
Software Quality Journal manuscript No.

(will be inserted by the editor)

Introduction of Static Quality Analysis in Small and

Medium-Sized Software Enterprises: Experiences from

Technology Transfer

Mario Gleirscher · Dmitriy Golubitskiy ·
Maximilian Irlbeck · Stefan Wagner

Received: ? / Accepted: ?

Abstract Today, small and medium-sized enterprises (SMEs) in the software in-
dustry face major challenges. Their resource constraints require high e�ciency in
development. Furthermore, quality assurance (QA) measures need to be taken to
mitigate the risk of additional, more expensive e↵ort for bug fixes or compensa-
tions. Automated static analysis (ASA) can reduce this risk because it promises
low application e↵ort. SMEs seem to take little advantage of this opportunity. In-
stead, they still mainly rely on the dynamic analysis approach of software testing.

In this article, we report on our experiences from a technology transfer project.
Our aim was to evaluate the results static analysis can provide for SMEs as well as
the problems that occur when introducing and using static analysis in SMEs. We
analysed five software projects from five collaborating SMEs using three di↵erent
ASA techniques: code clone detection, bug pattern detection and architecture con-
formance analysis. Following the analysis, we applied a quality model to aggregate
and evaluate the results.

Our study shows that the e↵ort required to introduce ASA techniques in SMEs
is small (mostly below one person-hour each). Furthermore we encountered only
few technical problems. By means of the analyses, we could detect multiple defects
in production code. The participating companies perceived the analysis results to
be a helpful addition to their current QA and will include the analyses in their
QA process. With the help of the Quamoco quality model, we could e�ciently
aggregate and rate static analysis results. However, we also encountered a partial
mismatch with the opinions of the SMEs. We conclude, that ASA and quality
models can be a valuable and a↵ordable addition to the QA process of SMEs.

M. Gleirscher, M. Irlbeck
Institut für Informatik, Technische Universität München, Germany
E-mail: gleirsch,irlbeck@in.tum.de

S. Wagner
Institute of Software Technology, University of Stuttgart, Germany
E-mail: Stefan.Wagner@informatik.uni-stuttgart.de

D. Golubitskiy
Roland Berger Strategy Consultants GmbH, München, Germany
E-mail: Dmitriy.Golubitskiy@rolandberger.com

Preprint submitted to Software Quality Journal
Copyright Springer

2 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

Keywords software quality · small and medium-sized software enterprises · static
analysis · code clone detection · bug pattern detection · architecture conformance
analysis · quality models

1 Introduction

Small and medium-sized enterprises (SMEs) play an important role in the global
software industry. In many countries, such as the US, Brazil or China, these com-
panies represent up to 85% of all software organisations (Richardson and Von
Wangenheim 2007) and carry out the majority of software development (Mishra
and Mishra 2006). Compared to large corporations, SMEs are faced with special
conditions such as limited resources, lack of expertise or financial insecurity.

Problem statement. While there are many articles focusing on process improve-
ment in SMEs (Kautz 1999; Mishra and Mishra 2006; von Wangenheim et al 2006),
we found no study that considers specific quality assurance (QA) techniques or
quality models and their application in this context. However, QA constitutes an
important and resource intensive activity. Automated static analysis (ASA) tech-
niques and associated quality models seem to be suitable for SMEs. These compa-
nies usually do not have dedicated quality assurance departments and, therefore,
could benefit from highly automated, pre-packaged techniques. The benefits of
such techniques lie in their low-cost application (Baca et al 2008) and their poten-
tial to detect critical quality defects (Zheng et al 2006; Ayewah et al 2007). Such
defects are risky for further development and increase costs as they might for ex-
ample entail e↵ort for bug fixes. Detecting these defects at a low cost approach
is a promising way for small software enterprises to implement e�cient quality
assurance.

Research Objective. Our overall objective is to improve the quality assurance pro-
cesses at SMEs in a way that suits their specific context. In this article, we focus
on the question whether SMEs can benefit from the quality assurance paradigm
static analysis and associated quality models. Is it possible to introduce ASA tech-
niques into their existing projects with low e↵ort? What kind of defects can be
found using these techniques? Is the perceived usefulness for the enterprises strong
enough to justify the needed e↵ort? Finally, can we employ quality models to help
in the interpretation of the analyses for an explicit understanding of quality? An-
swering these questions will support decision makers in SMEs in planning quality
assurance improvements in the future.

