcategories: person, location, com-

putational entity, and activity. SOCAM’s upper ontology is shown in Fig 3.1.

Chen and Finin proposes another ontology on context-aware applications in
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their Context Broker Architecture (CoBrA)[53]. This ontology defines a set of

vocabularies for describing people, places, agents and presentation events for

supporting an intelligent meeting room system in a university building. With

the use of OWL as the language for the ontology, concepts and relations could

be clearly represented and shared between agents.

3.2.2 Context-aware System Frameworks

[54] defines several problems need to be addressed in designing standard data

formats and protocols for context-aware infrastructure. The protocols used in

the system should be universal applicable. While Jini is a negative example,

SOAP is a good starting point for building a universal protocol. The context

model should be comprehensive and rich enough to cover diverse sensors and

assorted types of context. The fuzziness brought in by interpreting sensor data

to context data is discussed. The concepts of precision, granularity, and accuracy

are compared.

CASS (Context Awareness Sub-Structure)[55] by Patrick Fahy and Siobhan

Clarke, is a context-aware server-based middleware used to support context-

aware applications on small mobile devices. It avoids the problem of memory

and processor constraints of mobile devices by making a stationary server as the

context base, which gathers context information from a large number of low-

level sensors and provides the information to mobile context-aware applications.

Fig 3.2 demonstrates the CASS middleware architecture.

A major disadvantage of CASS is the apparent lack of an ontology for context
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modelling. The database used for context storage is server-based, but the authors

did not fully explain how the stored context should be modelled. It is not clear

how applications on mobile devices are made aware of the table structures used

within the SQL-based database, or how queries are made for context data within

the database.

Most of the context-aware middleware and architectures presented thus far

depend on a centralized approach to context awareness. However, the Hydro-

gen[19] architecture avoids this approach by introducing a distributed solution.

The Hydrogen architecture shown in Fig 3.3 is divided into three layers: the

Adaptor Layer, the Management Layer, and the Application Layer. The Adap-

tor layer is responsible for acquiring physical context information from the sen-

sors and delivering it to the Management layer. Within the Management Layer,

a context server stores all incoming contextual information about the current en-

vironment of the device, and shares this knowledge with other devices by using

peer-to-peer communication.

However, the Hydrogen context-aware system architecture lacks two impor-
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tant components: an ontology on which context information is modelled, and a

protocol by which context is shared between context servers located on different

devices. Context within Hydrogen was limited to saving current time, the cur-

rent location of the devices, the devices’ identifier and type, the users’ names,

and information about available network connections. The authors had realized

that the presence of ontology to model the vast amount of context available

within a mobile environment is of high importance, and had set one of their

future tasks to use CC/PP as the base for their context model.

Gaia[56] is a distributed middleware infrastructure which uses DAML+OIL

as context model. These services permit applications to access and query Gaia’s

services and stored context such that user-centric and context-aware applications

can be developed. Gaia thus acts as a coordinator between software entities and

network devices, provides services related to location, context and events, and

stores information related to the active space controlled by the Gaia kernel. Al-

though Gaia’s architecture was built for a context-aware ubiquitous environment,

yet it is not suitable for an environment characterized by mobility. Queries for

context information within the CFS required clients (applications) to be aware

of the CFS’s directory structure before clients can find the correct path to their
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needed context. This mainly stems from the absence of an ontology on which to

model the context information.

MundoCore[57] is a communication middleware specifically designed for the

requirement of pervasive computing. To deal with the ultimate heterogeneity,

MundoCore is built directly on operating system, uses its own communication

protocols, and provides different language binding for services. The commu-

nication microkernel adopts a Advertise/Subscribe mechanism for intra-node

communication. Pub/sub system is proved to be an efficient way to disseminate

context information[58].

Solar[59] models context change as events, and devises a system of subscribing

these events. Few applications want to work directly with raw data. It could

be that the application only needs a portion of the data, the data is in wrong

format, the data is inaccurate, or the data is incomplete and not useful without

aggregating other sensor inputs. Thus, sensor data needs to go through several

processing steps before it becomes the meaningful contextual knowledge desired

by applications. Still, it is observed that many applications desire similar if

not exactly the same contextual information. Therefore, Solar provides with a

mechanism of operator graph.

In [60], the authors proposed an ontology-based generic context management

(GCoM) model. The GCoM model facilitates context reasoning by providing

structure for contexts, rules and their semantics. Context and context semantics

in GCoM model are represented using the upper and the lower level ontology.

Rules are represented using ontology compatible rule languages. Initial prototype
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of the use of the model is created and the result obtained is promising.

[61] presents a uniform mobile terminal software framework that provides

systematic methods for acquiring and processing context information from a

user’s surroundings and forwarding it to applications. To manage the context

information systematically, the framework entities must have a common struc-

ture for representing information. An ontology is designed for this purpose[62].

To facilitate ontology sharing and communication, RDF is used as the descrip-

tion syntax. In this system, the inference rules are not set by programmers nor

users, it uses supervised learning. A näıve Bayesian classifier is used to recognize

all these high-level contexts from context atoms[63]. The classification results

indicate that the näıve Bayesian classifier can extract situations fairly well, but

also show that most results will likely to be valid only in a restricted scenario.

3.2.3 Context-aware Applications

Many interesting context-aware applications are developed, giving invaluable

experiences to other developers. In [64], the authors evaluated the challenges

and capabilities of combination of ontologies and rules in real-time ubiquitous

applications. The project ec(h)o is a platform that provides audio guides in

museums in an interactive way, overcoming the scheduling inflexibility of group

tours by museum docents. Context-Aware Service Platform (CASP) [65] can

aggregate and abstract context information. It uses ontologies to represent the

information and rule-based reasoning to do validation and higher-level contexts

derivation. Three distinct use cases are used to illustrate the usage of this system,
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i.e., personalized content service, desk-sharing office environment, and person-

oriented nurse-call management system. [58] addresses the pub/sub problem in

context-aware computing. Users may subscribe to events published by services

from 3 categories: location context, time context and event-preference context.

[66] presents an iterative development of a context-aware application includ-

ing map showing, context-aware information provision, navigation and commu-

nication. An important application of context-aware devices is enhanced (aug-

mented) reality.

[67] develops a context-aware tourist guide. The system uses a cell-based

wireless communication infrastructure to collect location information. A number

of use cases are studied in this work.

[68] introduces “discrete context-aware application”, which means an appli-

cation that deals with context information only in discrete domain. Then the

author proposes a triggering mechanism for discrete context-aware applications.

A näıve name-value pair way of representing context information is raised, and

so is a matching rule. The matching rule is used to match predefined notes (or

knowledge) and current context. If a match is found, the priori knowledge is

triggered and shown to the user.

In [69], a system designed to derive Origin-Destination flows out of “network

connection events” (mobile phone calls, SMSs, and Internet connection events).

These events are simply extracted from anonymous dataset. The authors man-

aged to extract the O-D flow information from the chaotic dataset after estab-

lishing several definitions and assumptions. When the outcome is compared to
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a census ground truth, the high correlation indicates a good performance.

In [70], mobile persuasion systems are studied. This work explores the use

of a mobile phone, when attached to an everyday object use by an everyday

behaviour, becomes a tool to sense and influence that behaviour. By tracing the

activity of drinking water, the system measures the daily intake of water amount

and gives suggestions based on that. The drinking activity is monitored using

a accelerometer with a threshold of 30 degree to capture one drinking motion.

Then it uses a camera to detect the water level inside the bottle, de-noises the

picture and measure the amount of water intake. The experiment also proposes

a single-user game and a social game to facilitate the process of persuasion.

Experiment results show people tend to have a healthier amount of water intake

after the experiment, and the social game performs better than the single-user

one.

OneBusAway[71] is a traveller-helper system deployed in Seattle. Only a

web-based service is provided before an iPhone-enabled application is developed

to facilitate location-based public transit information dissemination. This paper

briefly explains the idea of real-time transit information system, and thoroughly

studies the evaluation part of the system, gives a in-depth survey.

In [72], the authors presented an efficient offloading middleware, which pro-

vides run-time offloading services. The author also proposes an algorithm for

partitioning instrumented classes into local classes and remote classes. This

technique is very useful as mobile phones are usually the host of context-aware

applications but the mobiles phones are still resource-restricted. Efficient of-
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floading tasks to nearby devices can greatly promote the usage of context-aware

systems.

Despite these context-aware applications, more and more researchers come

to use a more systematic approach to ease the difficulty of building such context-

aware applications. Guo[73] proposes OPEN—an ontology-based programming

framework for rapid prototyping, sharing and personalization of context-aware

applications. OPEN adopts three programming modes to accommodate differ-

ent requirements from diversified users. They are Incremental Mode for skilled

users, Composition Mode for middle-level users and Parameterization Mode for

elementary users. Zhu [74] proposes a novel ontology-based context-aware frame-

work where Application Context Models (ACMs) are instantiated at runtime by

the engine. The engine then manages the whole life cycle of such ACMs to pro-

vide higher level context support for applications. In [75], the authors describe

an ontology-based context model and a related context management system,

providing a configurable and extensible service-oriented framework to ease the

development of applications for monitoring and handling patient chronic condi-

tions.

Ubiquitous context-awareness draws near as sensor-enabled mobile phones

become more and more pervasively available. Campbell[76] raised the concept

of people-centric sensing in this paper. People-centric sensing is defined in con-

trast to traditional mesh sensor networks. With the advent of sensor-enabled

mobile phones, the recently thrived people-centric sensing becomes possible. The

ubiquity of mobile phones solves the problem in traditional sensor networks. [77]
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addresses the problem of high energy consumption when doing continuous sens-

ing on mobile phones.

3.3 Ontology and Semantic Web Applications

D’Aquin’s paper[78] is a decent summary on ontology and semantic web applica-

tions. It traces the history of the idea of semantic web, lists challenges and breaks

down the challenges into concrete features and requirement for semantic web ap-

plications. A few types of semantic web applications are also investigated. [23]

discusses many important features and solutions in the area of description logic.

Some knowing in description logic (DL) can greatly help understand concepts in

ontologies as DL is the underlying logical model for ontologies.

There have been many researchers working on the domain of distributed on-

tologies. But they mostly focus on the fusion of distributed ontology definitions,

instead of breaking up a whole knowledge base into distributed ones where each

contains a proportion of concrete information. Readers can refer to surveys[79,

80] for a review of this area of research. In the context of distributed ontologies,

our work can be seen as a successive work that follows ontology fusion. After

we successfully combined ontologies from distinct designers to form a super-

ontology, the next step is to partition and relocate this monolithic knowledge

base to distributed computing units for flexible uses.

To the best of authors’ knowledge, there is only one group of researchers

working specifically on the ontology extraction field. A series of work culmi-

nates at Bhatt’s MOVE [81]. It is a distributed architecture for the extrac-
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tion/optimization of a sub-ontology from a large-scale base ontology. The moti-

vation of our work is more or less similar to Bhatt’s, but after these many years

from 2006 to 2012, with the idea and techniques of ontologies gradually coming

to maturity, we are able to better understand the semantics of ontologies and

its inference rules. In MOVE, the burden of determining extraction criteria is

laid on sub-ontology developers. They require developers to “label” concepts

and properties in the base ontology as “selected”, “unselected” or “void”. The

architecture simply examines the consistency and completeness of the labeling

without giving any guidelines or recommendations on how to achieve that. More-

over, their definition of the completeness of sub-ontology is restricted to 3 rules

only, which however in the context of general query-answering procedure, is in-

complete per se. The improvements in our work include:

1. We redefined the completeness of sub-ontologies in a more proper way.

2. Our system requires minimal effort for sub-ontology designers. Instead,

the system enforces the completeness of sub-ontologies itself.

3. In addition to completeness enforcement, designers are given the option to

trade part of the completeness for lightweightness of sub-ontologies.

3.4 Mobile Commerce and Recommendation Systems

Mobile commerce emerges around 2000[20]. It can be viewed as a subset of

E-commerce and is usually defined as “any transaction with monetary value

that is conducted via a mobile network”[21]. [22] surveys the features and char-
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acteristics of current smart phones, putting an emphasis on the required and

desirable features for mobile commerce. Though the smart phone market grows

with unprecedented speed past the release of this paper, several points of this

paper are proven to be quite insightful and predictive. Sumita [82] provides a

mathematical model for comparing e-commerce via the traditional PC access

with M-commerce which accommodates both the traditional and mobile access.

However, there is no specific work on utilizing context-awareness in M-commerce

settings.

As a starting point for our context-aware recommendation algorithm, the

legacy recommendation algorithm for E-commerce should be investigated. Rec-

ommender systems are a powerful new technology for extracting additional value

for a business from its customer databases[83]. These systems help customers

find products they want to buy from a business. Recommender systems benefit

customers by enabling them to find products they like. Conversely, they help

the business by generating more revenue. Recommender systems are rapidly

becoming a crucial tool in E-commerce on the Web. Existing recommendation

algorithms can be basically classified in two categories: content-based methods

and collaborative filtering (CF) methods.

Content-based recommendation method has its root in data mining, infor-

mation retrieval and information filtering. The essence of the method is to find

association rules in databases. [84, 85] are considered to be the biggest contribu-

tion in this field. The authors considered the problem of discovering association

rules between items in a large database of sales transactions. They seek to dis-
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cover co-purchased products and return top-N recommendations. The Apriori

and AprioriTid algorithms proposed in this work are proved to be able to discover

all significant association rules in large database.

The developers of one of the first recommender systems, Tapestry[86], coined

the phrase “collaborative filtering”. The fundamental assumption of CF is that

if users X and Y rate n items similarly, or have similar behaviors (e.g., buying,

watching, listening), and hence will rate or act on other items similarly. Col-

laborative filtering, being the most successful recommender technology to date,

recommends products that are similar to the ones that the target customer has

purchased. This similarity can be calculated in many ways, and thus classifies

the family of CF algorithms into user-based CF and item-based CF.

User-based CF has its representative work as GroupLens[87], Video Recom-

mender[88], and Ringo[89]. In user-based CF algorithms, the similarities between

users are calculated as a metric of the rating matrix. The recommendations are

given based on similar user’s preferences. Item-based CF[90], however, measures

the similarities between items first. For each user, predicted rating values are

given on all the items, and the item with highest (top-N) predicted values are re-

turned. Some of the new implementations of these recommendations include[91,

92]. It is believed that item-based CF algorithms generally provide better scala-

bility and higher accuracy in giving recommendations. Our algorithm is rooted

in item-based collaborative filtering.

