
Automatic architectural enforcement

Anders Mattsson

Combitech AB, P.O. Box 1017, SE-551 11 JÖNKÖPING, Sweden,
anders.mattsson@combitech.se

Abstract. Automatic architectural enforcement would be very beneficial
especially in product line development using open source practices where there
is very limited or no access to the architects and the architecture is of
paramount importance. However, current techniques for modelling software
architecture do not support the modelling of architectural design rules which
means that architectural enforcement is achieved by manual reviews. This paper
addresses this problem by proposing how architectural design rules could be
expressed in UML in a meta-model for the system model.

1 Introduction

Maintaining a clear and consistent architecture is of paramount importance to achieve
a successful product line from which new products can be spawned during a long
time. The current state of practice is to document the architecture informally and to
use manual reviews to enforce it, this is hard and error prone work in closed source
single site development but is even harder in distributed open source-like
development with limited or no access to the architects. It would therefore be very
beneficial to be able to automatically enforce the architecture on the detailed design,
especially in product line development using open source practices. One approach to
achieve this could be to use Model-Driven Development (MDD) [1]. In MDD, design
artefacts are represented as formal or semi-formal models to allow tool-supported
automation of time consuming and error prone manual tasks. However, one class of
design artefact is excluded from current MDD approaches, in spite of being
recognised in current research as being very important [2-7]: architectural design
rules. In this paper we propose an approach to removing this anomaly and thus
allowing automatic enforcement of the architecture.

This paper is organized as follows. In section two we clarify the role of
architectural design rules. In section three we present MDD in relation to architectural
design rules. In section four we present our approach to model architectural design
rules and relate it to the body of literature. To demonstrate the approach an example is
given in section five. Finally, we present a summary and future research direction in
section six.

Dagstuhl Seminar Proceedings 08142
Combining the Advantages of Product Lines and Open Source
http://drops.dagstuhl.de/opus/volltexte/2008/1545

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Architectural design rules

IEEE has established a set of recommended practices for the architectural description
of software-intensive systems [8] which are followed by several architectural design
methods [9-12]. A common understanding in architectural methods is that the
architecture is represented as a set of components related to each other [13, 14]. The
components can be organized into different views focusing on different aspects of the
system. Different methods propose different views; typical views are a view showing
the development structure (e.g. packages and classes), a view showing the runtime
structure (processes and objects) and a view showing the resource usage (processors
and devices). In any view each component is specified with the following:

• An interface that documents how the component interacts with its environment.
• Constraints and rules that have to be fulfilled in the design of the component.
• Allocated functionality.
• Allocated requirements on quality attributes.

A typical method of decomposition (see for instance [9]and [11]) is to select and
combine a number of patterns that address the quality requirements of the system and
use them to divide the functionality in the system into a number of elements. Child
elements are recursively decomposed in the same way down to a level where no more
decomposition is needed, as judged by the architect. The elements are then handed
over to the designers who detail them to a level where they can be implemented. For
common architectural patters such as Model-View-Controller, Blackboard or Layers
[15] this typically means that you decompose your system into subsystems containing
different kinds of classes (such as models, views and controllers). However the
instantiation into actual classes is often left to the detailed design, for two main
reasons:

1. Functionality will be added later, either because it was missed or because a new

version of the system is developed, so more elements will be added later that also
have to follow the design patterns decided by the architect.

2. It is not of architectural concern. The concern of the architect is that the design
follows the selected architectural patterns, not to do the detailed design.

This means that a substantial part of the architecture consists of design rules on

what kinds of elements, with behavioural and structural rules and constraints, there
should be in a certain subsystem.

The importance of architectural design rules is also highlighted in current research
in software architecture which is focused on the treatment of architectural design
decisions as first class entities [2, 4-7], where architectural design decisions impose
rules and constraints on the design together with rationale. However, there is not yet
any suggestion on how to formally model these design rules. The current suggestion
is to capture them in text and to link them to the resulting design. This may be
sufficient for rules stating the existence of elements (“ontocrisis” in [5]) in the design,
such as a subsystem or an interface, since the architect can put the actual element (i.e.

2

a certain subsystem) into the system model at the time of the decision. It is however
not sufficient for rules on potentially existing elements (“diacrisis” in [5]) such as
rules on what kinds of elements, with behavioural and structural rules and constraints,
there should be in a certain subsystem, since the actual elements are not known at the
time when the design decision is made. Instead, the rule-based design occurs later in
the detailed design phase, and involves other persons, potentially even in a different
version of the system.