Contribution. We report on our experience in analysing five projects of five SMEs
using three di↵erent ASA techniques: code clone detection, bug pattern detection
and architecture conformance analysis. We evaluate the e↵ort that is needed to
introduce these techniques, the pitfalls we came across and how the participating
enterprises evaluated the presented techniques as well as the defects we discovered
in their software projects. Furthermore, we illustrate our experience in enhancing
the static analyses by applying the Quamoco quality model, explain where it con-
firmed our results and compare its results to the opinions of our study participants.

Static Quality Analysis in SMEs 3

Results. Our study reveals that the e↵ort needed to introduce and apply static
analysis techniques is low and a↵ordable for SMEs. Using these techniques, we
found critical defects even in production code. After the presentation of the results,
all participating SMEs plan to apply the presented techniques in the future. Our
study showed that a quality model provides help to interpret the vast amount
of findings gained from static analyses. Nevertheless we suggest to pay attention
to extreme measures apart from the quality model results. Our study shows that
there is a mismatch between the ratings provided by the quality model and the
opinion of the study participants concerning many quality characteristics.

Outline. In Section 2, we describe the research context of our work, present our
guiding research questions, give a short overview of the applied techniques and
models and explain the procedure we chose. Section 3 displays the results of our
work which we discuss in detail in Section 4. The possible threats to validity of
our work are illustrated in Section 5. Relations of the presented work to other
approaches are presented in Section 6. We conclude our report in Section 7 and
share our perspective on future research.

2 Approach

We describe our experiences of transferring ASA technology to SMEs and its use in
quality models. This section illustrates the research context, i.e. the participating
enterprises, our guiding research questions, the examined techniques and models,
the study objects we employed to gather our experiences and, finally, the procedure
we used to answer our research questions.

2.1 Research Context

The basis of our research was the collaboration with five SMEs, all resident in the
Munich area and selected through personal contacts and a series of information
events and workshops. Details regarding the selection process can be found in
Section 2.6. Following the definition of the European Commission (2003), one of
the participating enterprises is micro-, two are small- and two are medium-sized
considering their number of sta↵ and annual turnover. The presented research is
based on the experience with these enterprises gathered in a project from March
2010 to April 2011.

2.2 Study Subjects and Objects

Study Subjects (SS). For our investigation, we collaborate with five SMEs (“study
subjects”). These companies cover various business and technology domains, e.g. cor-
porate and local government controlling, form letter processing as well as diagnosis
and maintenance of embedded systems. Four of them are involved in commercial
software development, one in software quality assurance and consulting. The latter
could not provide a software system of their own development.

4 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

SO Platform Sources Size [kLoC] Business Domain

1 C#.NET closed, commercial ⇡ 100 Corporate controlling

2 C#.NET closed, commercial ⇡ 200 Embedded device maintenance

3 Java open, non-profit ⇡ 200 Health information management

4 Java closed, commercial ⇡ 100 Local government controlling

5 Java closed, commercial ⇡ 560 Document processing

Table 1 Overview of study objects (SO). Legend: kLoC . . . thousand lines of code

For each study subject, we involve one study participant (SP) who assumes
three roles: (1) our SME contact and representative, (2) a stakeholder, execu-
tive manager, project leader, supervisor or developer responsible for or deeply
interested in a study object and, finally, (3) an industrial partner supportively
participating in our research project. Throughout our study, the SPs are assumed
to be partially accompanied by other assistants or SME sta↵.

Study Objects (SO). Our study objects consist of five software systems briefly
described in Table 1. These systems contain between 100 and 600 kLoC. The SOs 1,
2, 4 and 5 have been developed in software projects by the corresponding SPs. One
study participant, however, did not o↵er a software system of his own. Following
his suggestion, we chose the humanitarian open-source application OpenMRS1

to be SO 3. This system is a development of the multi-institution, non-profit
collaborative OpenMRS. For this SP, we additionally consulted the OpenMRS
core developers for technical questions.

All developments started at most seven years before we conducted of our study
in 2010. The SO project teams comprise less than ten persons. Except for Open-
MRS, the teams are located in the Munich area. The development of SO 1 and 2
had already been finished before our study started.

