SECURITY PROTOCOL FOR ACTIVE
NETWORKS

Lawrence Cheng, Alex Galis
Electrical Engineering Department, University College London, Torrington Place, London, UK. WCIE 7JE
e-mail: {l.cheng, a.galis}@ee.ucl.ac.uk

Abstract — Active packets carrying management and control
code have a dynamic nature and support dynamic routing. Thus,
active packets must be protected in an end-to-end and hop-to-
hop fashion. In this paper, we present a novel approach, known
as Security Protocol for Active Networks (SPAN), which enables
an active packet to be securely transmitted during (instead of
after) Security Association (SA) and management negotiations
along a new execution path.

1. INTRODUCTION

It was identified in [2][6][10][24][25]]26]][32] that there is a
need for an end-to-end and hop-to-hop security approach for
active networks due to the dynamic nature and dynamic
routing capability of active packets; details can be found in
[2]1[32]. This paper suggests that an end-to-end and hop-to-
hop active network security management protocol must be
efficient i.¢. to reduce as much as possible the performance
overhead gencrated by hop-to-hop SA establishment.
Furthermore, as active packets may traverse through
heterogeneous administrative domains, the protocol must be
flexible ie. allows Security Association (SA) negotiations
between active nodes of different administrative domains.
The protocol must not rely on centralised servers, and should
reduce the number of message exchanged and computational
processes for key establishment, in order to enhance the
scalability of the approach. Furthermore, the protocol should
be secure i.e. should support anti-replay and man-in-the-
middle attacks; and the protocol should be able to identify
legitimate requests from DoS attacks as efficiently as possible
[32].

We have discussed existing approaches in [2][32]. A
summary will be provided in this paper. Asymmetric
cryptography requires encrypting, creating, and verifying
signatures of every modifications on every active packets on
every executing node, which is not scalable [2][32]. Shared
key pre-distribution does not support shared key negotiation,
and it is not practical to be deployed in a large scale network
because each pair of hop must be equipped with different
shared keys in order to achieve authentication (essentially the
same problem experienced in multicast IPSec [13]) [32]. The
Keying Server (KSV) approach in [6] is not scalable; Secure
Active Network Environment (SANE) recommends a set of
workarounds for hop-to-hop key establishment [10][11][24]
but the workarounds doe not scale. In Secure Active Node
Transfer System (SANTS) [1], hop-to-hop key establishment
was not addressed. Signed Key Transport (SKT) [5] has
limited flexibility. Traditional security management

0-7803-9746-0/06/$20.00©2006 IEEE

approaches (such as IKE, Kerberos, Oakley, ISAKMP... etc.)
must be refined to create less overhead when deployed in a
hop-to-hop fashion [32]. The Simple Key Exchange for
Active Networks (SKEAN) [32] approach was the first
approach that attempts to address practical security
management in active networks. However, the initial design
of SKEAN did not take into account of DoS attacks. The Just
Fast Keying (JFK) [19] protocols claim to be DoS-resistant.
However, as we will discuss in later section, our proposal,
known as Security Protocol for Active Networks (SPAN), is
capable of detecting DoS attacks at a much carlier stage than
IKEv2, IKEv1 in aggressive mode+IPSec, SKEAN, and JFK.

2. THE SPAN PROTOCOL

Because active networks reside in the core network [23][32],
public IP addresses are assumed. Individual node security (i.c.
firewalling, packet filtering... etc.) and SA maintenance on
nodes are outside the scope of this paper, thus secure storage
of keying materials and active node integrity are assumed.
Active packets are currently implemented as UDP packets
[4][22]. According to the active node architecture [22][26],
cach active node has only one NodeOS', and the NodeOS
hosts the security facility that provides security services to all
locally hosted EEs/AAs i.e. a transparent security approach.
Thus, SPAN focuses on supporting secured negotiations and
secured active packet transmission between NodeOSs of
active nodes. As active nodes reside in the core network on
the Internet [23][32], we assume that active nodes have
access to PKI. Since PKI is a common infrastructure for non-
repudiation protection e.g. embedded in all web browsers, we
assume that each NodeOS has its own PKI key pair and
certificate. But for scalability, we assume that the number of
EE involved in an active network may be of large number
[32]; thus each EE may or may not have its own public key
pair. We do not address administrative issues in this paper i.c.
how Certificate Authorities (CAs) verify actual ownership of
valid PKI certificates: we assume the integrity of legitimate
PKI public key pair owners. Thus, if a peer uses legitimate
keys for signing data, he/she would be traceable i.e. non-
repudiation protection enforced through PKI. Because we
assume node and key storage integrity and the integrity of
PKI public key pair owners, we assume that any requests with