[93] employs the technology of Collaborative Filtering from e-commerce to

context-aware systems. By observing user’s past choices made, this system tries
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to predict user’s preferences. Each preference is associated with a specific con-

text, and previous choices made in the same context as to current context con-

tributes more to the prediction of user preference. The paper discusses two issues

here: 1. how to manage context in the user profile in terms of data modelling

and storage, and 2. how to measure the similarities between contexts.

3.5 Chapter Summary

In this chapter, different research aspects of this thesis are considered. Extensive

literature reviews are given for these aspects and the strength and weaknesses

of different approaches are analyzed. Specifically, current mobile application

platforms are surveyed. This survey calls for a more sophisticated platform

with the support of context information management. After comparing various

context modelling techniques and context managing frameworks, the ontology

model and the reasoning system is chosen to perform context manipulation. The

domain of ontology partitioning/extraction is covered and the shortcomings of

existing methods are discussed. This puts highlights on our work on partitioning

the ontology database while maintaining the completeness. Lastly, the context-

aware recommender systems are reviewed and we explained why a new context-

aware recommendation algorithm is required and how we can benefit from this

new algorithm.
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Chapter 4

An Ontology-based Test Bench

for Context-awareness

4.1 Introduction

Experimental methodology in the area of pervasive computing research has long

been an unsolved problem[94]. There are no available benchmarks or conven-

tional experiment design process. The common approach of doing research is

to build a real system and test out ideas in real world. However, this approach

significantly prolongs the development phase. In order to test out a single small

idea in this area will require a whole system being built. Moreover, applications

built for one purpose usually cannot be re-used for another purpose.

There are some benchmarks in the field of ontology reasoning, such as LUBM[95],

UOBM[96], and BSBM[97]. However, they do not cover the domain of perva-

sive computing, so experiments done on those benchmarks are not representative
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enough to guarantee a promising result in real world. LUBM[95] features an on-

tology for the university domain. It can be populated with synthetic OWL data

scalable to an arbitrary size. 14 extensional queries, a variety of properties, and

several performance metrics are introduced as well. The LUBM is usually used

to evaluate systems with different reasoning capability and storage mechanisms.

In the domain of a university, the most important concepts are schools, faculty

members, students, and the modules they take. This is a very static hierarchi-

cal structure. The interconnection of concepts are restricted to the TakeMod-

ule property. University Ontology Benchmark (UOBM)[96] from IBM extends

LUBM in several perspectives. It compares RDF storage along with reasoning

capabilities of ontology management systems. OWL DL and OWL Lite are sup-

ported in UOBM. The Berlin SPARQL Benchmark (BSBM)[97] compares the

performances of storage systems that expose SPARQL endpoints. Sadly, none of

these benchmarks has extended the domain into the area of context-awareness

or mobile applications.

In a typical context-aware application, the concept and relationship struc-

ture is quite different from that of a university. The concepts cover a much

wider area, including locations, people, activities, mobile phones, cars, comput-

ers, foods, bank cards, and many more entities that are linked to our daily lives.

The hierarchy is also significantly different. The class hierarchy tree of Loca-

tion is very deep because locations can be defined using different granularities.

When specifying the location of a person, we can use the granularity of lati-

tude/longitude, room, floor, building, district, city, or even country. Other class
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hierarchies are usually relatively shallow. The class of Person can be classified

into Man and Woman. In another perspective, it can be classified into different

age groups. But these hierarchies are not further classifiable. The relation-

ships between concepts in the domain of context-awareness are also much more

complicated than on the domain of university.

To sum up, we are in urgent need of a test bench that describes the domain

of mobile context-aware applications, so that experiments done on the test bench

can be generalized into other context-aware applications.

A complete ontology-based test bench should incorporate many components.

Firstly, it should include an ontology that captures the domain of discourse.

Specifically, it should include the concepts and relationships in the domain of

context-aware applications. For a basic form of the test bench, only an upper

ontology that describes the highest level is enough. But for a more thorough

testing, one can extend the upper ontology to include application-specific on-

tology to better mimic the reality. Secondly, the test bench should be able to

generate randomized concrete data. To make the test bench scalable, the data

generator should be able to take as input the desirable size of the database, and

then generate the concrete data. The generated data should not be arbitrarily

generated. For example, it is absurd to generate a person who has 100 children.

It is also incorrect to generate a database where everyone’s current location is

unique, even though this is a much easier way of generating people’s location. To

achieve these common senses, a set of rules are to be followed in the geneartion

process. In addition to this, a complete test bench should consider the possible
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query types the server would receive. The responding time of a simple query and

the time of a complex query can be quite different. By envisioning the possible

query types, we can get more reliable estimates of responding time.

In the following sections, we describe how we have constructed the test bench.

4.2 Ontology Construction

4.2.1 Mobile Applications Survey

The most important component of a test bed is the ontology that models the

domain of context-aware systems. The test bench ontology should reflect the

situation in real-life applications. The typical concepts and relationships in

context-aware applications should be correctly reproduced in the upper ontol-

ogy. This upper ontology can then be further extended with application-specific

sub-ontologies to account for different application requirements.

Since current mobile applications are akin to context-aware applications (To

be precise, some of them are already context-aware though not to a high extent),

this work intends to build a test bench for context-aware systems by extracting

features from existing mobile applications.

In our work, 221 popular (with at least 10,000 installations) Android ap-

plications are surveyed to model the knowledge domain of mobile applications,

among which 176 have the design that embraces context information sharing.

These 221 apps are selected in the following procedure: First we visit Google

Play (the application market) under different categories with applications sorted
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by their popularity. The “Games” category is not considered because they are

mostly not context-aware and they are difficult to analyze. Then we select all

applicatioins with more than 10,000 installations while excluding some obvious

duplications. For example, one application may come with a paid ad-free ver-

sion and a free version with advertisements. Only the paid version is considered.

Some mobile banking applications are also very similar to each other with the

only difference in the bank name. In this case, only one application is randomly

selected in our survey. This test bench is by no way exhaustive, but attempts to

find some patterns in current mobile applications, and to apply these patterns

to future context-aware systems. Applications are chosen from 20 different cat-

egories that include Business, Communication, Finance, Health, Media, News,

Social, etc. 101 of them are paid applications while the other 120 are free. Only

English-language applications are surveyed.

The survey is carried out for each application in the following procedure.

1. The first step is to extract the use case scenarios of the application under

concern. This may be deduced from the description on Google Play. When

the description is too vague as to the functionalities, the application is

downloaded and tested to model its use cases.

2. Abstract the use cases into SPARQL queries, with the necessary classes

and properties defined at the same time. If an application has too many

functionalities, only the few that is most relevant to context-aware com-

puting and the major usage of the application is extracted. For example,

for a use case that is to answer users how much calories is contained in 100
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grams of the asked food. This use case is then abstracted as SELECT ?x

WHERE { thefood ns:hasCalories ?x. thefood rdf:

type ns:Food }, where thefood is the user input choice of recipe. The

relevant classes and properties are constructed at the same time, including

the class ns:Food and the property ns:hasCalories. After the first round,

we have generated many classes, properties, as well as query types. Ad-

mittedly, the enumeration of queries is neither exhaustive nor precise. But

in large it captures the most important behaviours of these applications.

3. The next step is to integrate the classes and properties into a whole on-

tology with hierarchies, restrictions, and characters. This step is done as

a collaborative work. Multiple versions of the ontology are proposed by

the authors and then revised to get the final one, aiming to represent an

expert’s view.

4. The last step is to examine the appropriateness of using this ontology in

those applications. In the mean time, the dependencies among classes are

also examined. Together proposed is a set of rules that represent com-

mon senses in the quantity restrictions. These are helpful in the synthetic

concrete information population, which will be detailed later.

Table 7.1 in Appendix shows part of the survey results. Two to four appli-

cations for each category are shown in this figure based on their suitability of

converting to context-aware applications.
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4.2.2 Ontology on the Domain of Context-awareness

Ontology modelling provides applications with a mechanism to share context

information, and a common language to talk to each other. By joining the

vocabularies of all applications, we form the knowledge domain of our test bench

shown in Fig 4.1. The definition of 250 owl:Class, 147 owl:ObjectProperty and 94

owl:DatatypeProperty are presented in this domain ontology. The development

of this ontology is aided by Protégé1 . As shown in Fig 4.1, ContextEntity is

the ancestor for all classes, which is presented at the top of the figure. Its

direct children (sub-classes) include Location, Activity, Person and OtherEntity.

Class inheritance relationships are shown with hollow arrows while properties are

shown with solid arrows pointing from the domain class to the range class. Due

to the limited space, only a very small fraction of the ontology is shown here.

One can contact the authors requesting the full OWL file to get a complete view

of the ontology.

The most important context information within context-aware systems is lo-

cation. In fact, most early context-aware systems are essentially location-aware

applications. This is partially because the ubiquity of GPS (Global Position-

ing System) sensors in current smart phones. Though GPS sensor readings

directly extracted from the sensors are not immediately useful, our ontology still

models this reading as an object of class GPSLocation, with DatatypeProper-

ties of LatitudeOf and LongitudeOf storing the reading value. Currently, the

typed locations in our test bench include IndoorLocations and OutdoorLoca-

1http://protege.stanford.edu/
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Figure 4.1: (partial) Knowledge Domain of Test Bench

tions. IndoorLocations can be further classified into bank branches, cafe, estate

(including houses and apartments), home, office buildings, shopping malls, and

subway stations. OutdoorLocations include bus stops, landmarks, high ways,

lanes, pathways, and roads.

The knowledge of a person’s Location can be very helpful in deducing other

contexts. For example, the individuals of class Location may have LocatedIn

relationships. Since the LocatedIn is a transitive property, a person located in a

location of finer granularity can be deduced to be also in the location of more

coarse granularity. Here is another example. A person is currently seen in some

building in Singapore. After several hours, if there are not departure flights

from Singapore airport, it can be safely deduced she is still in the same city.

The knowledge of a person’s Location can also be used to deduce the person’s

current activity. When a professor and several students under the supervision

of that professor are presented at a same meeting room, it can be deduced that
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they are currently having a meeting.

In the ontology developed, additional classes are designed to simulate the ef-

fect of distributed composition of ontology. We envision our system as a platform

for user sharing and contribution where all the data and data structure are not

determined by one authority. So a centralized server with all vocabulary defined

in central control is not reasonable in real deployment. The reasonable assump-

tion is: Several developers each independently designs the ontology for the same

domain. When the developers made their application available to others, they

need to conform to a ontology fusion rule to make their individually designed

ontologies compatible with others. In our work, we do not discuss further on the

ontology fusion rules, but the basic method of ontology fusion is done with the

help of owl:equivalentClass and owl:sameAs.

In order to account for the difference in the generated ontology, we need

to deliberately add some elements to the database so that the outcome more

resembles a real database with distributed composition. Here we add triples

using OWL primitive owl:equivalentClass for the composition of classes, and

owl:sameAs for the composition of individuals. Classes that are not tightly cou-

pled with a single person, and do not have authoritative UID (Unique Identifier)

to eliminate duplication, are subject to the modification. Individuals in these

classes are randomly linked with owl:sameAs primitive so that statistically half

of them are linked to other individuals.

55



4.3 Other Components of the Test Bench

4.3.1 Synthetic Concrete Information

In order to carry out query experiments, concrete information expressed in the

ontology definition must be generated. Similar to the construction of the ontol-

ogy, the concrete data should also be created in a way that is most similar to

the real world cases. Synthetic OWL database is scalable to arbitrary size so

as to simulate arbitrarily large scenarios. In LUBM, this scalability is achieved

by varying the number of universities and the number of departments in each

university. In our test bench, the size of the synthetic data is determined on 3

variables— the number of Locations, the number of Person, and the number of

individuals from other independent classes.

Data generation is carried out by a Data Generator we have developed. De-

veloping this software is surprisingly not so easy. On one hand, the generated

data should be essentially random; on the other hand, each piece of data should

be connected to other concepts even before the other concepts are generated.

The relationships between concepts reduces the degree of freedom, and thus in-

troduces more complexity. To address this problem, we analyze the dependencies

among classes. We aim to make the data as realistic as possible so a set of rules

that represent common senses are abided by in the generation process.

In the generation process, all individuals are classified into several groups.

They are, independent non-scalable individuals, individuals of class Person, indi-

viduals of class Location, other independent individuals, Person-dependent indi-
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viduals and non-Person-dependent individuals. When the input to the generator

program is given, independent non-scalable individuals are generated in the first

step. In our test bench, this includes Genre, PaypalPaymentMethod, VisaPay-

mentMethod, MastercardPaymentMethod, PhonePlan, PrivacyPolicy, Privilege,

ChineseZodiac, and WesternZodiac. In fact, these independent non-scalable in-

dividuals are similar to the concept of Classes because they are actually deter-

mined prior to the size of concrete data. We can opt to re-define these individuals

as classes in the ontology. After weighing the different choices, these individuals

are determined to be more of a flavour of concrete data, so they are generated

as individuals. The second step is to generate individuals of class Person and

Location and other independent individuals. Note that the three variables that

determine the size of the concrete data are the number of individuals of class

Person, Location, and other independent individuals. Following this, for each

Person generated, all the person-dependent classes are traversed to generate in-

dividuals. The relationships between the newly generated individuals and the

person under consideration are added. This process is guided by the rules that

reflect the real world. As mentioned in the first section in this chapter, we use

a quantitative rule to restrict the number of children of a parent. With the

generation of each person-dependent individual, another rule set is checked to

determine if any non-person-dependent individuals should be generated.

A total of 180 Classes are subject to the grouping. This number is smaller

than the total number of Classes because other Classes are of more general-

ized concepts. Only the Classes that have the most specific meaning, or rather
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the “leaf Classes”, are subject to concrete data generation. That is, class

Person are not grouped, but classes Man and Woman are groupped. These

classes are grouped into 9 independent non-scalable Classes, 2 Person, 14 Loca-

tion, 45 other independent Classes, 63 Person-dependent Classes, 47non-Person-

dependent Classes (among which 36 are indirectly dependent on Person and the

rest are dependent on other Classes). The data are generated in Turtle lan-

guage as described earlier in Section 2.3.1. In the generated data set, we will

have the following independent non-scalable individuals: 5 Genre, 20 PhonePlan,

12 ChineseZodiac, 12 WesternZodiac, etc. They are linked to Person individu-

als later. After determining the number of Person individuals, for each Person

generated: The Person has 1 GPSLocation, 1 Direction, 1 Contact (which has

2-4 SNSAccount, 0-2 ReaderAccount, 1-3 EmailAccount, 0-1 ForumAccount, 0-7

IMAccount, 0-2 OnlineDocAccount, etc.), 0-1 BibleReadingPlan, 0-1 Workout-

Plan, 0-1 BrowserHistory, 1 CallLog, 0-8 FinancialEntities, and many more.