2.3 Research Questions

Our overall research objective is to evaluate the transfer of innovative quality
assurance measures to SMEs. We structure this objective into three major research
questions. The first two analyse the benefit of static analysis techniques, the third
one explores the use of quality models:

RQ 1 Which problems occur while introducing and applying static analysis tech-
niques at SMEs?

SMEs show special characteristics, such as generalist employees instead of spe-
cialists for quality assurance. Hence, it needs to be simple and straightforward to
introduce and apply static analysis to be useful for SMEs. We further break this
down into two sub-questions and indicate our expectations:
RQ 1.1 Which technical problems occur?

Static analysis is tightly coupled to tools that perform and report the analysis.
Hence, the ease of introducing and applying static analysis also depends on how
many and which technical problems the software engineers need to solve.

1 http://www.openmrs.org

Static Quality Analysis in SMEs 5

RQ 1.2 How much e↵ort is necessary?
If the e↵ort to set up the analyses is too large, SME will rule out their applica-

tion as they cannot a↵ord to allocate additional capacities on QA. Therefore, we
analyse the e↵ort spent on the introduction and application.

Expectations for RQ 1: From our experience, we expect several technical
problems with the configuration of the tools as well as the preparation of the
code bases of the SMEs as the analyses require source code as well as executables.
The introduction e↵ort should not take more than a few person-days per analysed
project.

RQ 2 How useful are automated static analysis techniques for SMEs?

Beyond the question of how easy or problematic it is to introduce and apply
static analyses in SMEs, we are interested whether the techniques can produce
useful results for the developers and quality engineers. Even a small e↵ort should
not be spent if there is no return on investment. Again, we break this question
down into two sub-questions and define our expectations:
RQ 2.1 Which defects can be found?

We investigate usefulness by analysing the types and numbers of defects found
by using the static analysis tools at the SMEs. If critical defects can be found, the
application of the techniques is considered useful. We neither focus on specification
defects and whether they can be found at all, nor do we perform cause-and-e↵ects
analyses for defects except for some criticality assessments.
RQ 2.2 How do the companies perceive the usefulness?

Motivated by metrics discussed in Davis (1989), we add the subjective per-
ception of our study participants. How do they interpret the results of the static
analysis tools? Do they believe they can work with those tools and are they going
to apply them in their future projects? This way, we augment the information we
gained from defect analysis.

Expectations for RQ 2: We expect automated static analysis to be useful for
SMEs because of the low e↵ort required for set-up and execution. Most problems
found will probably be related to maintainability, but we also expect to uncover
some critical defects. Overall, we presume that the companies will have a positive
impression of the techniques.

RQ 3 To what degree do the results of ASA, study participants and quality models
match?

Findings generated by ASA techniques have to be interpreted in the context
of overall software quality. This perspective shows to SMEs whether their software
products fulfil overall quality requirements and were these products can be im-
proved. It is unclear whether quality models help SMEs to estimate their projects’
quality, reveal general deficiencies apart from singular findings and if their appli-
cation is worth the e↵ort. We will describe two sub-questions together with our
expectations:
RQ 3.1 Are individual ASA results well reflected in the quality model results?

Static analyses can be used to estimate the quality of a certain software prod-
uct. High clone rates or a considerable number of bug pattern findings indicate
poor software quality. Nevertheless, too many findings can be confusing. We want
to know whether the outcomes of the applied ASA techniques are similar to the

6 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

results of the quamoco quality model and if the quality model provides further
insights at less complexity.
RQ 3.2 Do the results of the quality model match the opinions of the study par-
ticipants?

Quality models allow quality engineers to transform findings into ratings of dif-
ferent quality characteristics. Nevertheless, each company develops a self-perception
of their product concerning these characteristics, which is normally based on an
intuitive understanding of these attributes. We want to find out whether a qual-
ity model confirms the self-estimation of SMEs and whether it o↵ers di↵erent or
additional insights.

Expectations for RQ 3: We suppose that the quality model is calibrated
well enough for the individual results of ASA to be visible in the assessment results
of the model. As suggested by previous studies (Wagner et al 2013), we assume
that there will be a good match between the study participants’ opinions and the
assessment results.