! A NodeOS is a software platform installed on high speed routers (i.e.
passive nodes) in the core network of today’s Internet. A NodeOS provides
essential functionalities such as security support and de-multiplexing to
support the operation of active packets [3][21][23].

valid signature are legitimate requests; else they are attack
messages. We assume attackers are capable of intercepting all
messages on the Internet, and are able to create/modify all
types of messages.

The SPAN protocol involves an exchange of three messages
only to complete both SA and Execution Environment® (EE)
(optional) negotiation and secured active packet transmission.
The SPAN exchange involves two peers: an Initiator (I) and a
Responder (R). The Initiator is the NodeOS which wishes to
start a hop-to-hop SA and EE (optional) establishment
process for secured active management packet transmission;
the Responder would be the NodeOS which is about to
receive a request for hop-to-hop SA and EE (optional)
establishment process.

HDR INIT, SAi, [EEi]l, [CERTi], D-Hi,
NONCEi, AUTHi -2

Fig. 1. SPAN INIT

The first message (SPAN INIT) is sent from the Initiator to
the Responder, and is shown in Fig. 1. HDR INIT is the
SPAN INIT message header. SAi is a set of security
association parameters offered by the Initiator to the
Responder. These parameters are for example the supported
or preferred encryption algorithms, supported or preferred
key size... etc. D-Hi and NONCE1 are the Diffie-Hellman (D-
H) public value and a random 128-bit, never reused nonce [8]
generated by the Initiator. The nonce is needed for anti-replay
attacks (see later section). Both D-Hi and NONCEi are
required for symmetric secret establishment between the
Initiator and the Responder [8][14]. Items in square brackets
are optional. [CERT1i] is the PKI certificate of the Initiator.
[EEi] is included only when the Initiator needs certain
specific parameters or information regarding an existing
remote EE prior to active packet creation. For example, if a
principle is about to create an active packet for
(re)configuring a video-service guarantied EE that is residing
on a remote active node, the principle might need certain
information regarding that remote EE i.e. the type of QoS
controllers being used e.g. tc, DiffServ... etc, so that it can
construct the active (re)configuration packet in the way that is
supported by the remote EE. This arrangement in SPAN
therefore enhances the level of flexibility of SPAN in the
sense that the principle can now make authenticated and
integrity protected queries for remote management
information and receive protected responses prior to active
packet creation (see later). AUTH1 is a digital signature that is
created by using the Initiator’s private key that covers all
items contained in SPAN INIT except CERT1 and itself. This
signature is essential as it is used for authentication, integrity,
and non-repudiation protection on the exchanged materials
that are generated by the Initiator. Furthermore, the inclusion
of this signature in SPAN INIT ecnables more efficient

2EEs are software modules that can be viewed as resource abstractions to
support services — in the form of active packet execution - on an active
node [3][21][22][23]-

detection of DoS attacks in SPAN (see later section). Fig. 2
shows the list of items that are digitally signed by the Initiator.