These person-dependent individuals can have many non-person-dependent indi-

viduals further.

Finally, the generator generates a 342-people knowledge base including a

total of 33841 individuals, 53607 ObjectProperty assertions, and 23312 Datatype-

Property assertions.

4.3.2 Testing Queries

The performance of a context-aware system boils down to the query responding

speed. Because the connection speed between client and server is fixed regardless
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of the way server is organized, the performance of such a client-server system

is solely measured by the query processing speed on the server side. Query

processing speed of a system is highly dependent on the query pattern. This is

especially true for ontology-based servers. Two query sequences can have very

different query processing performance. The difference can be as high as orders

of magnitude in time. So the testing queries are another important component

of the test bench.

Recall that in the second step of the mobile application survey, the use cases

of the mobile applications are abstracted into SPARQL queries. So from that

step, we have already prepared the queries from all the applications we have sur-

veyed. Some similar queries from the same category of application are combined

together and some queries that are less important to the category of applica-

tion are removed. The queries are also modified so that a more generic form

is reserved in the final testing queries of the test bench. Since the queries are

abstracted from real mobile applications, the performance measured using these

testing queries are more reliable than the ones measured using other benchmarks.

Though we have surveyed 20 categories of applications, a total of 9 cate-

gories are considered here to produce the testing queries. Specifically, these 9

categories are Business, Communication, Health & Fitness, Lifestyle, Media &

Video, Medical, News & Magazines, Shopping, and Transportation. For each

category, we have prepared at least 6 query sequences. These query sequences

are selected such that both simple and complex query structures are included.

Table 4.1 exemplifies one query sequence for each category. The query sequences
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are given in SPARQL language while resources are represented using the Turtle

language for concise presentation.

Table 4.1: Selected Testing Queries

Business

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x ?y WHERE { ns:Man0 ns:ContactInfoOf :a .

:a ns:EmailAccountOf :b .

:b ns:ContactsOfEmailAccount :c .

:c ns:ThePersonOfContact ?x .

?x ns:ScheduleOf ?y .

?y a ns:Calendar }

Communication

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x WHERE { ns:Man0 ns:ContactInfoOf :a .

:a ns:IMAccountOf ?x }

Health & Fitness

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x WHERE { ?y ns:DinnerOfDiet ?x .

?y a ns:Diet .

?x ns:CalorieOf ?z .

Continued on next page
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Table 4.1 – continued from previous page

FILTER ( ?z > 0 ) FILTER ( ?z < 50 ) }

Lifestyle

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x WHERE { ?x ns:RentalValue ?y .

?x a ns:Apartment .

FILTER ( ?y >= 500 ) FILTER ( ?y < 550 ) }

Media & Video

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x WHERE { ns:Man0 ns:ContactInfoOf :a .

:a ns:ITunesAccountOf ?x }

Medical

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x WHERE { ns:Man0 ns:HaveDisease :a .

:a ns:PrescriptionOf :b .

:b ns:Dosage ?x }

News & Magazine

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x WHERE { ns:Man0 ns:ContactInfoOf :a .

:a ns:ReaderAccountOf ?x .

?x a ns:GoogleReaderAccount }

Continued on next page

61



Table 4.1 – continued from previous page

Shopping

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?x WHERE { ns:Man0 ns:HaveGroceryStuff ?x .

?x a ns:Coupon .

?x ns:AmountOfDiscount ?y .

FILTER ( ?y > 0.7 ) }

Transportation

PREFIX ns: <http://dsa.nus.edu.sg/cenzhe/ontologies/ContextEntity#>

SELECT DISTINCT ?x ?y WHERE { ns:Man0 ns:OwnsCar :a .

:a a ns:Car .

:a ns:StartParkingTime ?x .

:a ns:LocatedIn ?y }

4.4 Evaluation

The test bench is constructed solely for the purpose of testing in the domain of

context-aware systems. Therefore, it is not meant to be an overall Semantic Web

benchmark. It is limited to the particular domain represented by the ontology

it uses. Be reminded that the motivation of building such test bench is to mimic

the data structure of real context-aware systems. The insights we gained through
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Table 4.2: Structural Differences between our test bench and LUBM
Our Test Bench LUBM

# of Class 250 43

# of ObjectProperty 145 25

# of DatatypeProperty 94 7

# of Individual 33841 17174

# of SubClassOf Axioms 238 36

# of EquivalentClass Axioms 13 6

# of DisjointClass Axioms 2 0

# of General Concept Inclusion 13 2

# of SubObjectPropertyOf Axioms 138 5

building such test bench may be even more valuable than the test bench itself.

Our test bench is for the domain of context-awareness and existing bench-

marks (e.g. LUBM) is on the domain of a university. Qualitatively, LUBM is

a descriptive benchmark. By defining a hierarchy of classes in the domain of a

university, LUBM describes departments, research staff, students, modules and

many other elements of interest. On the contrary, our test bench is a functional

framework. From the very beginning of designing this test bench, it has kept

applications and queries in mind. The objective is not to describe concepts and

facts in this domain, but to answer specific types of queries. If certain concept

is not used by any queries, it is not modelled in our test bench. This qualitative

difference reflects the different usage of the two test benches.

In the following texts, we quantitatively evaluate our test bench.

We first measure the ontological complexity of the test benches. From Ta-

ble 4.2 we can clearly see our test bench is more sophisticated than LUBM. In

all measures, our test bench has a larger number. Except for the number of In-

dividuals which reflects the size of ABox/concrete database, all other measures
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reflect the complexity of TBox/vocabulary. The differences in these numbers

manifested that the domain of context-awareness is significantly different than

the domain of a university. Specifically, the increase in the complexity of vo-

cabulary contributed to this difference. This difference is most conspicuous for

Properties-related axioms. This is because a lot of data relevant to a user or a

device appear as key-value pairs. In ontologies, key-value pairs are represented

as Datatype Properties. The connection between different objects is represented

as Object Properties, and as such the number of ObjectProperty is also much

larger than that in LUBM.

Another metric we measure is the depth of class taxonomy. Suppose the

root class is of depth 1, its direct subclass is of depth 2, we can calculate the

depth of all classes. An ontology with a smaller average depth is considered

to be flatter than another ontology with deeper class taxonomy. This is a fre-

quently considered parameter when designing an ontology, and this feature can

significantly impact the query-answering performance. Fig 4.2 shows the cdf

(cumulative distribution function) of the depth distribution. The average depth

of classes in our test bench is 5.59 while in LUBM is 3.62. With an ontology that

is averagely 2 layers deeper, we can expect these two test benches will give very

different performances when answering queries. This difference again necessi-

tates the introduction of a new tool—our test bench—in building context-aware

systems.

Finally we also measure the loading time of our test bench and LUBM.

As presented in Fig 4.3, we plot the loading time versus the number of triples
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Figure 4.3: Ontology Loading Time

in the test bench. Results show that the loading time is linear to the size of

the ontology, but the curve of our test bench, which is of higher complexity,

is steeper. The difference in the slope of the curves from another perspective

justifies the necessity of building our own test bench. The two different domains

have different features, and these features cannot be masked by merely adjusting

the size of the test bench.

Regarding to the query-answering performance, it is postponed in Chapter 5
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to discuss. In Section 5.5, we will be measuring not only the query-answering

performance of our test bench and LUBM, but also the performance of our newly

introduced partitioning algorithm.

4.5 Chapter Summary

In this chapter, we first demonstrated motivation of building an ontology-based

test bench on the domain of context-aware applications. Then we constructed

a novel test bench covering the domain of context-aware applications. To the

best of authors’ knowledge, there have been no ontologies that are specifically

built for the domain of context-awareness. Thus, evaluating the algorithm on

other test benches may be biased if the system is data-dependent. Through an

extensive survey of state-of-the-art mobile applications, the domain of knowledge

in this area is modelled as an ontology. A large amount of synthetic concrete

information composed using this vocabulary is populated, together with several

sample applications, query sequences and knowledge duplicates.

Compared with LUBM and UOBM, our test bench has the following contri-

butions:

1. The test bench is constructed with real mobile applications. Other ontology-

based benchmarks usually build the ontology merely from common senses

and experiences. After all, our test bench is built for the purpose of being

as realistic as possible, while other benchmarks emphasizes on utilizing

OWL language structures and SPARQL query types.
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2. Our test bench considered the feature of distributed composition of on-

tologies while other benchmarks assume centralized ontology composition.

This allows our test bench to evolve as the domain of mobile applications

change. When the domain is enlarged or shifted, updates to the ontology

can be made by application developers in addition to original designer of

the test bench (which is us!).

3. Our work clearly formulates the concrete data generation process. Our

method distinguished different types of classes and individuals, thus giving

rise to a dependency-based generation. This experience can be useful for

any other concrete data generation process.
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Chapter 5

A Distributed Computing

Scheme for Better Scalability

5.1 Introduction

This section addresses the scalability issue of ontology-based context-aware sys-

tems by breaking the monolithism of knowledge bases, and thereby making the

divide-and-conquer approach applicable.

The final quest of our research is to enhance feasibility of ontology-based

context-aware systems, specifically in the sense of bridging the gap between real-

time application requirements and the slow reasoning speed of ontology servers.

Approaches can be either to improve the processing speed of a single server, or to

provide a viable means to distribute tasks among many servers. Regarding the

first approach, over decades researchers have been working to build an efficient

ontology reasoner. Implementing the tableaux algorithm described in [23], many
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state-of-the-art ontology reasoners are built, such as RacerPro, FaCT++, Pellet

and HermiT. Though we are pleased to see the advances in reasoning speed,

we have to admit that a single reasoner still cannot fulfil high-load real-time

tasks[24].

This motivates the development of second approach: task distribution. To

better illustrate the goals and challenges of this approach, an example is in-

troduced. Suppose we have developed a digital butler system that stores all

personal information of users and gives all kinds of assistance to them. The

whole knowledge base is huge as it has to store every aspects of users as well

as other knowledge that are independent of users. “other” knowledge include

the locations the user can be, the activities that the user can engage, and other

common senses. When the system scales up, a single-server solution is not appli-

cable. The näıve solution is to clone servers, by copying both the front-end and

the database behind. Server cloning requires copies of the whole ontology, which

can be very cumbersome. Moreover, it requires a large amount of real-time syn-

chronization between all these copies because updates to one server should be

pushed to all other servers. In our example, the knowledge base of all aspects of

the users should be cloned, and any trivial updates like the location change of

certain user should be forwarded to mirror servers. Otherwise, some users may

get wrong query response from servers that are incomplete or obsolete. These two

problems can be alleviated if we can further classify tasks (specifically, queries in

our work), and allocate each category of tasks to a specific server extracted for

this specific purpose. Queries from a same context-aware application naturally
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form a category of queries. In the following texts, we use the word “applica-

tion” interchangeably with a category of tasks or queries. In our example, this

solution is applied by placing sports-related data in one server, finance-related

data in another, so on and so forth. Therefore, the location change of users may

be irrelevant to the server hosting finance-related applications, and thus we can

reduce the amount of synchronization between mirror servers.

But how to define “sports-related” and “finance-related”? It is much more

complicated to define this in ontology databases than in relational databases. In

relational database systems, we can simply construct the database for the extra

server by extracting a few tables from the original database or a bunch of tuples

that matches a specific query. These can all be done in a neat and elegant way.

However, ontology databases are constituted of many interconnected statements

which entail special treatment. A statement is a triple formed of a subject, a

predicate and an object. While many statements are readily available in the

database, additional statements can be derived following the semantics of the

ontology. In order to construct a sub-ontology to handle a specific category of

queries, we are facing many challenges and these are summarized and termed as

the monolithism of ontology databases:

1. It is hard to determine the necessary statements that should be extracted

for a functionality. One seemingly irrelevant statement may be useful for

deducing relevant information.

2. Generally, only statements that are raw and NOT deduced should be in-
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cluded in the extraction as such deduction can sometimes increase the size

of the database exponentially.

3. After extraction, how to keep the extracted database synchronized to the

central one is also a challenge.

We tackle these three problems by:

1. We proposed a completeness-proved algorithm to determine the necessary

triples that fulfil certain functionalities.

2. We migrate only existing triples (i.e., not including inferred triples) in order

to restrict sub-databases within controllable size.

3. A fast algorithm is employed to coordinate synchronization traffic.

Using the algorithm described in this section, we can extract application-

specific sub-databases from the whole knowledge base. It is also proved that the

extracted sub-database can perfectly accommodate queries from that specific

application, which is also known as the completeness of the sub-database (or

algorithm). The algorithm also covers the synchronization process. When an

update of information is received at one server, it can be quickly decided (without

going through an ontology reasoning process) whether this update should be

delivered to other servers.

Despite our algorithm, one might come up with a more straightforward way

of building such a system. That is, one could have a system in which the entire

knowledge base was replicated, and accept that queries performed in different
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Figure 5.1: System Structure

places might generate different results for data that is in the process of being

updated. However, this approach suffers from following problems: 1. This so-

lution requires significantly more resources because the whole knowledge base

is to be replicated. One central supercomputer is acceptable but an array of

supercomputers is frustrating. 2. With a bigger ontology, the query processing

speed would be slowed. Therefore, we will have a longer delay in getting re-

sponses from this solution. 3. We will have a lot of unnecessary updates. Even

if we accept this redundancy, servers will consume time and power to handle

those unnecessary updates. To sum up, this easy-to-implement approach is not

a satisfactory solution.

Fig. 5.1 illustrates the topology of our system where AppServers hold sub-

databases for a single application and Central Server holds the whole database.
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However, it is observed that the extracted sub-ontologies are usually larger

than enough—many triples are seldom used for inference but must be present in

order to ensure absolute completeness. Sometimes these triples take up a large

proportion of the extracted sub-ontology, incurring higher storage and compu-

tational costs. We then introduced a tunable parameter. By adjusting this

parameter, we are able to adjust the “degree” of completeness. When this pa-

rameter is set to zero, the system retrogresses to a näıve implementation of only

labeling and filtering. The produced sub-database is minimal as it contains only

the triples explicitly mandated by application developers. When this parame-

ter is set to infinity, the filter expansion algorithm then can guarantee semantic

completeness of sub-databases. However, the size of sub-database is consider-

ably larger than the minimal one. After setting the parameter to a intermediate

value, the algorithm is no more complete but we established a checkpoint method

to compensate for it. Every once in a while, an ontology reasoning is performed

and sub-databases are updated to achieve temporary completeness.