3 MDD and Architectural Design Rules

The basic idea of MDD is to capture all important design information in a set of
formal or semi formal models that are automatically kept consistent by tools. The
purpose is to raise the level of abstraction at which the developers work and to
eliminate time consuming and error prone manual work in keeping different design
artefacts consistent [1].

MDD requires that the work products produced and used during development is
captured in models to allow automation of non-creative tasks such as transformation
of models into code or conformance checks between different design artefacts. There
exist several approaches to Model-Driven Development (MDD) such as OMG’s
MDA [16], Domain Specific Modelling (DSM) [17, 18], and Software Factories [19]
from Microsoft. Since neither these nor any architectural design methods address the
problem on how to model architectural design rules, the state of practice is to describe
architectural design rules in informal text. This means that we have to rely on manual
routines to make sure that they are followed.

4 Modelling architectural design rules

There are a large number of Architectural Description Languages (ADL) [21-23],
including UML, specified for describing the architecture of software systems. These
typically allow one to specify components with relations and interfaces together with
functional and structural constraints. They do not however provide any means to
specify constraints or rules on groups of conceptual components only partly specified
by the architect that are intended to be instantiated and detailed by designers. For
instance, in the project we reported on in [20], the architects needed to specify a set of
rules on behaviour and relations on a conceptual component called arcComponent
without knowing which specific arcComponents would be relevant. Rather, they were
to be identified and designed by the designers according to the rules stated by the
architects.

The problem of modelling design rules is essentially the same problem as
modelling the solution part of a design pattern since the solution specifies rules to
follow in the design. There are a number of suggestions on how to formally model
design pattern specifications [24-29]. They are however all limited in what kind of
rules they can formalize, typically only structural rules. In addition all approaches
except [28] require the architect to use mathematical formalisms such as predicate

3

logic and set theory that may be unfamiliar or hard to understand both for architects
and developers.

Since UML is a modelling language familiar both to architects and designers we
propose an approach where we use UML to specify constraints, the architectural
design rules, on a system model also in UML. Similar to [29] we propose to use a
UML profile model to constrain the system model but instead of defining constraints
of stereotypes in OCL we propose to model these in a meta-model in UML. A meta-
model defines the modelling concepts to be used when building a model in the same
way that a system-model defines the elements that exist in a system [30]. So, if one
uses UML in a meta-model one can model rules and constraints on a system model in
the same way one can model rules and constraints on a system in a system model. To
use UML at the meta-model level one simply lifts all the concepts in UML up one
meta-level. These meta-model elements are then transformed into stereotypes to be
used in the system model, carrying the constraints given by the meta-model. In Table
1 interpretations at the meta-model level for the most basic UML concepts are given.
To highlight the regularity in the interpretation the normal model level interpretations
are also given.

4

Table 1. Meta-model interpretation of UML concepts

UML Concept Normal interpretation Meta-model interpretation

Class Represents a type of object
either in the system or in the
problem domain. All objects of
a class share the properties of
the class

Metaclass, represents a type class in the
system model. All the classes share the
properties of the metaclass. A metaclass
represents a stereotype applicable to
classes in the system-model

Association between
class A and class B

Represents a relation between
objects of class A and class B.
For example that a person may
own a number of cars or that a
controller controls two pumps.

MetaAssociation, represents a relation
between classes of metaclass A and
metaclass B. The multiplicity on one side
specifies how many classes a class of the
metaclass of the other side may be
associated with. A meta-association
represents a stereotype applicable to
associations in the system model.

Composition where
class A contains
Class B

Means that an object of class A
contains a number of objects of
Class B.

MetaComposition, means that a class of
MetaClass A contains a number of
classes of MetaClass B. A meta-
composition represents a stereotype
applicable to compositions in the system
model.

Inheritance where
class B inherits class
A

Means that Class B is a subtype
of Class A in such a way that
each object of Class B has all
the properties of Class A as
well as the properties of Class
B.

MetaInheritance, means that MetaClasss
B is a subtype of MetaClass A in such a
way that each Class of MetaClass B has
all the properties of MetaClass A as well
as the properties of MetaClass B. This
may be interpreted in the way that a class
of MetaClass B shall inherit a class of
MetaClass A since all classes of
MetaClass A has all the properties of
MetaClass A.