‘ HDR INIT, SAi, [EEi], D-Hi, NONCEi ‘

Fig. 2. Items signed in AUTHi

Upon receiving the first message i.e. SPAN INIT at the
Responder, the Responder verifies the (digitally signed)
materials in SPAN INIT by using [CERTi] and AUTHi. If the
digitally signed items cannot be verified, the Responder stops
proceeding further because SPAN INIT might have been
subjected to man-in-the-middle attacks, or was created for
DoS attacks (see later section). If the signature is verified
(hence the contents of SPAN INIT), the Responder will look
into the message. If an EEi is included, the Responder will
evaluate the corresponding (locally residing) EE against the
list of requested parameters in EEi. There are two possible
outcomes: 1) the Responder is unable to response to the
requests as specified in EEi. This could happen for example
when the targeted EE no longer exists on the Responder, or
the EE has already been re-configured such that its current
operational status is not as expected by the Initiator... etc. In
this case, the active packet is simply forwarded to the
Responder’s neighbouring active node other than the
originating node i.e. the Initiator, where the SPAN protocol
exchange may potentially continue; 2) the Responder is able
to response to the requests as specified in EE1. It creates a list
of its responses, and stores them in an EEr payload. In case 2
or in the case where no EEi is included in SPAN INIT, the
Responder generates its own D-H public value (D-Hr) and a
random 128-bit nonce (NONCEr). By using these values in
conjunction with the Initiator’s values i.e. D-Hi and NONCE1,
the Responder is capable of creating a SKEYSEED using the
D-H algorithm. SKEYSEED is a shared secret from which a
subsequent set of keys can be generated for specific purposes
(e.g. authenticity protection, integrity checks... etc.) [8].

Once the Responder has computed the shared secret and the
subsequent shared key set, it responses to the Initiator with
the 2™ message (SPAN AUTH) which is shown in Fig. 3. Note
that the items quoted in curly brackets {..} are protected
accordingly as embedded payloads in the same Encrypted
payload, by using the shared keys derived from the shared
secret SKEYSEED i.e. SK_e for encryption, SK_a for integrity
protection, note that one key for one direction [8]. The
Encrypted payload is appended with integrity protection
data — in this case a keyed hash value — that covers the entire
message of SPAN AUTH (including message header).

< HDR AUTH, SAr, [CERTr], D-Hr, NONCEr,
AUTHr, {[EEr], IDr}

Fig. 3. SPAN_AUTH

HDR AUTH is the message header. sar keeps the Responder’s
choices on sai. [CERTr] is the PKI certificate of the
Responder. D-Hr and NONCEr are needed by the Initiator to
create the shared secret SKEYSEED, and therefore must be
listed in cleartext i.e. not encrypted. AUTHr is a digital

signature created by using the Responder’s private key over a
list of items (Fig. 4).

HDR AUTH, SAr, D-Hr, NONCEr, NONCEi

Fig. 4. Ttems signed in AUTHr

The idea of digitally signing the items listed in Fig. 4 is to
enable the Initiator to verify the non-repudiation, integrity and
authenticity of the parameters from the Responder. Note that
the Initiator’s nonce (NONCEi) is also digitally signed in
auTHr. This arrangement is necessary to prevent replay
attacks (see later section). Also note that the Responder does
not simply sign any anonymous nonce values. The Responder
must first verify NONCE1 (that was included in SPAN INIT)
by verifying the value against the digital signature (AUTH1)
made by the Initiator prior to digitally signing NONCE1 (see
later section). { [EEr], IDr} is the protected response to EE
information request and the identity of the Responder that
will be used for future identification respectively. They are
protected by using the appropriate shared key i.e. SK_e and
SK _a. IDr does not necessary to be the identity of the
Responder as listed in CERTr. It could be any form of
identifier (e.g. IP addresses, host names... etc.) that the
Responder considers to be appropriate to be used in future for
identifying itself. These information are protected so that the
protected response payload can be used by the Responder as a
proof-of-knowledge of the shared key set i.e. a precaution
step (see later section).

Upon receiving SPAN AUTH from the Responder, the Initiator
must first verify AUTHr using CERTr. If the verification
process is successful, the Initiator would be able to generate
the shared secret i.e. SKEYSEED and the subsequent shared
keys by using D-Hi, D-Hr, NONCEi, and NONCEr. The
Initiator can then use the corresponding keys derived from the
shared secret to decrypt the encrypted items in SPAN AUTH i.e.
{[EEr], 1IDr}, and verifies the integrity of the entire
message by using the corresponding shared key i.e. SK_e and
SK_a respectively. If the authenticity and integrity of the
SPAN AUTH message is verified, and if the Initiator is the
originating node, the Initiator sends to the Responder the third,
and the last message: SPAN AP, which is shown in Fig, 5.