The test bench introduced in Chapter 4 is then used to test the perfor-

mance of our algorithm. To further justify the validity and performance of our

algorithm, a typical ontology benchmark LUBM [95], though not specifically de-

signed for pervasive computing area, is employed in order to generate compara-

ble results. Results show that our algorithm can achieve a drastic improvement

in terms of processing speed of sub-database extraction and synchronization.

Compared to the speed boost in thousandfold or even more, the cost in ontology

storage is acceptable. It is also shown that, without losing any quality in the
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answers to queries, a much smaller cost can be achieved by carefully tuning the

trade-off parameter.

This chapter is organized as such: Section 5.2 explains all 3 phases of the

extraction algorithm from the starting point of the definition of domain of dis-

course. A recommendation on how to decide the domain of discourse for an ap-

plication is also included. Section 5.3 proves the completeness of the algorithm.

Section 5.4 introduces the trade-off between completeness and lightweightness

of sub-databases. We evaluate our algorithm in Section 5.5 and conclude in

Section 5.6.

5.2 Algorithm of Extraction and Synchronization

This section explains the algorithm to extract information from the whole knowl-

edge base in order to answer a category of queries. It also covers the update

procedure after the initial extraction. The feature of this algorithm is that we

use a set of filters to determine if a triple is relevant to the category of query.

This algorithm is designed for the dialect of OWL DL. We describe the

algorithm in 3 phases—PREPARATION phase, SETUP phase, and UPDATE

phase. In PREPARATION phase, a set of filters is derived from the domain of

discourse. In SETUP phase and UPDATE phase, these filters are applied to all

existing triples and newly-updated triples. This process is illustrated by Fig 5.2.
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Figure 5.2: Illustration of the Partitioning Algorithm
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5.2.1 PREPARATION phase

Suppose we already know the domain of discourse of this application denoted by

(C,P). C is the set of Classes (C1, C2, . . . , Cn), and each Ci denotes one Class

in the vocabulary that is “relevant” to the application. P is the set of Properties

(P1, P2, . . . , Pm), and Pi is a “relevant”. In Section 5.2.4 we will discuss further

on how to determine this domain of discourse of an application given only query

patterns.

Before doing filter expansion, we need to pre-process the ontology by sub-

stituting each of the anonymous classes with a unique class name. This can

be easily done by using an ontology language parser. This is useful because it

breaks down compound statements and simplifies the structure of ontology to a

store of basic triples.

The filter expansion procedure is shown in Fig. 5.3. The input to the al-

gorithm is the initial sets of C and P. The output is the modified version of

C and P. NC is used in intermediate stages and E is kept in the description

of algorithm only for consistent comparison in the following proof of complete-

ness. The procedure is an iterative procedure, so the time complexity is hard

to analyze. Nevertheless, we can estimate the worst case time complexity to be

O((NC + NP )
2NT ), where NC is the number of classes, NP is the number of

properties, NT is the number of TBoxes in the ontology. The derivation of this

complexity is as follows: The procedure contains a main loop with three nested

loops. The main loop will loop for a maximum of NC + NP times, assuming

that C,NC,P would add only one element in each loop. The first and third
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Let NC,E be empty sets
add C,D in C, add P in P if D = (6 nP.C)
add C,D in C, add P in P if D = (= nP.C)
add P in P if ⊤ ⊑6 1P.⊤
add P in P if ⊤ ⊑6 1P−.⊤
loop until C,NC,P do not change
for all Ci in C

add D1,D2 in C if Ci = D1 ⊔D2

add D in C, add C2 in NC if D = Ci ⊔ C2

add D in C if D = Ci ⊓ C2

add D1,D2 in C if Ci = D1 ⊓D2

add D in NC if Ci is owl:complementOf D
add x1, x2, . . . , xl in E if Ci = enum{x1, . . . , xl}
add D in C, add P in P if D = ∀P.Ci

add D in C, add P in P if Ci = ∃P.D
add P in P if Ci owl:hasValue y on property P
add D in C if Ci is owl:equivalentClass to D
add D in C if D ⊑ Ci

add P in P if P rdfs:domain Ci

add P in P if P rdfs:range Ci

end for
for all P in P

add C in C if C owl:hasValue y on property P
add Q in P if Q ⊑ P

add Q in P if Q owl:equivalentProperty P
add Q in P if Q owl:inverseOf P

end for
for all Ci in NC

add D in NC if D = Ci ⊔ C2

add D1,D2 in NC if Ci = D1 ⊔D2

add D1,D2 in NC if Ci = D1 ⊓D2

add C2 in C, add D in NC if D = Ci ⊓ C2

add D in C if Ci is owl:complementOf D
add x1, x2, . . . , xl in NE if Ci = enum{x1, . . . , xl}
add D in NC if Ci is owl:equivalentClass to D
add D in NC if Ci ⊑ D

add D in C if Ci is owl:disjointWith D
end for
end loop

Figure 5.3: Filter Expansion
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nested loops are complementary in the sense a class C can never be in both C

and NC. Therefore, the time required of these two nested loops is O(NCNT ),

assuming that C + NC covers all possible classes and inside each loop all TBox

assertions are examined. Similarly, the complexity for the second nested loop is

O(NPNT ). Combining together with the main loop, the worst case time com-

plexity is O((NC +NP )
2NT ). Being polynomial, this complexity is significantly

better than the worst case complexity of tableaux algorithm, which is exponen-

tial. The reason our algorithm is much faster is that we do not derive triples in

the process. Rather, we simply use a filtering method to distinguish the useful

from the useless, postponing the reasoning until queries are made. The space

complexity of the algorithm is O(NC + NP ). The maximum number of filters

equals the number of classes plus the number of properties. Other than the

storage of filters, there is no significant space cost.

The filter expansion procedure is the soul of the whole algorithm. Essen-

tially it is the specially expanded filter that breaks the monolithism, and makes

distributed computing possible. In Section 5.3, we will prove the expansion pro-

cedure ensures the generated filters are complete for the type of query concerned.

In addition, the proof also reveals that by taking the form of filtering, this expan-

sion procedure produces the minimum set of filters to maintain completeness.

In other words, the generated set of filters is both sufficient and necessary to

answer queries completely.

79



5.2.2 SETUP phase

In SETUP phase we extract sub-ontologies from the base ontology. This includes

both the vocabulary and the concrete information. Extracting the vocabulary

for sub-ontology, if any TBox assertion in base ontology involves any element

in set C or P, this assertion is seen as a match and should be copied to sub-

ontology. The filtering procedure for concrete information is carried out for all

existing ABox triples in the knowledge base. Here we consider only 3 types of

ABox assertions, leaving annotation assertions behind (Annotation assertions

will not affect the semantic richness of sub-ontologies). The following notations

are used: I1, I2, I are individuals, C is a class name, P is a property name.

1. (I, rdf:type, C). If C falls in the set C, copy the triple to sub-database.

2. (I1, P, I2). If the triple matches one element in set P, copy it to sub-

database.

3. (I1, owl:sameAs, I2), (I1, owl:differentFrom, I2). All triples of these two types

are copied.

5.2.3 UPDATE phase

When an update of triple is made to the knowledge base, it should be decided

whether this update is relevant to an application, and therefore whether it should

be delivered to the corresponding sub-database. This deciding procedure is the

same as the filtering procedure in SETUP phase except that it is applied to a

single triple instead of a set of triples.
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5.2.4 Domain of Discourse

Now that we have finished describing the algorithm, we give a means to determine

the domain of discourse (C,P) given the description of an application.

The domain of discourse directly determines the size of a sub-database. It

should be designed in such a way that the yielded sub-database is big enough to

hold all required information, and is small enough to exclude useless information.

Since we distinguish sub-databases by different applications, application develop-

ers should be responsible for the definition of domain of discourse. Nonetheless,

we give a guideline as follows:

1. First, enumerate all the possible query patterns that an application server

might receive from its clients. This information can usually be taken from

documentations from early application development phases.

2. Assume queries from clients are in the format of SPARQL or other query

languages. If not in the case, abstract the interaction between application

server and client as standard SPARQL queries.

3. In most queries, there is a where clause that may be constituted of multiple

sub-clauses. If the predicate used in the sub-clauses is rdf:type, include the

object (third element in a triple) of rdf:type in C. If the predicate is a

property name, include the predicate in P.

Here we give an example of doing so. Suppose we have an application

that has only one functionality, answering the user how much calories is con-

tained in 100 grams of the asked food. From the documentation of use case
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modelling of the application, we extracted the functionality and abstracted

it as a SPARQL query: SELECT ?x WHERE { thefood ns:hasCalories ?x.

thefood rdf:type ns:Food }, where thefood is the user input choice of recipe.

From the where clause, we add ns:hasCalories to P and add ns:Food to C.

5.3 Proof of Completeness

The completeness of an extraction algorithm is defined as such: Suppose the

intact knowledge base is denoted by a set of triples K. The output of the extrac-

tion algorithm is S (⊂ K). If all possible queries of the same syntax structure

as the given type receive a same response from both K and S, the extraction

algorithm is said to be complete. Oppositely, if there exists a specific query

received different responses from S and from K, the algorithm is said to be in-

complete. Because of the ability of inference inherent in ontologies, the proof is

not as simple as it would be for relational databases. As an illustration, Fig. 5.4

shows the relationship between the existing triples, inferred triples and required

triples. Existing triples E are triples that are already present in the database.

With these triples, some more triples I can be inferred following the semantics

of OWL language. The intersection between E and I indicates that some of the

existing triples can be inferred by other existing triples. This is a sign of con-

sistency of the knowledge base. For a specific type of queries, the set of triples

R that is relevant can have overlap with both E and I. With the Open World

Assumption (OWA), some of the relevant triples may not even fall in the union

of E and I. A complete extraction of the database should at least comprise or
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Figure 5.4: The whole knowledge base is E+ I. A complete extraction should at
least comprise A+B and those that can be used to deduce C

be able to infer triples in part A, B and C.

Now that we understand that the objective of the algorithm is to make

available part C as well as part A and B in sub-ontology, the challenge is how

to find the triples in E that are used to infer triples in part C. To solve this

problem, we need to understand every detail of the inferences in ontologies. The

following two subsections are an exhaustive enumeration of deduction rules used

in OWL knowledge bases.

According to [98], OWL is a vocabulary extension to RDF. Any RDF graph

forms an OWL Full ontology. Further, the meaning given to an RDF graph by

OWL includes the meaning given to the graph by RDF. OWL assigns additional

meanings to certain RDF triples. Before analyzing the inference rules given by

OWL, we first study inference rules given by RDF semantics.

83



Table 5.1: Selected Inference Rules in RDF Semantics
Rule
Name

If E contains Then add:

se1 uuu aaa xxx . uuu aaa :nnn .
where :nnn iden-
tifies a blank node
allocated to xxx

rdf1 uuu aaa yyy . aaa rdf:type
rdf:Property

rdfs1 uuu aaa lll . :nnn rdf:type
rdfs:Literal .

where lll is a plain literal where :nnn iden-
tifies a blank node
allocated to lll

rdfs2 aaa rdfs:domain xxx . uuu rdf:type xxx .
uuu aaa yyy .

rdfs5 uuu rdfs:subPropertyOf vvv . uuu
rdfs:subPropertyOf
xxx .

vvv rdfs:subPropertyOf xxx .

rdfs7 aaa rdfs:subPropertyOf bbb . uuu bbb yyy .
uuu aaa yyy .

rdfD1 ddd rdf:type rdfs:Datatype . :nnn rdf:type ddd
.

uuu aaa “sss”ˆˆddd . where :nnn iden-
tifies a blank
node allocated to
“sss”ˆˆddd .

5.3.1 Inference Rules Given by RDF Semantics

Inferences in RDF are usually called entailment. A full list of entailment rules

in RDF semantics is defined in chapter 7 of [99]. This includes: 1. Simple

entailment rules, 2. RDF entailment rules, 3. RDFS entailment rules, and 4.

Datatype entailment rules. We chose a few representatives as listed in Table 5.1:

A closer look at the inference rules will reveal that many of them are not

producing useful new triples. Simple entailments (type 1) and datatype entail-

ment rules are on blank node generalization/instantiation. RDF entailment rules
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are enforcing RDF syntax. Excluding these, only those inference rules given by

RDF Schema (RDFS) can be used to generate new assertions. They can be fur-

ther classified as class constraints (rdfs:domain and rdfs:range), class/property

hierarchy (rdfs:subClassOf and rdfs:subPropertyOf ).

5.3.2 Inference Rules Given by OWL Semantics

Unlike RDF inference rules, there is no readily available summary for OWL

inference rules. In fact, an exhaustive enumeration of all OWL inference rules

is very difficulty to produce. Luckily, as far as our application is concerned, we

only need to focus on a proportion of all inference rules—those that can produce

concrete class belonging relations and individual properties. We start with the

summary of OWL DL axioms and facts at [100].

The rest of this section contains a lot of materials in Description Logic and

First Order Predicate Logic. Readers can refers the [98, 100, 101, 23, 25] if find

difficulty in reading.

An OWL ontology in the abstract syntax contains a sequence of annotations,

axioms and facts. Annotations can be used to record authorship and other

information associated with the ontology. The main content of an OWL ontology

is carried in its axioms and facts. Axioms and facts are essentially TBoxes and

ABoxes in terms of Description Logic, respectively. In other words, axioms and

facts are the sources of extensions and restrictions given by OWL upon RDF.

Inference rules can be extracted from the following 4 categories of statements:

class constructors, class axioms, property axioms, and individual equivalencies.
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Table 5.2: OWL Class Constructors
ID Class Constructor DL Syntax FOL Syntax

1-1 owl:unionOf C1 ⊔ . . . ⊔ Cn C1(x) ∨ . . . ∨ Cn(x)
1-2 owl:intersectionOf C1 ⊓ . . . ⊓ Cn C1(x) ∧ . . . ∧ Cn(x)
1-3 owl:complementOf ¬C ¬C(x)
1-4 owl:oneOf {i1 . . . in} x = i1 ∨ . . . ∨ x = in
1-5 owl:allValuesFrom ∀P.C ∀y.(P (x, y) → C(y))
1-6 owl:someValuesFrom ∃P.C ∃y.(P (x, y) ∧ C(y))
1-7 owl:hasValue ∃P.{i} P (x, i)
1-8 owl:minCardinality > nP.C ∃y1, . . . , yn.

