7 research outputs found

    Automatic architectural enforcement

    Get PDF
    Automatic architectural enforcement would be very beneficial especially in product line development using open source practices where there is very limited or no access to the architects and the architecture is of paramount importance. However, current techniques for modelling software architecture do not support the modelling of architectural design rules which means that architectural enforcement is achieved by manual reviews. This paper addresses this problem by proposing how architectural design rules could be expressed in UML in a meta-model for the system model

    Profiling and framing structures for pervasive information systems development

    Get PDF
    Pervasive computing is a research field of computing technology that aims to achieve a new computing paradigm. Software engineering has been, since its existence, subject of research and improvement in several areas of interest. Model-Based/Driven Development (MDD) constitutes an approach to software design and development that potentially contributes to: concepts closer to domain and reduction of semantic gaps; automation and less sensitivity to technological changes; capture of expert knowledge and reuse. This paper presents a profiling and framing structure approach for the development of Pervasive Information Systems (PIS). This profiling and framing structure allows the organization of the functionality that can be assigned to computational devices in a system and of the corresponding development structures and models, being. The proposed approach enables a structural approach to PIS development. The paper also presents a case study that allowed demonstrating the applicability of the approach.Fundação para a Ciência e a Tecnologia (FCT

    A case studies approach to the analysis of profiling and framing structures for pervasive information systems

    Get PDF
    Model-Based/Driven Development (MDD) constitutes an approach to software design and development that potentially contributes to: concepts closer to domain and reduction of semantic gaps; automation and less sensitivity to technological changes; capture of expert knowledge and reuse. The widespread adoption of pervasive technologies as basis for new systems and applications, lead to the need of effectively design pervasive information systems that properly fulfil the goals they were designed for. This paper presents a profiling and framing structure approach for the development of Pervasive Information Systems (PIS). This profiling and framing structure allows the organization of the functionality that can be assigned to computational devices in a system and of the corresponding development structures and models, being. The proposed approach enables a structural approach to PIS development. The paper also presents two case studies that allowed demonstrating the applicability of the approach.Fundação para a Ciência e a Tecnologia (FCT

    Development framework pattern for pervasive information systems

    Get PDF
    During last decade, the world watched a social acceptance of computing and computers, enhanced information technology devices, wireless networks, and Internet; they gradually became a fundamental resource for individuals. Nowadays, people, organizations, and the environment are empowered by computing devices and systems; they depend on services offered by modern Pervasive Information Systems supported by complex software systems and technology. Research on software development for PIS-delivered information, on issues and challenges on software development for them, and several other contributions have been delivered. Among these contributions are a development framework for PIS, a profiling and framing structure approach, and a SPEM 2.0 extension. This chapter, revisiting these contributions, provides an additional contribution: a pattern to support the use of the development framework and profiling approach on software development for PIS. This contribution completes a first series of contributions for the development of PIS. This chapter also presents a case study that allowed demonstrating the applicability of these contribution

    Experiences from representing software architecture in a large industrial project using model driven development

    Get PDF
    A basic idea of Model Driven Development (MDD) is to capture all important design information in a set of formal or semi formal models that are automatically kept consistent by tools. This paper reports on industrial experience from use of MDD and shows that the approach needs improvements regarding the architecture since there are no suggested ways to formalize design rules which are an important part of the architecture. Instead, one has to rely on time consuming and error prone manual interpretations, reviews and reworkings to keep the system consistent with the architecture. To reap the full benefits of MDD it is therefore important to find ways of formalizing design rules to make it possible to allow automatic enforcement of the architecture on the system model

    Introduction of static quality analysis in small- and medium-sized software enterprises: experiences from technology transfer

    Get PDF
    Today, small- and medium-sized enterprises (SMEs) in the software industry face major challenges. Their resource constraints require high efficiency in development. Furthermore, quality assurance (QA) measures need to be taken to mitigate the risk of additional, expensive effort for bug fixes or compensations. Automated static analysis (ASA) can reduce this risk because it promises low application effort. SMEs seem to take little advantage of this opportunity. Instead, they still mainly rely on the dynamic analysis approach of software testing. In this article, we report on our experiences from a technology transfer project. Our aim was to evaluate the results static analysis can provide for SMEs as well as the problems that occur when introducing and using static analysis in SMEs. We analysed five software projects from five collaborating SMEs using three different ASA techniques: code clone detection, bug pattern detection and architecture conformance analysis. Following the analysis, we applied a quality model to aggregate and evaluate the results. Our study shows that the effort required to introduce ASA techniques in SMEs is small (mostly below one person-hour each). Furthermore, we encountered only few technical problems. By means of the analyses, we could detect multiple defects in production code. The participating companies perceived the analysis results to be a helpful addition to their current QA and will include the analyses in their QA process. With the help of the Quamoco quality model, we could efficiently aggregate and rate static analysis results. However, we also encountered a partial mismatch with the opinions of the SMEs. We conclude that ASA and quality models can be a valuable and affordable addition to the QA process of SMEs
    corecore