HDR AP, {IDi, NONCEr, active packet,
code sig} >

Fig. 5. SPAN_AP

HDR AP is the header of a SPAN AP message. Note that all
items in curly brackets are protected as embedded payload in
an Encrypted payload. The payload is appended with a
keyed hash value that covers the entire message for integrity
protection. IDi is the identity of the Initiator. NONCEr is
protected so that the Initiator can acknowledge to the
Responder that it has received the correct nonce value and for
anti-replay attacks (see later). This value does not need to be
digitally signed by the Initiator because it is protected by the
authenticated and integrity verified shared keys i.e. SK_e and
SK_a (see later section). active packet contains the entire

active packet i.c. both the static code and dynamic data. The
dynamic data would be the execution results of the static code
on the originating node. code sig is the static code signature
that is created for end-to-end protection by using the
principle’s private key. Remember that the principle is the
actual creator of the code. In cases where the principle does
not have its own public key pairs (see assumption), the
private key of the NodeOS on which the principle is residing
on may be used for signing instead. This arrangement is more
scalable at the expense of a less ideal non-repudiation
protection (see later section for details).

Once the Responder receives SPAN AP, the protected items in
the message are subjected to verification by using the
established shared key set. The static code in the active packet
is verified against the digital signature i.e. code sig. If the
verifications are successful, the embedded code in the active
packet is executed. Under this arrangement, the hop-to-hop
authenticity, integrity, and confidentiality of the dynamic data
of the active packet are protected by the shared key set. The
static code is digitally signed by the principle, so the source
authenticity and integrity of the static code is verified i.e. end-
to-end protection enforced. The confidentiality of the entire
active packet including both static code and dynamic data is
protected by the shared key set.

Once the first Responder has executed the active packet,
results of code execution i.e. new dynamic data will be added
back to the packet, and the packet will be forwarded to its
next hop ie. the second Responder. The SPAN protocol
repeats along the execution path but no new signature on the
static code is created; this is because the code is static and
should be verified by verifying the principle’s authenticity.
Once a SA has been established between a pair of active
nodes, the SA should be retained. The established SA is
identified at each peer by the respective Security Parameter
Index (SPI) (that was assigned by each peer during the
protocol exchange). By including an Initialisation Vector (IV)
[16] in the SPAN Encrypted payload header, we can reuse
the shared key set genecrated after a SPAN exchange to
protect subsequent active packets travelling along the same
execution path, as long as the SA has not expired [16].

3. DESIGN CONSIDERATIONS

3.1 Proof-of-Knowledge of Shared Key and Key Binding

In spAN AUTH, IDr and [EEr] are protected by using the
established shared key set. This is a safety precaution step so
that the Initiator knows the Responder has computed correctly
the same shared key set, prior to using the shared key set to
protect subsequent communications. Additionally, this
arrangement enables a binding to be established between the
peer’s identity with the established shared key set which
eliminates identity mis-binding attacks [18].

3.2 Replay, Man-in-the-Middle, DoS Attacks

A typical form of replay attack is that the attacker copies a

legitimate message, and re-sends the message to one of the
peers or other peers. To provide anti-replay protection, all
messages exchanged are cryptographically protected.
Particularly, randomly generated, never reused, authenticated
and integrity protected 128-bit nonces are used [7][8]. Each
peer in SPAN must also either digitally sign or use symmetric
cryptography to protect the authenticity and integrity of each
other’s nonce: otherwise an attacker can copy a legitimate
message from the Responder in one session, and impersonate
the Responder on a key exchange with another party [18].

A common form of man-in-the-middle attack on the D-H
algorithm would be the attacker pretends it is the Initiator or
the Responder. Suppose the attacker pretends it is the
Responder. Upon receiving SPAN INIT from the Initiator, it
creates the a forged SPAN AUTH message. Because the
attacker does not have the Responder’s valid private key, he
can only create a forged signature i.¢. AUTHr+* using another
private key (for instance, his own private key). When this
forged SPAN AUTH is received by the Initiator, the Initiator
would be able to determine immediately the message is
forged because the signature (i.e. AUTHr*) cannot be verified
against the certificate of the legitimate Responder (i.c. the
actual owner of CERTY).