∧
16i6n

(P (x, yi) ∧ C(yi)) ∧
∧

16i<n,i<j6n
yi 6= yj

1-9 owl:maxCardinality 6 nP.C ∀y1, . . . , yn.
∧

16i6(n+1)(P (x, yi) ∧ C(yi)) →
∨

16i<(n+1),i<j6(n+1) yi = yj

1-10 owl:Cardinality = nP.C Conjunction of above two

Table 5.3: OWL Class Axioms
ID Class Axiom DL Syntax FOL Syntax

2-1 owl:disjointWith C1 ⊑ ¬C2 ∀x.¬C1(x) ∨ ¬C2(x)
2-2 owl:equivalentClass C1 ≡ C2 ∀x.C1(x) ⇔ C2(x)
2-3 rdfs:subClassOf C1 ⊑ C2 ∀x.C1(x) → C2(x)

Table 5.2–Table 5.5 have shown all these structures with their Description Logic

(DL) and First Order Logic (FOL) equivalents as an extension to the tables in

[101].

An inference procedure can use one or multiple axioms listed in the tables.

They are called primitive inference and composite inference, respectively. The

final outcome of an inference procedure, however, can only have 2 forms: “C(i)”,

or “P (i1, i2)” despite the number of inference steps. Any other statements are

only intermediate results and must be combined with other axioms to deduce

useful results. For example, owl:sameAs can be used to deduce an equality

formula i1 = i2, but equality formula usually cannot be used directly by ap-

plications. This formula, however, can be combined with P (i1, i3) to produce

P (i2, i3).

The logic of the following enumeration is like this: We first list all possible

primitive axioms and facts that will produce C(i) and P (i1, i2). The outcome of
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Table 5.4: OWL Property Axioms

ID Property Axiom DL Syntax FOL Syntax

3-1 rdfs:subPropertyOf P1 ⊑ P2 ∀x, y.P1(x, y) → P2(x, y)
3-2 owl:equivalentProperty P1 ≡ P2 ∀x, y.P1(x, y) ⇔ P2(x, y)
3-3 owl:inverseOf P1 ≡ P−

2 ∀x, y.P1(x, y) ⇔ P2(y, x)
3-4 owl:SymmetricProperty P ≡ P− ∀x, y.P (x, y) → P (y, x)
3-5 owl:FunctionalProperty ⊤ ⊑6 1P.⊤ ∀x, y, z.(P (x, y) ∧ P (x, z)) → y = z

3-6 owl:InverseFunctionalProperty ⊤ ⊑6 1P−.⊤ ∀x, y, z.(P (y, x) ∧ P (z, x)) → y = z

3-7 owl:TransitiveProperty P+ ⊑ P ∀x, y, z.(P (x, y) ∧ P (x, z)) → P (x, z)
3-8 rdfs:domain ⊤ ⊑ ∀P−.C ∀x, y.P (x, y) → C(x)
3-9 rdfs:range ⊤ ⊑ ∀P.C ∀x, y.P (x, y) → C(y)

Table 5.5: OWL Facts
ID Fact DL Syntax FOL Syntax

4-1 owl:sameAs {i1} ≡ {i2} i1 = i2
4-2 owl:differentFrom {i1} ⊑ ¬{i2} i1 6= i2
4-3 i rdf:type C i : C C(i)
4-4 i1 P i2 (i1, i2) : P P (i1, i2)

the inference is placed in the LHS, and the pre-conditions are put in the RHS,

with facts placed after axioms. Among the terms of facts in the RHS of the

rules, copy to LHS those that are absent in the LHS, and continue the process

until no more updates to the listing. To kick start the procedure, we have the

listing as Fig 5.5.

Copying those that are absent in LHS—¬C(x), and x1 = x2—to LHS, Fig 5.6

is yielded.

After this step, the only term on RHS that does not appear on LHS is x1 6= x2,

which shows inequality. However, inequality is not deductible. It can only be

given in owl:differentFrom statements. So the procedure ends here with no more

terms movable to LHS. Together we have 25 different forms of deduction rules.
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C(x) ⇐ C = D1 ⊔D2, D1(x)

⇐ D = C ⊔ C2, D(x),¬C2(x)

⇐ D = C ⊓ C2, D(x)

⇐ C = D1 ⊓D2, D1(x),D2(x)

⇐ C = ¬D, ¬D(x)

⇐ C = {x1, . . . , xl}, x = xi

⇐ D = ∀P.C, D(y), P (y, x)

⇐ C = ∃P.D, P (x, y),D(y)

⇐ C = ∃P.{i}, P (x, i)

⇐ C ≡ D, D(x)

⇐ D ⊑ C, D(x)

⇐ ∀x, y.P (x, y) → C(x), P (xi, y)

⇐ ∀x, y.P (x, y) → C(y), P (y, xi)

⇐ x = y, C(y)

P (x, y) ⇐ C = ∃P.{y}, C(x)

⇐ Q ⊑ P, Q(x, y)

⇐ P ≡ Q, Q(x, y)

⇐ P ≡ Q−, Q(y, x)

⇐ P ≡ P−, P (y, x)

⇐ P+ ⊑ P, P (x, z), P (z, y)

⇐ x = z, P (z, y)

⇐ y = z, P (x, z)

Figure 5.5: Primitive Inference Rules
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¬C(x) ⇐ D = C ⊔ C2, ¬D(x)

⇐ C = D1 ⊔D2, ¬D1(x),¬D2(x)

⇐ C = D1 ⊓D2, ¬D1(x)

⇐ D = C ⊓ C2, C2(x),¬D(x)

⇐ C = ¬D, D(x)

⇐ C = {x1, . . . , xl}, x 6= xi, 1 6 i 6 l

⇐ C ≡ D, ¬D(x)

⇐ C ⊑ D, ¬D(x)

⇐ C ⊑ ¬D, D(x)

x1 = x2 ⇐ D = (6 1P.C),

D(y), P (y, x1), C(x1), P (y, x2), C(x2)

⇐ D = (6 nP.C),

D(y),
∧

16i6(n+1)

(P (y, xi) ∧ C(xi)),

∧

16i<(n+1),i<j6(n+1),i+j−3>0

xi 6= xj

⇐ D = (= nP.C),

D(y),
∧

16i6(n+1)

(P (y, xi) ∧ C(xi)),

∧

16i<(n+1),i<j6(n+1),i+j−3>0

xi 6= xj

⇐ ⊤ ⊑6 1P.⊤, P (y, x1), P (y, x2)

⇐ ⊤ ⊑6 1P−.⊤, P (x1, y), P (x2, y)

⇐ x1 = x3, x2 = x3

Figure 5.6: Primitive Inference Rules (Cont.d)
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5.3.3 Proof of Completeness

After giving an exhaustive enumeration of useful inference rules (inferences rules

that eventually can deduce C(x) or P (x, y)), now we proceed to prove that any

triples in part C in Fig. 5.4 will be deducible in our sub-ontology.

For the simplicity of demonstration, we assume C = {CT },P = {PT }. The

proof is done by contradiction.

Suppose there is at least one triple in part C that is not deducible by the

sub-database using our algorithm, denoted by tripleC . It can be format of either

CT (x0) or PT (x0, y0). In either case, we can construct an inference tree for

the triple in the context of the whole knowledge base. The root node of the

tree is the tripleC . At each branching, the children nodes are the axioms or

facts that are used to deduce their parent node. Each deduction is atomic and

cannot be further divided. In other words, each deduction corresponds to a

primitive inference rule in Fig 5.5 or Fig 5.6. If tripleC can be deduced from

multiple approaches, we simply choose one of them to form the inference tree.

The inference tree keeps expanding until all leaf nodes are existing axioms or

facts that require no further deduction. So altogether, the tree manifests the

inference procedure in producing tripleC from scratch. The inference tree will

have such features: Each branching corresponds to an inference rule in Fig 5.5

or Fig 5.6; At each branching, the parent node is a fact and at least one of the

children is another fact.

Because tripleC cannot be deduced in sub-database (as assumed), there must

be some leaf node presented in the inference tree that is absent from the extracted
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sub-database. Consider all possible cases:

1. The leaf node denotes a fact of equality or inequality and it is not in the

extracted sub-database. However, all owl:sameAs and owl:differentFrom

statements are copied to sub-database without going through the filters.

This yields contradiction.

2. The leaf node denotes a fact Cm(xm). Hence, Cm is not included in the

set C in PREPARATION phase. Traversing from this leaf node back to

the root node, we will come across a sequence of facts f1, f2, . . . , fn−1, fn,

where f1 is Cm(xm) and fn is tripleC . Because Cm(xm) does not fit in

our algorithm’s filters but tripleC does, along the sequence we can find the

first fact fi fits one of the filters while fi−1 does not. The inference rule

fi ⇐ ai−1, fi−1 shall be one of the rules in Fig 5.5 and Fig 5.6. Now that

there is a bijection between the filter expanding procedure and the rules

in Fig 5.5, the filter that can match fi is sure to be expanded to a filter

that can match fi−1. This contradicts with the knowledge that fi−1 does

not fit in any filters in the algorithm.

3. The leaf node denotes a fact Pm(xm, ym). The same logic as case 2 will

yield contradiction.

4. The leaf node denotes an axiom. Because an axiom can never be the

only child of a parent node, it must have a sibling denoting a fact. We

have just now proved a fact node in inference tree is always included in

sub-ontology. Discerning the axiom part and the fact part of a primitive
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inference rule is always directly related, this axiom node is surely to be

included in sub-ontology according to the procedure of our algorithm.

In all 4 possible cases, we will have contradictions. Thus, the initial suppo-

sition is false, and our algorithm is complete. �

5.4 Trade Completeness for Lightweight Sub-databases

When implementing the algorithm, it is observed that the domain of discourse

usually expands from the initial one or several classes and properties to tens

of them. This is because of the convoluted semantics in ontology knowledge

bases. Strictly speaking, removing any one of the filters will always render

a loss of completeness in query answering. However practically, we are usually

facing a more “friendly”-designed knowledge base where the inherent consistency

of knowledge base grants us the chance to prune some of the filters without

harming the performance. It is worth noting that pruning some of the filters does

undermine the completeness. In the cases when the updates to the knowledge

base are not as self-contained as the current level, erroneous query-answering

can appear. In other words, we trade some of the overshooting completeness

for actual benefits—smaller sub-databases, with the assumption that the level

of self-consistency is to be remained in the future.

This section studies how much completeness we can sacrifice and how much

we can gain from a smaller sub-database, so as to decide whether such trading

is instrumental.
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Figure 5.7: Proportions of Required and Excessive Iterations

A test of our algorithm on LUBM[95] is employed emphasizing on how the

number of iterations impact the outcome. As shown in Fig 5.7, the height of each

stacked bar denotes the number of iterations that must be performed before our

algorithm converges. For query 1 and 14, the height is 0 indicating the domain

of discourse is converged at the beginning. Similarly, 9 iterations are required

for query 6,7,8,10,12 to converge. If we do not wait until the convergence, the

filter set is not guaranteed to be complete, and thus the reply to queries might be

fragmentary. Due to the fact that knowledge bases are usually self-consistent in

many aspects, some assertions that are explicitly presented can be deduced from

other assertions implicitly. In such occasions, accounting for these self-contained

inferences will not add to the semantic richness of the sub-database, but will only

produce a larger and more cumbersome sub-database. In the case of LUBM, the

algorithm requires at most 3 iterations to produce a practically complete set of

filters for all query types.
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From Fig 5.7 we also learn the number of excessive iterations are usually a

multiple of the number of required iterations. How much exactly we can benefit

by exploiting this observation? Fig 5.8 shows our attempt. Assuming we have

the knowledge of required iterations and excessive iterations beforehand, we limit

filter expansion procedure to be run for only required iterations and then measure

the size of sub-databases. This size is then compared against the size when a full

procedure is carried out until convergence. Fig 5.8 shows the proportional size

reduction for all query types. Except for query type 1, 3, 11, and 14, other query

types experience different level of storage reduction. The zero reduction for type

1 and type 14 is as anticipated because their required iteration is the same as

total iteration—both were zero. However, for type 3 and type 11, though there

are non-zero excessive iterations, these iterations did not bring in concrete effect

in terms of ontology size. Similarly, large numbers of excessive iterations also do

not imply great reduction in sub-database size. It is possible the few required

iterations have already incorporated a large number of individuals and triples.

The reduction is most evident for query type 12, where a 99% reduction in both

the number of individuals and the number of triples is observed.

The next problem is how to determine which iterations are required, and

which are excessive. Resolving this problem using analytical methods is very

hard, if even possible. This is because the number of required iterations is

dependent on the feature of the current database. Remember the whole trade-

off concept is built upon the assumption that future updates to the database will

maintain current self-consistency level. To approach this problem analytically,
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Figure 5.8: The Size of Sub-databases if Excessive Iterations are Removed (Pre-
sented as a Percentage of the Full version)

one need to extract all the self-consistency features of the database before any

analysis. This is considered even harder than building such a database from

scratch. So we suggest developers to determine the number of required iterations

by building a prototype system. By decreasing the number of iterations used

from maximum value (the number of iterations to achieve convergence) to zero,

developers should constantly monitor if the query results are different from the

results given by a complete algorithm. Whenever a different result is present,

the empirical value of the number of required iterations is found. Usually the

level of self-consistency can be fluctuating in a small range, so this number can

be adjusted accordingly. When the level of self-consistency improves and the

sub-database has grown too big, one can reduce the number of iterations used.

When conflicts or incomplete query answers are detected, one should adjust the

number upwards.
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5.5 Evaluation

5.5.1 Performance Evaluation

We evaluate our algorithm on the test bench proposed in Chapter 4. There are

two pairs of comparison in this evaluation. In logical sequence, the first pair

is comparing the performance of our algorithm with a trivial solution—server

cloning. The second one is comparing the performance of our algorithm with any

other reasoning-based algorithm that achieve distributed computing scenario.

However, with the data measured in the second comparison, the outcome of

the first comparison would be obvious. So we deliberately consider the second

comparison first.

Our algorithm has its strength in the running speed of triple synchroniza-

tion. A reasoning-based algorithm will need to go through an OWL reasoning

procedure and a query-answering procedure before deciding whether a triple is

“relevant” to a sub-database. The faster running speed is achieved at a cost.

We also need to evaluate how much cost is incurred. The cost of our algorithm

is that we will probably need to construct a sub-database larger than necessary

because of the extra triples that are useful for deducing relevant information.

The system is built upon Jena[102], with an extensional reasoning support

from Pellet [103]. It uses TDB as a persistent storage of triples. The system

is developed on Java 1.6 and Eclipse Indigo, tested on Windows 7 Professional,

Core 2 Duo E8500, 3.16GHz.