5 An example

To demonstrate the approach we use an example. A common method to as far as
possible model architectural design rules in the system model is to use a combination
of abstract classes, accompanied by design rules in natural language. This is
illustrated in the example in Fig. 1 where Observer and Subject are abstract classes
implementing part of the Observer pattern [31] and the comments contain the textual
part of the design rules that apply to the elements represented by the packages
Distribution and Data_Store.

5

Observer

Update(S:Subject):void

1*

Observer

Subject

Notify():void

1*

Observer

1*

Observer

Data_StoreDistribution

The classes in
Data_Store are
Data_Items that all are
specialisations of
Subject. If data is
changed in a Data_Item
the Notify operation
shall be called.

The Distribution
subsystem contains
protocols. Protocols
transport Data_Items in
the Data_Store in and out
of the system. Each
Protocol shall specialise
Observer and override the
Update operation. The
protocol shall add itself
as an observer to the
Data_Items that it
transports out of the
system and associate to
Data_Items it updates.

Fig. 1. A traditional way of modelling architectural design rules

If we instead model these rules in a metamodel rather than in the system model,
using UML we get a model such as that in Fig. 2. The circles R1 to R6 point out how
the corresponding rules below, directly fetched from the comments in Fig. 1, are
represented in the model.

R5

R4 R2

R1
R3

R6

Data_Item

xxx(xxn:...):xxx

Protocol

Update(S:Subject):void
1*

Transported_In

**
TransporterTransported_Out

1*
Transported_In

1*
Transported_In

**
TransporterTransported_Out

**
TransporterTransported_Out

xxx(xxn):xxx
{

A' = Attributes.value
...

if A' <> Attributes.value then Notify()
}

{self.Transported_Out = self.Subject}

Data_Store
«Package»

*

1

*

1

*

1

*

1

Distribution
«Package»Observer

Update(S:Subject):void

Subject

Notify():void

*

*
Subject

Observer*

*
Subject

Observer*

*
Subject

Observer

Fig. 2. Observer pattern in a meta-model

R1. “The Distribution subsystem contains protocols”
R2. “Protocols transport Data_Items in the Data_Store in and out of the system.”

6

R3. “Each Protocol shall specialise Observer and override the Update operation.”
R4. “The protocol shall add itself as an observer to the Data_Items that it transports

out of the system and associate to Data_Items it updates”
R5. “The classes in Data_Store are Data_Items that all are specialisations of

Subject.”
R6. “If data is changed in a Data_Item the Notify operation shall be called.”

A system model conforming to this model is for instance the one in Fig. 3. This
figure also shows how the classes in the metamodel have been transformed into
stereotypes. A non conforming model would be one that had more than one protocol
that “transported_in” any of the data items or one that had a protocol associated with
another protocol. This simple example shows that it is possible to model architectural
rules at the meta-model level that is not possible to model at the system-model level,
in a straight forward way in standard UML.

Subject
«Subject»

Notify():void

Data_Store
«Data_Store»

Hit
«Data_Item»

Turret_Direction
«D at a_Item»

Dis tribution
«D istribution»

Veh icle_X_Prot
«Protoc ol»

Update(S:Subject):void

1

«Transported_In»

Simulator_Prot
«Protocol»

Update(S:Sub ject):vo id

1
«Transported_Out»

1

«Transported_In»

1

«Transported_In»

1
«Transported_Out»

1

«Transported_In»

*

«Obs erver»

Obs erver
«Obs erv er»

Update(S:Subject):v...

*

«Obs erver»

Fig. 3. System-model conforming to the meta-model

6 Summary and future research

Enforcement of architectural deign rules are important in any development project but
especially in product line development where the architecture must hold for a long
time of development of new products without eroding. In the current body of
literature there are no complete solutions on how to model architectural design rules.
This means that we have to rely on laborious and error prone manual work to enforce
the architectural rules on the system design. In the context of distributed open source-
like development of product lines this poses an especially big problem since there are
limited or no access to the architects at the same time as the architecture is of
paramount importance. This paper presents an idea on how to solve this problem

7

based entirely on standard UML in a way familiar to both architects and designers
that at the same time are amendable to automation.

We are now extending this work in the following directions:

• The architectural rules of full industrial systems will be documented using this
technique.

• The transformation from meta-model UML constructs to UML profile stereotypes
will be formalized.

• Tooling for checking a system model against architectural rules in a meta-model
will be developed.

• The approach will be tested in a running project to get feedback on the usability in
practice.