Key exchange protocols are subjected to DoS attacks [17].
For example, a DoS attacker can either create (large number
of) legitimate key establishment instantiation requests in an
attempt to overload the Responder [27]; or they can flood the
Responder with initialisation requests with forged IP
addresses [8]; or they can randomly modify the encrypted
payload of a legitimate request message, causing a cache miss
at the Responder [19]. For example, an IKEv2 Responder -
upon receiving an initialisation message i.e. message 1 from
an attacker - would be wasting computational resources to
create (new) D-H values (for message 2), computing shared
key sets (upon receiving valid/invalid message 3 from the
Initiator), and will try to decrypt the encrypted message 3
from the Initiator, prior to verifying the authenticity of the
Initiator’. The same problem is experienced in JFK [19]: a
JFK Responder - upon receiving the first message from the
Initiator (in this case an attacker) - would be wasting
resources on computing (new) D-H exponentials, creating
digital signature over the D-H exponentials, creating a keyed
hash over keying materials, computing the shared key set
(upon receiving message 3), and try to decrypt the encrypted
contents in message 3, prior to verifying the Initiator’s digital
signature’. Our previous proposal i.c. SKEAN experiences a
similar level of DoS attacks as IKE and JFK, that the SKEAN

* In IKEv2, the Initiator’s only signature i.e. AUTH on keying materials is
kept in an encrypted payload in message 3. Thus, the Responder must
compute the shared key set, prior to being able to verify the Initiator’s
signature.

* JFK suggests a mechanism to address DoS$ attacks by requiring the
Responder to periodically generating D-H exponential tuples (every 30s),
and use a FIFO approach for assigning D-H exponentials to Initiator’s
requests. But a JFK Responder would still be wasting resources for all other
computational expensive processes e.g. computing signature, computing
shared key set... etc.

Responder generates signature prior to verifying the Initiator.

The first countermeasure of SPAN against DoS attacks is that
a SPAN Responder may carry out essential operations only
until it can verify whether the request is a legitimate request
or part of a DoS attack. Note that SPAN is capable of
verifying the Initiator’s authenticity when the Responder
receives the first message in the protocol i.e. SPAN INIT.
This is because SPAN requires the Initiator to digitally sign
SPAN INIT using its valid PKI private key. If the signature
on SPAN INIT cannot be verified, the Responder will not
proceed further. As discussed in the assumptions, we assume
all authenticated request messages (i.e. with valid digital
signatures) are legitimate requests. Thus, SPAN can quickly
identify legitimate requests from DoS attacks (see later on
evaluation). To address another form of DoS attacks that
involves random modification of encrypted contents of
duplicated message 3, the SPAN Responder caches the
corresponding SPI values of message 3. Thus, a duplicated
(and/or malformed) message 3 can be quickly detected and
dropped by the Responder simply by matching SPI values in
the message header and those values in its cache.

One may argue that the SPAN Responder is wasting
resources on checking digital signatures upon receiving a
SPAN INIT message; as such, the SPAN approach seems fo
be less ideal than the one deployed in a variant of IKEv2 that
uses COOKIE for limiting DoS attacks originated from
spoofed IP addresses. This variant of IKEv2 involves an
exchange of six messages (rather than four), and the IKEv2
Responder verifies the Initiator in the fifth message in its
exchange. In brief, an IKEv2 Responder can be configured to
reject initialisation requests, and responses to the Initiator
with an unprotected message that contains a COOKIE. The
IKEv2 Initiator must then resend the initialisation message
with the valid COOKIE to prove that it is using a the same IP
address as the one used in the (rejected) first initialisation
message. The IKEv2 RFC claims this arrangement can make
DoS attacks less effective [8], and would enable the protocol
to start with weak authentication (of IP addresses) and
possibly later performing stronger authentication [27].
However, we argue that the use of COOKIE in IKEv2 does
not solve the problem: this is because attackers can intercept
and modify all messages from the Responder (assumed). Thus,
an attacker can generate the first initialisation message with a
forged IP address, and upon intercepting the COOKIE from
the Responder, it can resend the same forged initialisation
message with the valid COOKIE but still using the same
forged IP address. The IKEv2 Responder would be tricked to
believe the IP address used by the Initiator is valid; and would
then carry out all the computational expensive processes i.c.
generating D-H values or computing share key set... etc.
Therefore, we argue that, essentially, the very first thing that a
SPAN Responder should do - in order to distinguish
legitimate requests from DoS attacks - is to verify the
authenticity of the SPAN Initiator prior to carrying out any
further processing. This is because - as explained in earlier
section - all request messages that do not have a valid