Since we are comparing our algorithm with no specific reasoning-based algo-
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Figure 5.9: Reasoning-based algorithm requires hundreds of milliseconds

rithm, we use the running speed of some key procedures to represent the min-

imum required running time of any algorithm that stems from OWL reasoning

and query-answering. These key procedures are abstracted as reasoning-based

algorithm in following texts, and our algorithm is compared with this “reasoning-

based” algorithm.

Fig 5.9 shows the time required for a re-classification and a query-answering

in reasoning-based algorithms. In order to fully utilize the caches in ontology

management software, we first perform a classification for the knowledge base

and fire the query once. Then after a minor change to the knowledge base,

we measure the processing time for a re-classification and a query-answering

that immediately following the change. Whether the minor change is to insert

or to remove a triple can impact the performance much, so both of them are

listed in Fig 5.9 as Algorithm 1 and Algorithm 2, respectively. However, altering

the triple to be inserted or removed made no significant impact on the running
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speed according to multiple comparison experiments. In Fig 5.9 the experiment

is carried out for 10 categories of applications and each application has 3 types

of queries. The average processing time of 17 queries from a same type is plotted

on the graph as a dot. The re-classification and query-answering after insertion

and removal will take around 350 ms and 950 ms respectively. Referring to

[32, 33, 35, 37], the running time using different reasoner is still roughly in the

same order of magnitude despite one algorithm may perform better than another.

Therefore, in our experiment, we can conclude that with a dataset on the domain

of context-awareness and of similar size of ours, any reasoning-based solution for

triple synchronization will take hundreds of milliseconds to complete.

On the other hand, it is tested that our algorithm for triple synchronization

requires less than 1 ms. This absolutely is a drastic improvement that eases

the burden on central server when an update triple arrives. This is a natural

result as the filtering process takes only hundreds of machine cycles to complete

while a reasoning process is much more complicated. It is worth noting here

again, that this drastic improvement is achieved essentially by postponing the

reasoning until really necessary. But without all the analysis and proofs in our

work, there is no way to postpone it. The reasoning has to be done on the spot,

thus dragging down the performance of the whole system as a bottleneck. The

benefit of our algorithm is conspicuous, next we should discuss the cost of our

algorithm, i.e., how much extra storage space is required to make this algorithm

possible.

Table 5.6 gives an overview of the storage required for both a reasoning-based
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Table 5.6: Storage Cost of the Algorithm

Reasoning-based Algorithm #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Individual Count 1201 688 953 799 923 529 344 681 2042 541
Triple Count 7207 2093 4506 1713 3317 1390 1136 1713 2836 724

Proposed Algorithm #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

Individual Count 1201 688 953 799 808 529 344 681 1863 541
Triple Count 27478 31953 22857 22665 23502 22527 21929 20718 23638 23335

and our proposed algorithm. Mostly the triples included in proposed algorithm is

greatly larger than the one in reasoning-based solution. The increase ranges from

4 times to 15 times in our test bench. This also gives us a hint on the relative size

of parts in Fig 5.4. One might notice that sometimes the individual included in

proposed algorithm is even smaller than that in reasoning-based solution. This

is because the reasoning-based solution will explicitly incorporates some deduced

individuals while they are left to be deduced in the proposed algorithm.

Comparing the gain and costs of the proposed algorithm, we observe that the

time required for triple synchronization drops from several hundreds of millisec-

onds to less than 1 ms, at the cost of a 10 times increase in storage space. At a

time when mass storage is much cheaper than processing unit, we can assert that

introducing such algorithm to distributed ontology computing can be beneficial

in total.

We also tested our algorithm on LUBM benchmark for further justification.

Using random seed zero, an ontology for an university of 15 departments is

constructed. This ontology has 43 classes, 25 object properties, 7 data properties,

17174 individuals, 49336 ObjectProperty assertions, and 33079 DatatypeProperty

assertions.

Not surprisingly, the triple synchronization time of our algorithm is still below
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Table 5.7: Performance of Reasoning-based Algorithm on LUBM
Query Algorithm 1 (ms) Algorithm 2 (ms)

1 328 615
2 > 1hour > 1hour
3 341 656
4 247 525
5 363 681
6 323 650
7 250981 252944
8 61533 61575
9 > 1hour > 1hour
10 390 739
11 219 555
12 310 658
13 353 670
14 570 590

1 ms. In contrast, the running time for reasoning-based algorithm is shown in

Table 5.7. Query 2 and query 9 are so complicated that their processing time

exceeds 1 hour. Similarly, query 7 and query 8 also requires a significantly longer

time to process as compared to other queries because of higher complexity in

their query pattern. Despite these anomalies, the average processing time after

insertion and that after removal are 350 ms and 650 ms, respectively.

As for the cost of the algorithm, they are studied in Fig 5.10 and Fig 5.11.

In addition to the proposed algorithm and the reasoning-based algorithm, the

tailored algorithm (with trade-off) that we discussed in Section 5.4 is also stud-

ied. The two figures are prepared using the size under proposed algorithm as a

normalizing factor, showing the relative size of tailored algorithm and reasoning-

based algorithm. Results show that the size of a reasoning-based sub-database is

usually a percentage to the size of our proposed algorithm. In a few cases, this ra-

tio drops below 10%, but mostly it is around 40%-80%. This implies the storage
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Figure 5.10: Storage Cost on LUBM (Number of Individuals Included)

cost of our proposed algorithm is usually 2-3 times, and occasionally can reach

as high as 50 times of the size required by reasoning-based algorithms. This cost

when compared to the running speed improvement is acceptable. After all, the

size of sub-database can never be bigger than the whole knowledge base, putting

an upper bound on the size of sub-databases. There is an abnormal case that for

query 11, the number of triples for reasoning-based algorithm is even bigger than

that of our proposed algorithm. This is because the reasoning-based algorithm

explicitly incorporated some deduced triples, while in our algorithm, they are

not included. Another observation is that the size of sub-database under tailored

algorithm is smaller and closer to the number required by the reasoning-based

algorithm. This means the cost can be further reduced leveraging the trade-off

between completeness and lightweightness.

Recall at the beginning of Section 5.5.1, we mentioned a complete evaluation

include two comparisons. Now it is time we consider the other comparison—
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Figure 5.11: Storage Cost on LUBM (Number Of Triples Included)

between our algorithm and the clone server method. In terms of synchronization

speed, the clone server method has the fastest speed. Clone server method

requires literally no time to do synchronization. All updates are pushed to all

other servers without any computation or decision. As discussed previously,

our algorithm still requires a filter matching process for the synchronization.

However, this process is fast enough (within 1 ms) so it would not be a problem.

Secondly, in terms of the size of sub-databases, our algorithm is better than clone

server method as our sub-databases are only sub-sets of the whole knowledge

base. A quantitative evaluation is shown in Fig 5.12 and Fig 5.13. Results

show sub-databases usually contain only 1%–6% individual counts and 30%–

40% triple counts. Both of them are significantly below 100%. There is another

important factor that makes clone server method much worse—the amount of

synchronization traffic. Clone server method requires all updates to be pushed to

other servers, resulting enormouse amount of traffic. In our algorithm however,
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Figure 5.12: Size of Sub-databases (Individual Count as Percentage to the Whole
Database)

most individual updates need no or a single forward to other servers, and most

triple updates need only 2-3 forwards to other servers. Note there is an exception

in our approach that an individual update of class Person is required to forward

to all other sub-databases. This happens when a new user joins the system.

So this type of expensive synchronization is capped at the size of user group.

To sum up, our algorithm provides better performance in terms of the size of

sub-databases and the amount of synchronization traffic. The cost here is the

less than 1 ms synchronization time, which is acceptable.

5.6 Chapter Summary

In this chapter, we proposed a fast and complete algorithm to extract sub-

ontologies from a base ontology for a given task, and also to keep the sub-

ontology updated whenever changes are issued to the base ontology. The key
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contribution of this algorithm is the idea of filter expansion. The prolonged

OWL reasoning procedure is replaced by this filter expansion algorithm at the

time doing synchronization decision. The reasoning process is postponed until

really necessary (when a query is received). Instead of using a large amount

of time in TBox classification, the filter expansion procedure focuses on ABox

selection. Starting from a small set of classes and properties, an iterative method

is employed to expand the domain of discourse to a larger set. This larger set

of filters is necessary because otherwise the query-answering may be incomplete.

When filtering the ABox of the knowledge base by using this filter set, the triples

that are directly useful for the query as well as the triples that can derive useful

information are passed to the sub-database. This seemingly simple replacement

nevertheless drastically reduces the processing time.

When we see the thousandfold improvement in processing speed, the cost of
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the algorithm is measured to be tens of times larger storage. While this result is

by itself acceptable already, we can further reduce the cost by applying a trade-

off, exchanging some overshooting completeness for the benefit of smaller sub-

databases. By restricting the maximum number of iterations in filter expansion,

the algorithm can be suspended prematurely. Though there is the risk of future

data structure changes, this technique will result in a smaller domain of discourse,

a smaller sub-database, and lower deployment costs.
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Chapter 6

Context-aware

Recommendation System

6.1 Introduction

Mobile commerce has emerged as the ubiquity of smart phones and ultra fast

mobile data network. While much of the work done in the field of mobile com-

merce has focused on the customer behaviour, business model, and wireless in-

frastructures, this work proposes a context-aware solution to mobile commerce.

Context-awareness can improve customer’s shopping experience, and thus is cru-

cial in advocating mobile commerce. In this section, an entertainment recom-

mendation system is described. Special treatment of context information storage

and its usage in recommendation systems are analyzed. The context-aware col-

laborative filtering algorithm (CCF) proposed in the work is tested to produce

better performance as compared to a traditional context-enabled CF method. A
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prototype of the system is built on the domain of music recommendation and it

is well received by selected users.

According to IDC Financial Insights’ 2012 Consumer Payments Survey, 34

percent of survey respondents have made a purchase using their mobile phone

compared to 19 percent a year ago. This clearly shows the emergence of mobile

commerce. The report also found that physical goods were the most common

mobile purchase, with more than 70 percent having purchased a physical good.

60 percent have purchased online services and digital goods instead.

Many technical aspects of mobile commerce research have reached commer-

cializing quality. The works that remain are largely to steer the shift of user

purchase habit from stationary computers to mobile terminals, and to improve

users’ experience when doing such purchases to accelerate this shift. Context-

aware applications, being first introduced to improve user experience, are the

natural choice for further advocating mobile commerce.

However, existing research on mobile commerce mostly solves problems like

behaviour, business model, wireless infrastructure, etc. How to take context

information into account is seldom considered. This work mainly looks into

two aspects of incorporating context into mobile commerce: How to capture

and represent context information, and how the context information is used

to provide better services. The “services” mentioned here specifically mean

recommending users to the most relevant product in the current situation.

The scenario in this work is set as follows: Alice is on her way back home

after one day’s work. The subway to home is taking approximately 1 hour so
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she decided to have some fun on the phone to kill time. When she refers to our

application, the system detects Alice has following contexts: She is leading a

frugal life style, though purchasing is OK, it is limited to 1 dollar (from previous

purchase history or inputted personal profile); She is on her way back home and

the time is estimated to be 1 hour (from current GPS position and pre-defined

home/work location); She has got no company so the entertainment should be for

a single person (from the observation that no friend’s device is nearby); Though

the earplug is on, ambient noise level is high (from earplug detection and speaker

sampling); Alice is fond of reading verse, listening to symphonies and playing

social network games (from personal profile).

An ideal system should make an overall evaluation of the user’s current sit-

uation, and finally comes to the decision to recommend a little social network

game Alice’s friends are playing online. But building such a system from the

expert system approach is difficult. The sheer number of recommendation rules

can overburden the developers. In this work, we propose to build such a system

using Collaborative Filtering (CF) techniques that are specially tuned to con-

sider context information. Using CF techniques, we assume Alice choice will be

similar to like-minded users’ choices, so no explicit rules are required.

The contribution of this work includes:

• We proposed a novel system that captures and manages context informa-

tion to be used by recommendation algorithms.

• We have formulated a context-aware collaborative filtering algorithm (CCF).

This algorithm managed to solve the recommendation problem in 2-D space
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instead of higher. Context information is considered quantitatively rather

than qualitatively.

This chapter is organized as such: Section 6.2 focuses on the context in-

formation gathering and distribution. The context-aware collaborative filtering

algorithm is explained in detail in Section 6.3. Section 6.4 evaluates both the

algorithm and the prototype system and we conclude this chapter in Section 6.5.

6.2 System Overview

In this section we explain details of the proposed system, but leave the recom-

mendation algorithm in next section.

From the perspective of data structure, this system comprises two databases.

The first one is the rating table, storing all user ratings as well as user contexts.

This is a 2-D table with rows corresponding to users and columns corresponding

to items/contexts. The second database is ontology-based, storing the profiles

of users, properties of the items as well as their relationships. To link these

two databases, a translation table is constructed to translate ontology objects to

row/column number and vice versa. The ontology-based database is constructed

because of ontology’s power to do reasoning. When the rating table is sparse,

meaning not many people have rated items, we can depend on the ontology

reasoning to provide satisfying results.

Context information gathered can be either physical sensor data, or user pro-

file. The user profile can be obtained through user inputs, data crawling on the
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user’s related homepages, or implicitly derived from the user’s past behaviours.

Modern smart phones have evolved into something that is much more than

a telecommunication tool. Many sensors are embedded in the smart phones,

and this number is still increasing. Smart phone sensors can detect ambient

noise level, ambient light level, moving speed, turbulence level, GPS location,

etc. These sensor data can be used to reproduce the physical environment of

the user in the virtual world. The richness of user context enables high quality

of artificial intelligence in our system. For example, in a typical E-commerce

system, the user may be recommended a serene verse if the user had shown

preference in tranquil readings. In a context-aware mobile-commerce system, we

may be able to do better than that. If the user is detected to be in a noisy and

trembling subway cabinet where focusing on a quiet reading material is difficult,

it is probably better to recommend some music for the user in the genre she had

shown interest in.

Besides the physical context of the user, the profile of the user can also be

detected. With the user’s permission, our system can gain access to the user’s

social network sites and screen her friend list and/or historical posts. Using

information retrieval techniques, this inspection can provide the recommender

system with more knowledge about the user’s preferences. User preferences

together with user’s purchase history in E-commerce sites constitute the context

of this user in a longer time frame when compared with the context gained by

sensor data interpretation. Moreover, statistics show that most people’s purchase

decisions are suggested by friends, because friends’ recommendation has the

111



highest trust level. The area of social commerce has been investigating this

phenomenon for long. Our system embraces this feature whenever it is possible

to retrieve a friend’s profile.

