988 research outputs found

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Design and implementation of the node identity internetworking architecture

    Get PDF
    The Internet Protocol (IP) has been proven very flexible, being able to accommodate all kinds of link technologies and supporting a broad range of applications. The basic principles of the original Internet architecture include end-to-end addressing, global routeability and a single namespace of IP addresses that unintentionally serves both as locators and host identifiers. The commercial success and widespread use of the Internet have lead to new requirements, which include internetworking over business boundaries, mobility and multi-homing in an untrusted environment. Our approach to satisfy these new requirements is to introduce a new internetworking layer, the node identity layer. Such a layer runs on top of the different versions of IP, but could also run directly on top of other kinds of network technologies, such as MPLS and 2G/3G PDP contexts. This approach enables connectivity across different communication technologies, supports mobility, multi-homing, and security from ground up. This paper describes the Node Identity Architecture in detail and discusses the experiences from implementing and running a prototype

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    DIP: Disruption-Tolerance for IP

    Full text link
    Disruption Tolerant Networks (DTN) have been a popular subject of recent research and development. These networks are characterized by frequent, lengthy outages and a lack of contemporaneous end-to-end paths. In this work we discuss techniques for extending IP to operate more effectively in DTN scenarios. Our scheme, Disruption Tolerant IP (DIP) uses existing IP packet headers, uses the existing socket API for applications, is compatible with IPsec, and uses familiar Policy-Based Routing techniques for network management

    Some experiences in using virtual machines for teaching computer networks

    Get PDF
    Laboratory practice is a fundamental aspect of computer network learning. Experiments tend to be very specific, frequently demanding changes in the local network topology and privileged access to the operating system configuration. These features impose a specific and exclusive laboratory for network teaching experiments. However, it is not always possible to provide such laboratory; the reality in most institutions is to have shared laboratories, used by different students and disciplines. This problem can be alleviated by the use of virtual machines, allowing each student to build his/her own network experiment, using the appropriate topology, and thus not disturbing the other activities running in the lab. This paper presents some experiences in using virtual machines to teach advanced aspects of computer networks, such as IPSec, firewalls and network services. Also, some key points are highlighted in order to show the benefits of virtual machines for pedagogical practice.Education for the 21 st century - impact of ICT and Digital Resources ConferenceRed de Universidades con Carreras en Informática (RedUNCI

    Security Protocol for Active Networks.

    Get PDF

    Moving Target Defense for Securing SCADA Communications

    Get PDF
    In this paper, we introduce a framework for building a secure and private peer to peer communication used in supervisory control and data acquisition networks with a novel Mobile IPv6-based moving target defense strategy. Our approach aids in combating remote cyber-attacks against peer hosts by thwarting any potential attacks at their reconnaissance stage. The IP address of each host is randomly changed at a certain interval creating a moving target to make it difficult for an attacker to find the host. At the same time, the peer host is updated through the use of the binding update procedure (standard Mobile IPv6 protocol). Compared with existing results that can incur significant packet-loss during address rotations, the proposed solution is loss-less. Improving privacy and anonymity for communicating hosts by removing permanent IP addresses from all packets is also one of the major contributions of this paper. Another contribution is preventing black hole attacks and bandwidth depletion DDoS attacks through the use of extra paths between the peer hosts. Recovering the communication after rebooting a host is also a new contribution of this paper. Lab-based simulation results are presented to demonstrate the performance of the method in action, including its overheads. The testbed experiments show zero packet-loss rate during handoff delay

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer
    • …
    corecore