authenticator i.e. digital signature should be considered as
DoS attacks. Although one may argue this would not
climinate DoS attacks completely i.e. still requires some
resources to detect DoS attacks, but we argue that: 1) this is
the only arrangement that would enable the Responder to
distinguish legitimate request messages from DoS attacks at
the very first stage of the protocol exchange prior fo any
other computational expensive processes such as D-H
exponential computations or shared key set computations...
etc.; 2) the rule-of-thumb in key exchange design to reduce
the impact of DoS attacks or to /imit DoS attacks
[18]119]]20][27]: in the evaluation section, we will show that
our approach enables much rapid detection of DoS' attacks
than existing approaches i.¢. less impact on the Responder; 3)
the cost of signature verification (at the Responder) can be
reduced [29] (or even neglected [28]) by using carefully
selected parameters for asymmetric algorithms: for example
use a relatively small public exponent e but larger values for
secret prime numbers p and g [28][29] to achieve quicker
RSA signature verification. It was discussed in
[28]129]]30][31] that with careful selection of parameters, we
can improve RSA performance but does not lower the
security of the protocol’.

3.3 Comparing with Related Work

Existing protocols either do not support SA and EE
negotiation which limits their flexibility to cope with
heterogeneity between active nodes of different
administrative domains (e.g. pre-distributed shared key, SKT,
SANE), or follows a centralised approach which is not
scalable (e.g. KSV), or does not provision for key
management (e.g. SANTS), or their performance was not
optimised for hop-to-hop deployment (e.g. IKE, Kerberos,
Oakley, ISAKMP... etc.); or wastes more resource prior to
detecting DoS attacks (e.g. IKEv1, IKEv2, JFK, SKEAN...
etc.) (see later for evaluation).

4. EVALUATION RESULTS

We have developed a prototype of SPAN and the relevant
components of IKEv2® in Java respectively. We used two
laptops (each with an Intel Pentium M processor 1.70 GHz,
796 MHz cache with 1 GB RAM), one as the Initiator and the
other one as the Responder. In each trial, a dummy active
packet (of 1024 bytes with a static code of 512 byte) is
transmitted securely between the two peers during the SPAN
protocol exchange as specified earlier in this paper. All
encryption uses DESede in CBC mode and digital signatures
are created using DSA. To avoid long and variable delay on

3 Attacks on a message encrypted by using low-exponent RSA (public key) is
possible, which enables the recovery of the plaintext [30]. But this does not
affect the use of low-exponent RSA in SPAN because we use RSA private
key for signatures, rather than encryption. Details on parameters selection
can be found in [29][31],

® The reason for developing (relevant parts of) IKEv2 is that at the time when
our implementation starts (early 2005), no open source of IKEv2 was
available.

D-H parameter generation, we used the 1024-bit prime
modules and base generators that are used by SKIP [9]". We
used a set of private values (e.g. 240, 241, 242) as the
Exchange Type of our SPAN messages. SPAN specific
payload types (e.g. EEi, EEr... etc.) are specified by using
private values in-between 128-255.

As an initial assessment, we compared the SPAN
performance with 1) IKEv2+IPSec without Perfect Forward
Secrecy (PFS), and 2) IKEv2+IPSec with PFS support (new
D-H values). PFS is defined in [12]. PFS is optional [15]
because it enables strong security in certain situations [13],
but incurs a high performance overhead because new D-H
values are generated [15]. We measured the time it takes to
complete one SA establishment (excluding packet execution
time which is application-specific). Our experiment results
show that SPAN generates a 15% to 40% less in performance
overhead when comparing to IKEv2+IPSec without/with PFS
support (3103.76 milliseconds for SPAN, 3652.78
milliseconds for IKEv2+IPsec without PFS, 5177.315
milliseconds for IKEv2+IPSec with PFS).