6.3 Recommendation Algorithm

In this section we describe how we integrate the context information in the

recommendation process.

Our system uses a modified item-based collaborative filtering algorithm for

giving predictions and recommendations, called Context-aware Collaborative Fil-

tering (CCF). Unlike MD[104] and RST[105], our approach managed to limit the

dimensionality of the algorithm in 2-D space.

6.3.1 Context-aware Collaborative Filtering

The goal of a CF algorithm is to predict the utility of a certain item for a

particular user based on the preference (both explicit and implicit) of the target

user and other like-minded users. Usually an m×n rating matrix R is employed

to represent all the user-item data. Each entry of the matrix Ri,j in R represents

the rating of the ith user on the jth item. Ratings are in a numerical scale

indicating the preference of the user. A typical application uses 1 to 5 to denote

lowest preference to highest preference, and 0 is used to represent that item is

not yet rated by the user.

A multi-dimensional rating matrix that incorporates context information is

denoted by Rm×n×c, where c is the number of context information types. CCF
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unfolds the third dimension and has a rating matrix denoted byRm′×(n+c), where

m′ is the unfolded user number. For example, a user may have rated on two

movies under different context sets. By duplicating the user, these two ratings

are projected to the 2-D space as 2 rows. The first/second row represents the

rating and contexts for the first/second movie, both given by the same user.

In a traditional context-aware collaborative filtering algorithm, the third di-

mension (context information) is simply used as a filter condition. Only if the

value of context information exceeds some arbitrarily-set threshold, the rating

as a whole can be considered in later predictions. It is hard to determine the

threshold and this scheme restricts the usage of context information. In our ap-

proach, context information is treated as a special class of items. The columns of

the matrix can be divided into normal items and context items. The meaning of

the ratings in this matrix is also augmented, and is thus referred to as extended

ratings. With extended ratings, the kernel of CF algorithm can remain largely

intact while considering the effect of context information. Other modifications

of CF algorithm involve a quantification of context information, and an extra

weighting scheme.

Quantification of context information converts context information of various

formats into the same format as ratings. Context information that is on a

continuous scale is quantified to its nearest integer between 1 and 5. Binary or

Boolean context information is either grounded to 1 or raised to 5. Some of the

context information may have discrete value and the size of the range is greater

than 5. They are restructured as a series of ratings, or more mathematically, a
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vector of the same length as the size of its range. In this vector, the field that

corresponds to the currently active value will be set to 5 and all others are set

to 1.

The weighting scheme in our approach endows extra significance to context

items than normal items. In typical CF algorithms, the last step is usually a

weighted sum prediction:

Pu,i =

∑

Nj∈N

(si,Nj
∗Ru,Nj

)

∑

Nj∈N

(|si,Nj
|)

(6.1)

where Pu,i is the prediction of user u’s opinion towards target item i, N is the

set of items that are similar to item i, si,Nj
is the similarity between item i and

item Nj , and Ru,Nj
is the user u’s rating on item Nj . The similarity measure

used in our system is correlation-based:

si,j =
Σu∈U(Ru,i −Ri)(Ru,j −Rj)

√

Σu∈U(Ru,i −Ri)
2
√

Σu∈U(Ru,j −Rj)
2

(6.2)

where U is the set of users who both rated item i and item j.

Equation 6.1 is a weighted sum of ratings, which is then normalized to scale.

With the introduction of context information, the predicted rating should be

defined in a way that context information is also considered. To account for

the effect of different context information, we assign a vector of weights in the
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modified prediction:

Pu,i =

∑

Nj∈N

si,Nj
∗Ru,Nj

+
∑

Cj∈C

wu,Cj
∗ si,Cj

∗Ru,Cj

∑

Nj∈N

(|si,N |) +
∑

Cj∈C

(|wu,Cj
∗ si,Cj

|)
(6.3)

where C is the set of context items. Note that Ru,Nj
can be read from the

multiple rows in the rating matrix because there are multiple rows that corre-

spond to the user u. If the predicted rating happens to be beyond the range of

common ratings, it is capped or grounded to the limits. The parameter wu,Cj
is

determined by a learning process. It represents the level of fastidiousness of user

u on context Cj. When it is set to 0, it means the context item is completely

irrelevant to this user. When given a value greater than 1, the context item is

treated with escalated importance. Note that this set of parameters are inde-

pendent of the target item i, it is only dependent to user and context item. The

effect of changes of target item is completely embodied in the parameter si,Cj
.

6.3.2 Learning Process

The system computes the similarities between pairs of normal items, between

pairs of normal item and context item, before any user’s visit. In addition to

that, the weight parameters introduced in CCF are also computed at the same

time. Similarities are computed following Equation 6.2. Now we describe the

supervised learning process that we use to compute the weight parameters.

The inputs to the process include: the m× (n + c) rating matrix R, a pre-

computed (n + c) × (n + c) similarity matrix S based on Equation 6.2 (there
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is a c × c blank sub-matrix because similarity between context items are not

required). The output will be an m× c weight matrix W.

We explain the learning process for a specific user u. This will generate one

row of matrix W. The complete matrix is obtained after applying the learning

process for all users. We define:

wu =

[

wu,C1 wu,C2 . . . wu,Cc

]⊺

(6.4)

si =

[

si,C1 si,C2 . . . si,Cc

]⊺

(6.5)

Ru =

[

Ru,C1 Ru,C2 . . . Ru,Cc

]⊺

(6.6)

Substituting known values with constants:

Pu,i =
C1,u,i +wu

⊺(si ◦Ru)

C2,u,i + tr(|wusi⊺|)
(6.7)

where si◦Ru is the entrywise product of si and Ru, tr(A) is the trace of a matrix

A.

Suppose the number of items rated by user u is nu. Their indices are from

1 to nu. Then we can list an array of equations based on Equation 6.7 as a

constant in each iteration. Letting Pu,i = Ru,i for i ∈ {1, 2, . . . , nu}, the set of

equations will have the form:

Awu = b (6.8)

where A is a nu × ||C|| coefficient matrix, and b is a coefficient vector of length
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Input: rating matrix R, similarity matrix S, user count m, normal item count
n, context count c, threashold t

Output: weight matrix W
for u = 1 to m do

Initialize w
(0)
u =

[

wu,C1 wu,C2 . . . wu,Cc

]⊺
=

[

1 1 . . . 1
]⊺
;

l = 1;
repeat

for each Ru,i 6= 0, 1 ≤ i ≤ n do
Compute C1,u,i =

∑

Nj∈N

si,Nj
∗Ru,Nj

;

Compute C2,u,i =
∑

Nj∈N

(|si,N |);

Let Pu,i =

C1,u,i +
∑

Cj∈C

w
(l)
u,Cj

∗ si,Cj
∗Ru,Cj

C2,u,i +
∑

Cj∈C

(|w
(l−1)
u,Cj

∗ si,Cj
|)

= Ru,i;

Formulate this equation as: A⊺
u,iw

(l)
u = bu,i, where Au,i is a vector of

length c, bu,i is a scalar;
end for
Combine the equations to yield the linear equation Aw

(l)
u = b, where

A =
[

Au,1 Au,2 . . . Au,c

]⊺
, b =

[

bu,1 bu,2 . . . bu,c
]⊺
;

Solve for w
(l)
u = A+b;

∆wu = |w
(l)
u −w

(l−1)
u |;

until ∆wu < t

Save wu = w
(l)
u ;

end for
W =

[

w1 w2 . . . wm

]⊺
;

return W;

Figure 6.1: Learning Process for Weight Parameters

||C||. Then, we can use Moore-Penrose pseudo-inverse to get wu for the next

iteration:

wu = A+b (6.9)

The above mentioned process is formulated in Fig 6.1.
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6.3.3 Sparsity Problem

Sparsity problem is well-known in the community of recommendation systems.

In our system, we tackle the sparsity problem by leveraging the power of semantic

web.

If the rating matrix is not sparse (specifically, the number of ratings given

by user u is greater than δ), our modified CF algorithm is applied to give recom-

mendations. Otherwise, out system will work in the expert system mode. The

system will first ask the user to input several selecting criteria. The input UI

is demonstrated as in Fig 6.2. The UI prompts user to input a searching crite-

ria, represented by a subject, a property and an object/value. The top spinner

(drop-down list) contains all ontology classes. They are sorted according to the

class hierarchy to ensure easy access. The second spinner specifies a restriction

on ontology properties. Initially this spinner contains all possible properties,

but as users select some specific class in the first step, some properties that

cannot be applied to the specified class are filtered out. Depending on whether

the property selected is an ObjectProperty or DatatypeProperty, the user will be

prompted to input either the third spinner or the text field. Inside the text field,

users can input either a number, or an expression (for example “> 1”). After the

selection criteria is determined, a semantic language query is fired to retrieve all

relevant items matching those ontology classes, and the answers are formatted

and displayed to users. The number of ratings received for each item in the

answer set is used to determine the order by which these answers are displayed

to users.
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Figure 6.2: When the rating matrix is sparse, a search dialog is present

6.4 Evaluation

This section evaluates our system in two perspectives. Firstly, we examine the

effectiveness of the recommendation algorithm as well as the learning process

through quantitative metrics. Secondly, we survey users of the prototype system

to receive qualitative responses.
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6.4.1 Effectiveness of the Algorithm

The differences between CCF and other multi-dimensional (MD) context-aware

CF algorithms are: 1. CCF incorporates context information into consideration.

2. A weighting scheme is employed to translate the impact of context information

into prediction values. 3. An iterative learning process is devised to produce the

weights.

In order to compare the performance of CCF with MD, a dataset with context

information appended to each rating is required. However, traditional recom-

mendation system benchmarks do not consider the context of the rating. We

have to collect the information by ourselves.

We built a spreadsheet to collect user ratings on movies. By referring to the

data collection procedure as described in [104] and [105], each rating is appended

with 4 context attributes: Gender, Time (weekday or weekend), Location (at

home or at cinema), and Companion (alone, with friends, with lover, or with

family). All of the context information can be input with the possible choice of

“don’t remember”. Finally, a dataset with 52 users, 38 movies and 945 ratings

is constructed.

The evaluation of our system is carried out as follows: The ratings given by

52 users are split into two groups. The one with 45 users is used as training set

and the other with 7 users is test set. This split is done 15 times. The metrics

chosen are Mean Absolute Error (MAE), Precision and Recall. MAE is defined
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as:

MAE =

∑

i∈T

|Ri − Pi|

||T||
(6.10)

where T is the test set, Ri is the actual rating, and Pi is the predicted rating.

Precision and recall are based on the assumption that a rating higher or equal

to 4 is considered “good”. Precision is defined as the portion of truly “good”

ratings among the ones that are predicted to be good. Recall is defined as the

portion of correctly predicted “good” ratings among all the truly “good” items.

Specifically,

Precision =
tp

tp+ fp
(6.11)

Recall =
tp

tp+ fn
(6.12)

F-measure =
1

1
Precision + 1

Recall

(6.13)

In this definition, tp means true positive, fp means false positive, and fn

means false negative. F-measure is the harmonic mean of precision and recall.

Fig 6.3 shows the comparative MAEs CCF and MD under all 15 experiments.

The average MAE is 0.55 for CCF and it is 0.63 for MD. Fig 6.4 shows the

precision/recall measure of both approaches. The precision/recall for CCF is

averaged to 0.625/0.401, while for MD it is 0.575/0.415. The F-measures are

0.53 and 0.48 for CCF and MD respectively. Though there are exceptions when
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Figure 6.3: MAE measure with 15 splits of the dataset

CCF performs worse than MD, the overall performance of CCF is better, with

smaller MAE and higher F-measure.

To sum up, by utilizing our approach, context information can be better

utilized and thus better recommendation performance is observed.

6.4.2 User Survey

So far we have justified the effectiveness of our recommendation algorithm, now

we want to examine how the system as a whole can help users. A prototype

system is built on Android and a server is set up to respond to queries from the

clients. The knowledge base of the system is based on the test bench proposed in

Chapter 4. Currently we have implemented only one feature of the whole system,

i.e. context-aware music album recommendation. For our system, we added
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a thorough hierarchy of modern music genres and albums into the ontology.

Specifically, DBPedia1 is linked to the ontology to provide the professional music

taxonomy. The information of a total of 1545 albums released in the years 2010,

2011 and 2012 are extracted from Wikipedia lists.

The system works as follows: At the initial setup, the application will require

users to input several ratings for the albums she had listened to. This can help

the system to recommend with better precision. However, this step can be

skipped when the user prefers to try out the application first. Then the system

will recommend several music albums to the user following the algorithm we have

proposed. This can be done either through a collaborative filtering process or

through the expert system approach. The expert system approach requires the

1http://wiki.dbpedia.org/About
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user to input several choosing criteria. If no criterion is input, the most popularly

recommended albums are recommended to the user. When the recommended

item is decided, a Google link and a YouTube link are given to redirect users

to listening pages. After the user has finished listening to the music, the users

can input her rating for the album in the application. This rating is taken down

together with the current context of the user, to improve future recommendation

precision.

10 users are invited to try out this application after a prototype has been

developed. Some of the user feedbacks are quoted below:

“Interesting app. Hope to see it in one piece and will definitely try again

then.”

“It gets me introduced to some rock music that I have never tried. But it

turns out to be quite good.”

“The idea is good. But the application seems to be too dull. More back-

ground information could be given when recommending so that we get more

than just an album name.”

Overall, the feedback is positive. Users are delighted to use the application

and many suggestions on improving it are given.

6.5 Chapter Summary

In this chapter, we have proposed a novel system to realize context-aware mobile

commerce. Two important aspects of the system are analyzed. The first is how

to capture and represent context information. The second is how to make use of
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the context information in a recommendation algorithm.

Context information, after being captured by a sensor or a crawler, is repre-

sented as a triple in the knowledge base. This triple is then quantified into a scale

from 1 to 5, and it is plugged in the rating matrix. Context information is then

used in the context-aware collaborative filtering algorithm to tune recommen-

dations. Unlike the traditional solution for context-aware collaborative filtering

algorithms, our approach managed to represent context information within 2-D

space. With a specially designed weighting scheme, the context information can

be utilized in the calculation of similarities between items. This change rid us

from setting an arbitrary numerical threshold or a cut-off qualitative context,

and we can benefit from the quantitative effect of context information. Together

with the weighting scheme, an iterative learning procedure is proposed to learn

the weights from training sets.