Acknowledgements. This research has been financially supported by the ITEA
project COSI (Co-development using inner & Open source in Software Intensive
products) (http://itea-cosi.org) through Vinnova (http://www.vinnova.se/).

References

1. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal 45 (2006) 451-461

2. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions.
Proceedings of the Fifth Working IEEE/IFIP Conference on Software Architecture (WICSA
05) (2005) 109-120

3. Jansen, A., Bosch, J.: Evaluation of tool support for architectural evolution. (2004) 375-378
4. Jansen, A., van der Ven, J., Avgeriou, P., Hammer, D.K.: Tool Support for Architectural

Decisions. Proceedings of the Sixth Working IEEE/IFIP Conference on Software
Architecture (WICSA 07), Mumbay, India (2007) 44-53

5. Kruchten, P.: An ontology of architectural design decisions in software intensive systems.
2nd Groningen Workshop on Software Variability (2004) 54-61

6. Kruchten, P., Lago, P., van Vliet, H.: Building Up and Reasoning About Architectural
Knowledge. Quality of Software Architectures, Vol. 4214. Springer Berlin / Heidelberg
(2006) 43-58

7. Tyree, J., Akerman, A.: Architecture decisions: demystifying architecture. IEEE Software
22 (2005) 19-27

8. IEEE: IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems. IEEE (2000)

9. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-Wesley,
Boston (2003)

10. Kruchten, P.B.: The 4+1 View Model of architecture. IEEE Software 12 (1995) 42-50
11. Bosch, J.: Design and use of software architectures : adopting and evolving a product-line

approach. Addison-Wesley, Reading, MA (2000)
12. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: A general

model of software architecture design derived from five industrial approaches. Journal of
Systems and Software In Press, Corrected Proof (2006)

13. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Abstractions for
software architecture and tools to support them. IEEE Transactions on Software Engineering
21 (1995) 314-335

8

http://www.vinnova.se/

14. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT
Software Engineering Notes 17 (1992) 40-52

15. Buschmann, F.: Pattern-oriented software architecture: a system of patterns. Wiley,
Chichester ; New York (1996)

16. OMG: MDA Guide version 1.0.1. OMG (2003)
17. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development of

embedded software. Proceedings of the IEEE 91 (2003) 145-164
18. Tolvanen, J.P., Kelly, S.: Defining domain-specific modeling languages to automate product

derivation: collected experiences. Software Product Lines 9th International Conference,
SPLC 2005 Proceedings Lecture Notes in Computer Science, Vol. 3714. Springer (2005)
198-209

19. Greenfield, J., Short, K.: Software factories : assembling applications with patterns, models,
frameworks, and tools. Wiley Pub., Indianapolis, IN, USA (2004)

20. Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Experiences from Representing
Software Architecture in a Large Industrial Project Using Model Driven Development.
Proceedings of the Second Workshop on SHAring and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent. IEEE Computer Society, Minneapolis, USA
(2007)

21. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering 26 (2000)
70-93

22. Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description from under
the technology lamppost. Information and Software Technology 49 (2007) 12-31

23. Medvidovic, N., Rosenblum, D., S., Redmiles, D., F., Robbins Jason, E.: Modeling software
architectures in the Unified Modeling Language. ACM Transactions on Software
Engineering and Methodologies. 11 (2002) 2-57

24. Mikkonen, T.: Formalizing design patterns. Software Engineering, 1998. Proceedings of the
1998 (20th) International Conference on (1998) 115-124

25. Lauder, A., Kent, S.: Precise Visual Specification of Design Patterns. Proceedings of the
12th European Conference on Object-Oriented Programming. Springer-Verlag (1998)

26. Eden, A.H.: A Theory of Object-Oriented Design. Information Systems Frontiers 4 (2002)
379-391

27. Bayley, I.: Formalising Design Patterns in Predicate Logic. Software Engineering and
Formal Methods, 2007. SEFM 2007. Fifth IEEE International Conference on (2007) 25-36

28. Mak, J.K.H., Choy, C.S.T., Lun, D.P.K.: Precise modeling of design patterns in UML.
Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on
(2004) 252-261

29. Zdun, U., Avgeriou, P.: Modeling architectural patterns using architectural primitives.
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications. ACM, San Diego, CA, USA (2005)

30. Atkinson, C., Kuhne, T.: Model-driven development: A metamodeling foundation. IEEE
Software 20 (2003) 36-41

31. Gamma, E.: Design patterns : elements of reusable object-oriented software. Addison-
Wesley, Reading, Mass. (1995)

9