5000

-= KSV
4500 | -
-
H 4000 -
§ 3500 | P50 I IKEv2-+PSec (with PFS) /
] e IKEv1 in Aggressive
g 3000 | Ps Mode+IPSec /
gl 2500 L e IKEv2+COOKIE
e --- IKEv2+IPSec (no PFS) /
é 2000 | < SANE
E 1500 |
% 1000 | — SPAN
500
e
0
0 50 100 150 200 250

No. of hops

Fig. 6. No. of message exchanged Vs. no. of traversed hops

As an initial attempt for scalability evaluation, we compare
SPAN with IKEv2+IPSec (with/without PFS), SANE, IKEv1
in aggressive mode+IPSec, IKEv2+COOKIE, and KSV by
determining the number of messages that are required to be
exchanged between peers in order to complete the protocols
respectively along an execution path of 256 active nodes i.c.
the maximum Time-to-Live (TTL) value (to simulate large
scale deployment). As shown in Fig. 6, SPAN scales better
than existing approaches especially under large scale of
deployment.

S. CONCLUSION

In this paper, we presented SPAN which is a secure, scalable,
efficient, and flexible hop-to-hop SA and EE establishment
protocol for active networks, that enables secure management
information exchange and active packet transmission during
SA negotiation, instead of after. Our initial experimental
results show promising results that SPAN achieves 15% to
40% less in performance overhead when comparing to some
of the existing approaches; and SPAN is designed to detect

7 These algorithms were chosen for implementing our proof-of-concept
prototypes for evaluation purposes only.

DoS attacks much more efficiently than some existing
approaches.

(1
[2]

[3]

[4]
[3]

[6]

(7]

(8]

‘]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

6. REFERENCES

S. Murphy, E. Lewis, R. Puga, R. Watson, “Strong Security for
Active Networks”, IEEE OpenArch 2001.

L. Cheng, A. Galis, “Strong Authentication for Active
Networks”, IEEE-Softcom 2003,
http://www.ee.ucl.ac.uk/~lcheng/Papers/SOFTCOM_2003.pdf
T. Suzuki, et al., “Dynamic Deployment & Configuration of
Differentiated Services Using Active Networks”, IWAN 2003,
http://www.ee.ucl.ac.uk/~Icheng/Papers/IWAN 2003.pdf

J. Moore, M. Hicks, S. Nettles, “Practical Programmable
Packets”, IEEE-INFOCOM 2001.

S. Murphy, A. Hayatnagarkar, S. Krishnaswamy, “Prophylactic,
Treatment and Containment Techniques for Ensuring Active
Network Security”, [IEEE DARPA, 2003.

S. Krishnaswamy, et al., “A Prototype Framework for
Providing Hop-by-Hop Security in an Experimentally Deployed
Active Network”, IEEE-DANCE 2002.

Krywaniuk, et al., “Using ISAKMP Message I[Ds for Replay
Protection”, Internet Draft: draft-krywaniuk-ipsec-antireplay-
00.txt, July 2001, http://www3 .ietf. org/proceedings/01aug/I-
D/draft-ietf-ipsec-antireplay-00.txt

C. Kaufman, “Internet Key Exchange (IKE v2) Protocol”,
RFC4306, Dec 2005, http://www.rfc-

archive.org/getrfc. php?rfc=4306

Java Cryptographic Extension (JCE), http://java.sun.com

M. Hicks, A. Keromytis, J. Smith, “A Secure PLAN”, TEEE
Transactions on Systems, MAN, and Cybernetics, VOL.33,
NO.3, AUGUST 2003.

D. S. Alexander, W. Arbaugh, A. Keromytis, J. Smith, “A
Secure Active Network Environment Architecture: Realization
in SwitchWare”, IEEE Network, June 1998.