The algorithm is tested in a movie recommendation scenario. Experiment

results show our approach can decrease MAE and produce higher precision and

recall. A prototype system on the domain of music recommendation is con-

structed and multiple users are invited to try and comment on it. The feedback

from users shows the system is promising and it gives them positive mobile

commerce experiences.
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Chapter 7

Conclusion

7.1 Thesis Contribution

In this thesis, we have presented various aspects of context-aware mobile appli-

cations.

Firstly, in order to facilitate researches on context-aware mobile applications,

we have constructed an ontology-based test bench on the domain of context-

awareness. This test bench terminates the time when no ontology-based bench-

mark is available on the domain of context-awareness and makes developers’

lives easier. With this test bench, the research cycle in this area can be greatly

shortened. Without putting the effort to build a real system, one can test out

many research ideas on this test bench. Through an extensive survey of state-of-

the-art mobile applications, the domain of knowledge in this area is modelled as

an ontology. A large amount of synthetic concrete information composed using

this vocabulary is populated, together with several sample applications, query
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sequences and knowledge duplicates.

After that, another important problem while deploying ontology-based context-

aware system is studied. With the introduction of our distributed computing

scheme, client-server queries can now be classified into different groups and the

queries can be handled by many lightweight sub-servers. In designing the dis-

tributed computing scheme, a series of problems are tackled. These include 1.

how to extract a sub-database from the whole one to answer one category of

queries; 2. how to control the size of the sub-database so that we won’t end

up with a sub-database equal to or even bigger than the whole database; and

3. how to keep the sub-databases synchronized when database updates are re-

quired. When we see the thousandfold improvement in processing speed, the

overhead of the algorithm is measured to be tens of times larger storage. While

this result is by itself acceptable already, we can further reduce the overhead by

applying a trade-off, exchanging some overshooting completeness for the benefit

of smaller sub-databases. By restricting the maximum number of iterations in

filter expansion, the algorithm can be suspended prematurely. Though there is

the risk of future data structure changes, this technique will result in a smaller

domain of discourse, a smaller sub-database, and lower deployment costs.

The last part of the thesis addresses the problem of introducing context infor-

mation in mobile recommendation systems. We proposed a novel algorithm that

is both able to represent context information in the framework of recommenda-

tion, and it is able to make use of the information to improve recommendation

precision. A special feature of the algorithm is that we have managed to make
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use of the context information in 2-D space. Thus, we have avoided the direct

projection of context-enabled 3-D rating matrix to 2-D, thus avoided the infor-

mation loss. Experimental results show that our context-aware recommendation

algorithm can reduce MAE while improving precision and recall. A prototype

system on the domain of music recommendation is constructed and multiple

users are invited to try and comment on it. The feedback from users shows the

system is promising and it gives them positive mobile commerce experiences.

Let’s revise the challenges we have tabulated in the first chapter. On the

domain of ontology-based context-aware systems, we are facing heterogeneous

context information types, slow reasoning speed for real-time requirements, and

convoluted ontology structure. For these challenges, we used the OWL DL lan-

guage to represent various context types, proposed the distributed computing

scheme to boost the query processing speed, and resolved the convoluted on-

tology structure by carefully analyzing the semantics behind. On the domain

of context-aware recommendation systems, we have the following challenges:

1. How to incorporate context information in the collaborative filtering is un-

known. 2. Existing context-aware recommendation algorithms require hand-

picked thresholds to work. 3. The well-known sparsity problem also exists in

context-aware recommendation algorithms. For these challenges, we introduce

context information as special items and unfold duplicated users to incorporate

context information. A weighting scheme is applied to remove the requirement

of hand-picked rules. Lastly, we use an ontology-based expert system to replace

the recommendation algorithm when the data is sparse.
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This thesis as a whole solves some technical problems in context-aware mobile

applications. It also intends to promote the usage of such applications. We

hope our work can inspire other researchers as well as application developers to

contribute to the course of pervasive computing. Let’s expect our life styles to

be totally different in 10 to 20 years from now thanks to the pervasive computing

vision.

7.2 Future Work

This thesis solved various problems in the domain of context-aware mobile ap-

plications. However, there are still many issues left ot be addressed. Future

research directions can be:

1. Extend the partitioning algorithm introduced in Chapter 5 to incorporate

changes in OWL 2. OWL 2 is standardized at the end of 2012, so it’s not

considered when that part of work is completed. OWL 2 introduced some

more semantics and restrictions as compared to OWL, thus the algorithm

should be updated as well.

2. Continue building the music recommendation application introduced in

Chapter 6. Currently we have finished validating the context-aware rec-

ommendation algorithm as well as a user survey for the expert system.

However, one can continue to develop this application, introducing the

context-aware recommendation algorithm in the system. When all the

features are completed, I believe the application would be a popular one
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among music lovers.

3. One new research direction is to devise a new temporal context model.

Current context models are not very efficient when expressing history con-

texts. Most often the history contexts are directly replaced with new ones.

But it is reasonable to assume the history of contexts can have an impact

on future contexts. Therefore, discarding those information would be a

waste of resource. This temporal context model should provide means to

store as well as reasoning over history context information.

4. With the proliferation of context-aware mobile applications in the future,

the generated data set would be growing at a very fast speed. Another

research direction is to apply data mining techniques in this ever growing

data set to derive higher-level contexts. These higher-level contexts can

include users’ hidden preferences, or perhaps they can be used to detect

life style patterns so even psychological recommendations can be given.
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[61] P. Korpipää et al. “Managing context information in mobile devices”. In:

IEEE Pervasive Computing 2.3 (2003), pp. 42–51.
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Appendix

Table 7.1: Results of Mobile Application Survey (partial)

App Name Use Cases

Category: Book and References

Google Sky

Map

GPS reading. Accelerometer reading.

Bible Bible contents online.

Dictionary.com Online content of dictionary and thesaurus, pronunciation,

spelling suggestion, example sentence, etymology, daily content,

voice-to-text, favorite word list.

Moon Phase

Pro

Show moon phases, crescent angle, rise/set times. Calendar show,

live wallpaper, widgets.

Aldiko Book

Reader Pre-

mium

Read and download ebooks. Import your own ePub and pdf files.

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Category: Business

Documents To

Go 3.0 Main

App

View, create and modify Microsoft word, excel and powerpoint

files. Rich formatting in word, many functions support in excel,

view and rehearse powerpoint, google docs support, desktop sync,

attachment, password-protected files

Exchange for

Android 2.x

Touchdown syncs email, contacts, calendar, tasks, notes and

SMS.

PrinterShare

Mobile Print

Print service to nearby direct printing via wifi or bluetooth. Print

to nearby by PC shared printer. Print to remote PC shared

printers.

CamCard -

Business Card

Reader

Capture camera image of business cards. Image enhancement.

Save into contacts(phone, gmail, exchange). QR code generation

and recognition. Email signature recognition. Linkedin invita-

tion.

Category: Communication

Torque A car performance diagnosis tool. It measures torque, bhp, tem-

perature, rpm. Fusion with Google earth. See your car’s status

in real time.

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Backup to

Gmail

Sync SMS, MMS, and call logs to gmail account.

WebSharing

File/Media

Sync

Share files between phone and computer. Set up a temporary http

server on mobile phone, and access it using a generated URL on

computer to do syncing.

WhatsApp

Messenger

Real-time messenger, push notification, server storage, group

chat, exchange contact.

Category: Finance

Pageonce Pro -

Money & Bills

Manage your bank accounts, credit cards, bills and investments

in one place. Real-time alerts or notifications.

anMoney Personal finance assist with syncing ability. Calendar. Send event

to guests. Import payee from contact. Budgeting.

Chase Mobile JP Morgan Chase accounts. Nearest branch or atm locator. Talk

to service representatives. Deposit checks.

Square Personal payment terminal. Credit card reader. Accept visa,

master, and many more.

Category: Health & Fitness

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Endomondo

Sports Tracker

Pro

GPS tracking of time, distance, speed, calories. Audio feekback

every mile or km. Workout route map. Friends list. Beat friends.

Share on facebook. Personal history. Time goal.

CardioTrainer

Pro

Weight loss trainer, measure heart beats, track route, voice out-

put and music, pro training of 20 levels.

Calorie

Counter Pro

416,000+ foods database, search food, favorite and typical serv-

ing, recipe, activities(exercise), weight-loss plan.

Baby ESP Track baby’s activities, including nap, sleep, breast feeding, bot-

tles, diapers, medicines, breast pumping. Compare growth with

WHO growth chart. Sync data between devices. Reminder noti-

fication. Keep journal. Compare with friends.

Category: Libraries & Demo

eSpeak for An-

droid

Port of eSpeak engine on android. Text-to-speech.

ES Secu-

rity Manager

(beta)

Protect privacy (password to SMS, dialer, contacts). Scan

threats. Find lost phones (lock remotely, get location, SMS, con-

tacts, SIM information back).

Category: Lifestyle

Continued on next page

152



Table 7.1 – continued from previous page

App Name Use Cases

Sleep as an

Droid

Use accelerometer to track movement when sleeping. These mov-

ings are modelled to match your sleeping pattern, and wakes you

up when in light sleep.

Jamie’s 20

Minute Meals

A large amount of recipe data that goes with many video illus-

trations.

Horoscope Horoscope texts for today, tomorrow, and for current month. Up-

dated everyday.

Zillow Real Es-

tate & Rentals

Estimate of home value and rent. Home for sale/rent information.

Near-by homes/apartments.

Category: Media & Video

iSyncr Sync iTunes playlist to phones.

Ringdroid Create ringtones by cutting audio files or record on the fly.

MagicMarker Touch-paint program for writing and drawing neon-style on black

background. Set as background or share through mail or SNS.

DoggCatcher

Podcast Player

Feeds and podcasts reader/player.

Category: Medical

ICE: In Case of

Emergency

A list of people to call in emergency. Insurance information.

Doctor names and numbers.

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Medscape Drug references, drug interaction checker, disease and condition

reference and treatment guide, procedure reference, daily medical

news, physician/pharmacy/hospital directories.

Mini Nurse -

Lite

Medication dosage, IV rate, nursing skill.

iPharmacy:

Pill ID & Rx

ref

Bar-code reader for drugs. Detailed drug guide. Indication,

dosage, contraindication, precautions, adverse reaction, drug in-

teraction, overdosage, and how-supplied of pills and drugs.

Category: Music & Audio

PowerAMP

Music Player

Music player. Equalizer. Download missing album art. Visual

themes.

SoundHound Music recognition, hum a tune to search. Instant lyrics and artist

information. Voice search for albums and bands.

Shazam En-

core

Use a music clip to identify, buy, watch related video, get lyrics,

and share with friends.

Pandora( R©)

Internet Radio

Personalized radio station. Start with the name of your favorite

artist, song or composer, Pandora will create a “station” that

plays their music and music of same kind.

Category: News & Magazines

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Read It Later

Pro

Save web contents for later reading. Distilled contents. Sync

reading lists. Offline reading. Save scroll position.

NewsRob Pro Syncs with Google Reader. Downloads full/partial pages of feeds.

World Newspa-

per

Video news. Translate page. Offline viewing. Read It Later

Integration.

Google Reader Follow favorite sites, blogs. See friends’ sharing. Sync.

Category: Photography

PicSay Pro Modify and enhance pictures. Sharpen, red eye, crop and stretch,

distort, paint, effects, etc.

Vignette Add film and camera effects to your photos. Effects, frames,

different camera styles, timer, geotagging.

Photaf 3D

Panorama Pro

Utilize camera and orientation sensor to stitch 3D panorama pic-

tures. Facebook share.

PhotoFunia Photo editing tool. Auto detects faces and do pasting to inter-

esting backgrounds.

Category: Productivity

Root Explorer

(File Manager)

File manager, SQLite database viewer, text editor, zip file extrac-

tor, execute scripts, remount, permission, bookmar, stream files,

apk binary XML viewer.

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Thinking

Space Pro

Create visual thought maps to help organize and plan your ac-

tivities and ideas.

ColorNote Notes, TODO list, shopping list. Organize scheduler in calendar.

Password protection. Reminder on status bar. Search. Colordict

add-on. Share notes via SMS, email, twitter.

Google Gog-

gles

Search by real world pictures. Image recognition. Identify prod-

ucts, famous landmarks, storefronts, artwork, popular images.

translate. Extract contact info from business cards.

Category: Shopping

Mighty Gro-

cery Shopping

List

Multiple lists, price, quantity, tax, coupon, voice recognition, fa-

vorite, sync, barcode scan, recipe.

Barcode Scan-

ner

Scan barcodes on products then look up prices and reviews. Scan

Data Matrix and QR Codes and contact info. Share your con-

tacts, apps, and bookmarks via QR Code.

Key Ring Re-

ward Cards

Save loyalty cards and coupons to your phone.

Category: Social

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Tapatalk

Forum App

Access vB, phpBB, IPB, SMF forums.

SymbolsKeyboard

& TextArt Pro

Send ASCII symbols or text art from the library to

friends/forums. Create custom art.

FunForMobile Share ringtone, wallpaper, joke, photo, video. Chat, talk, play

games. Download wallpaper, ringtone, video made by other mem-

bers.

Category: Sports

SkyDroid -

Golf GPS

Satellite view of every golf course, GPS Distance to every green,

water hazards, bunkers, etc. Shot Tracking.

Dynomaster Drag racing application. Data reply, power calculator, satellite

and street view, G-meter.

Soccer Score

Pro

Live football score, match stats, news(league and club).

Category: Tools

Titanium

Backup PRO

App freezer, multi backups, batch restore, migrate app data

across roms.

App Protector

Pro

Privacy protection tool. Lock any application on your phone:

SMS, Message, Gmail, Photo, Gallery, Market.

Continued on next page
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Table 7.1 – continued from previous page

App Name Use Cases

Category: Transportation

Car Locator Parking timer, locate your car, location history, location favorites.

SpeedView Pro GPS-based speedometer, speed warning.

Plane Finder Visualize planes on google maps. Plane info.

Waze Community GPS navigation. User generated traffic info (inclu-

sive of road information, congestion), route time estimation.

Category: Travel & Local

FlightTrack Get real-time flight status and map tracking for airline flights

worldwide. Delay history, delay forecast.

BackCountry

Navigator

PRO

Preload topographic map, GPS waypoints, outdoor.

GPS Status &

Toolbox

GPS sensor reading, compass with magnetic and true north, lev-

eling tool. Mark and share your location. Navigate back later.

Category: Weather

WeatherBug

Elite

Get the latest weather conditions, forecasts, radar animation,

alerts.

The Weather

Channel

Forecast temperature, precipitation, wind, UV index, visibility.

Video news, integration with iWitness.
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