303 research outputs found

    Exploring Computing Continuum in IoT Systems: Sensing, Communicating and Processing at the Network Edge

    Get PDF
    As Internet of Things (IoT), originally comprising of only a few simple sensing devices, reaches 34 billion units by the end of 2020, they cannot be defined as merely monitoring sensors anymore. IoT capabilities have been improved in recent years as relatively large internal computation and storage capacity are becoming a commodity. In the early days of IoT, processing and storage were typically performed in cloud. New IoT architectures are able to perform complex tasks directly on-device, thus enabling the concept of an extended computational continuum. Real-time critical scenarios e.g. autonomous vehicles sensing, area surveying or disaster rescue and recovery require all the actors involved to be coordinated and collaborate without human interaction to a common goal, sharing data and resources, even in intermittent networks covered areas. This poses new problems in distributed systems, resource management, device orchestration,as well as data processing. This work proposes a new orchestration and communication framework, namely CContinuum, designed to manage resources in heterogeneous IoT architectures across multiple application scenarios. This work focuses on two key sustainability macroscenarios: (a) environmental sensing and awareness, and (b) electric mobility support. In the first case a mechanism to measure air quality over a long period of time for different applications at global scale (3 continents 4 countries) is introduced. The system has been developed in-house from the sensor design to the mist-computing operations performed by the nodes. In the second scenario, a technique to transmit large amounts of fine-time granularity battery data from a moving vehicle to a control center is proposed jointly with the ability of allocating tasks on demand within the computing continuum

    Human-vehicle collaborative driving to improve transportation safety

    Get PDF
    This dissertation proposes a collaborative driving framework which is based on the assessments of both internal and external risks involved in vehicle driving. The internal risk analysis includes driver drowsiness detection, driver distraction detection, and driver intention recognition which help us better understand the human driver's behavior. Steering wheel data and facial expression are used to detect the drowsiness. Images from a camera observing the driver are used to detect various types of driver distraction by using the deep learning approach. Hidden Markov Models (HMM) is implemented to recognize the driver's intention using the vehicle's laneposition, control and state data. For the external risk analysis, the co-pilot utilizes a Collision Avoidance System (CAS) to estimate the collision probability between the ego vehicle and other vehicles. Based on these two risk analyses, a novel collaborative driving scheme is proposed by fusing the control inputs from the human driver and the co-pilot to obtain the final control input for the vehicle under different circumstances. The proposed collaborative driving framework is validated in an Intelligent Transportation System (ITS) testbed which enables both autonomous and manual driving capabilities

    Direction of Arrival Estimation for Radio Positioning: a Hardware Implementation Perspective

    Get PDF
    Nowadays multiple antenna wireless systems have gained considerable attention due to their capability to increase performance. Advances in theory have introduced several new schemes that rely on multiple antennas and aim to increase data rate, diversity gain, or to provide multiuser capabilities, beamforming and direction finding (DF) features. In this respect, it has been shown that a multiple antenna receiver can be potentially used to perform radio localization by using the direction of arrival (DoA) estimation technique. In this field, the literature is extensive and gathers the results of almost four decades of research activities. Among the most cited techniques that have been developed, we find the so called high-resolution algorithms, such as multiple signal classification (MUSIC), or estimation of signal parameters via rotational invariance (ESPRIT). Theoretical analysis as well as simulation results have demonstrated their excellent performance to the point that they are usually considered as reference for the comparison with other algorithms. However, such a performance is not necessarily obtained in a real system due to the presence of non idealities. These can be divided into two categories: the impairments due to the antenna array, and the impairments due to the multiple radio frequency (RF) and acquisition front-ends (FEs). The former are strongly influenced by the manufacturing accuracy and, depending on the required DoA resolution, have to be taken into account. Several works address these issues in the literature. The multiple FE non idealities, instead, are usually not considered in the DoA estimation literature, even if they can have a detrimental effect on the performance. This has motivated the research work in this thesis that addresses the problem of DoA estimation from a practical implementation perspective, emphasizing the impact of the hardware impairments on the final performance. This work is substantiated by measurements done on a state-of-the-art hardware platform that have pointed out the presence of non idealities such as DC offsets, phase noise (PN), carrier frequency offsets (CFOs), and phase offsets (POs) among receivers. Particularly, the hardware platform will be herein described and examined to understand what non idealities can affect the DoA estimation performance. This analysis will bring to identify which features a DF system should have to reach certain performance. Another important issue is the number of antenna elements. In fact, it is usually limited by practical considerations, such as size, costs, and also complexity. However, the most cited DoA estimation algorithms need a high number of antenna elements, and this does not yield them suitable to be implemented in a real system. Motivated by this consideration, the final part of this work will describe a novel DoA estimation algorithm that can be used when multipath propagation occurs. This algorithm does not need a high number of antenna elements to be implemented, and it shows good performance despite its low implementation/computational complexity

    Mitigating Radio Interference in Large IoT Networks through Dynamic CCA Adjustment

    Get PDF
    The performance of low-power wireless sensor networks used to build Internet of Things applications often suffers from radio interference generated by co-located wireless devices or from jammers maliciously placed in their proximity. As IoT devices typically operate in unsupervised large-scale installations, and as radio interference is typically localized and hence affects only a portion of the nodes in the network, it is important to give low-power wireless sensors and actuators the ability to autonomously mitigate the impact of surrounding interference. In this paper we present our approach DynCCA, which dynamically adapts the clear channel assessment threshold of IoT devices to minimize the impact of malicious or unintentional interference on both network reliability and energy efficiency. First, we describe how varying the clear channel assessment threshold at run-time using only information computed locally can help to minimize the impact of unintentional interference from surrounding devices and to escape jamming attacks. We then present the design and implementation of DynCCA on top of ContikiMAC and evaluate its performance on wireless sensor nodes equipped with IEEE 802.15.4 radios. Our experimental investigation shows that the use of DynCCA in dense IoT networks can increase the packet reception rate by up to 50% and reduce the energy consumption by a factor of 4

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Blockchain for Internet of Things:Data Markets, Learning, and Sustainability

    Get PDF

    Implementation of a coded-reference ultra-wideband system

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2011.Thesis (Master's) -- Bilkent University, 2011.Includes bibliographical references leaves 60-64.Coded-reference ultra-wideband (CR UWB) systems provide orthogonalization of the reference and data signals in the code domain to facilitate communications without the need for complex channel estimation and have significant advantages over the previous techniques in terms of performance and/or implementation complexity. This thesis presents a UWB testbed as a general experimental platform to explore pulse-based UWB communications and discusses design and implementation issues. A testbed is built as a flexible solution for hardware implementation of a CR UWB system.Gürlevik, OsmanM.S

    Raspberry Pi Technology

    Get PDF

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications
    corecore