W. Diffie, P. Oorschot, M. Wiener, “Authentication and
Authenticated Key Exchanges”, Designs Codes and
Cryptography, 2, 107-125, 1992.
N. Doraswamy, D. Harkins, “TPSec: The New Security
Standard for the Intemet, Intranets, and Virtual Private
Networks”, 2" edition, ISBN: 0-13-046189-X, Prentice-Hall
PTR, 2003, pp.220-232.

E. Rescorla, “D-H Key Agreement Method”, RFC2631, June
1999.

B. Springer, L. Kilmartin, “Performance Evaluation of the IKE
Protocol under Dynamic VoIP Network Conditions”, in
proceedings of the Irish Signals and Systems Conference,
Limerick, Ireland, 2003.

“Initialization Vector”,

http://en wikipedia.org/wiki/Initialization_vector

Mailing list, "UDP DoS attack in Win2K via IKE”,
http://marc.theaimsgroup.com/?1=bugtraq&m=1007748425204
03&wW=2

H. Krawczyk, “SIGMA: the SIGn-and-Mac Approach to
Authenticated Diffie-Hellman and its Use in the IKE Protocols”,
in Advances in Cryptography — CRYPTO 2003 Proceedings,
LNCS 2729, Springer, 2003,
http://www.ee.technion.ac.il/~hugo/sigma.html
W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A.
Keromytis, O. Reingold, “Efficient, DoS-Resistant Secure Key
Exchange for Internet Protocols”, ACM Computers and
Communications Security Conference (CCS), 2002.
P. Karn, W, Simpson, “The Photuris Session Key Management
Protocol”, draft-ietf-ipsec-photuris-03.txt, September 1995.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Denazis, et al., “D7-FAIN Active Node Architecture and
Design”, Deliverable 7, May 2003, http://www.ist-
fain.org/deliverables/del 7/d7.pdf

K. Calvert, et al., “Architectural Framework for Active
Networks”, draft version 1.0, July 27, 1999,
http://protocols.netlab.uky.edu/~calvert/arch-latest.ps

S. Denazis, S. Karnouskos, T. Suzuki, S. Yoshizawa,
“Component-based Execution Environments of Network
Elements and a Protocol for their Configuration”, IEEE-
Transactions on Systems, Man and Cybernetics, 2003.

W. Arbaugh, A. Keromytis, D. Farber, J. Smith, “Automated
Recovery in a Secure Bootstrap Process”, Network and
Distributed System Security Symposium, Internet Society,
March 1998, pp.155-167.

S. Alexander, “Security in Active Networks”, Secure Internet
Programming: Issues in Distributed and Mobile Object Systems,
1999.

S. Murphy, “Security Architecture for Active Nets”, Nov 2001,
http://protocols.netlab.uky.edu/~calvert/sec-latest. ps

P. Eronen, “Denial of service in public key protocols™, in
Proceedings of the Helsinki University of Technology Seminar
on Network Security, December 2000,

http://www.niksula hut.fi/~peronen/publications/netsec_2000.p
df

K. Matsuura, H. Imai, “Modification of Internet Key Exchange
Resistant against Denial-of-Service”, in Proc. of Internet
Workshop 2000 (TWS2000), pp.167-174, Feb. 2000.

Y. Zheng, “Digital Signcryption or How to Achieve
Cost(Signature & Encryption) << Cost(Signature) +
Cost(Encryption)”, in Advances in Cryptology — Crypto 1997,
pp-165-179, Springer-Verlag, LNCS 1294, Berlin, August 1997.
D., Coppersmith, M., Franklin, J. Patarin, M. Reiter, “Low-
exponent RSA with related messages”, in Advances in
Cryptology — EUROCRYPT 1996, vol. 1070 of LNCS,
Springer-Verlag pp. 1-9.

A. Odlyzko, “The future of integer factorisation”, CryptoBytes
1(1995) 5-12.

L. Cheng, A. Galis, “Simple Key Exchange for Active
Networks”, IEEE-ICON 2005,
http://www.ee.ucl.ac.uk/~Icheng/Papers/ICON_2005.pdf