2.4 Static Analysis Techniques

Static analysis refers to the analysis of computer programs without their execu-
tion. It includes manual techniques, such as reviews and inspections, as well as
automated techniques. We use the term static quality analysis to emphasise the
understanding of static analysis results from the perspective of software quality
attributes. Manual analyses are time-consuming and prone to missing problems in
the huge amount of code to be analysed. Automation has high potential to detect
simple and reoccurring problems in source code. A detection of the correct usage
of “==” instead of “equals” to compare strings in Java, should not be the task of
human reviewers. They should concentrate on the more subtle and domain-related
problems.

From the interviews with our study participants and the experiences at our
research groups, we chose three important types of techniques and specialised
tools which we introduce in detail below. Technically, we employ the open-source
tool ConQAT2 for code clone detection and architecture conformance analysis as
well as for results processing of bug pattern detection.

Code Clone Detection. Modern programming languages, particularly object-orien-
ted ones, o↵er various abstraction mechanisms to facilitate reuse of code fragments
but copy-paste is still a widely employed reuse strategy. This often leads to nu-
merous duplicated code fragments – so-called clones – in software systems. As
stated in the surveys of Koschke (2007) and Roy and Cordy (2007), cloning is
problematic for software quality for several reasons:

– Cloning unnecessarily increases program size and thus e↵orts for size-related
activities like inspections and testing.

– Changes, including bug fixes, to one clone instance often need to be made to
the other instances as well, again increasing e↵orts.

– Changes performed inconsistently to duplicated source code fragments can
introduce bugs.

2 http://www.conqat.org

Static Quality Analysis in SMEs 7

Code clone detection is an automated static analysis technique that focuses on
finding duplicated code fragments. One of the most important metrics o↵ered by
this technique is unit coverage which is the probability that an arbitrarily chosen
unit is part of a clone. A unit represents an uncommented and normalised source
code statement which originally may have spanned several text lines. Another
metric called blow-up denotes the ratio of the unit count of the current software
by the unit count of a hypothetical software without clones (Juergens and Göde
2010). Moreover, two terms are important for clone detection: A clone class defines
a set of similar code fragments and a clone instance is a representative of a clone
class (Juergens et al 2009b).

We di↵erentiate between conventional clone detection and gapped clone detec-
tion. During conventional clone detection, clones are considered to be syntactically
similar copies; only variable, type or function identifiers can be changed (Koschke
2007). In contrast, gapped clone detection reveals clones with further modifica-
tions; statements can be changed, added or removed (Koschke 2007). While clones
are an indicator of bad design, the di↵erence between the two approaches is that
only the results of gapped clone detection can reveal defects that lead to failures,
which arise by unconscious, inconsistent changes in instances of a clone class. We
use both approaches in our study to investigate both aspects of clone detection.

Clone detection is supported by a number of free and commercial tools. The
most popular of them are CCFinder3, ConQAT, CloneDR4, and Axivion Bauhaus
Suite5. The former two are free, while the latter two are commercial. We employ
ConQAT in our investigation because our research group has experience with its
usage.

Bug Pattern Detection. By this term we refer to a technique for the automated
detection of a variety of defects. Bug patterns have been thoroughly investigated,
e.g. in Zheng et al (2006), and compared with other frequently used software
quality assurance techniques such as code reviews or testing (Wagner et al 2005).
Bug patterns represent a scalable approach to e�ciently reveal defects or possi-
ble causes thereof. According to Wagner et al (2008), this technique can already
be cost-e�cient by detecting three field defects. Their detectors, aka rules, aim
at structural patterns recognisable from source code, executables and meta-data
such as source code comments and debug symbols to gain as much knowledge
as possible from a static perspective. This knowledge encompasses obvious bugs,
rather complex heuristics for latent defects, e.g. code clones, and less critical is-
sues of coding style. For example, uncallable method defined in anonymous class or
never called are among the frequently activated rules for Java. These are triggered
whenever the applicable code fulfils these conditions.

Because of the large variety of defects, as classified in Beizer (1990), there is
no single classification schema for bug patterns yet. A reason for this might be
that generally applicable defect classifications are rare, vague or di�cult to use
in practice (Wagner 2008). The tools used here classify their rules according to
the consequences of findings such as security vulnerability, performance loss or
functional incorrectness. By the term finding we denote that a rule was triggered

3 http://www.ccfinder.net
4 http://www.semanticdesigns.com/Products/Clone
5 http://www.axivion.com

8 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

at a specific location. Findings themselves are often categorised by their severity
and their confidence levels.

Many of the rules are realised by means of individual lexers and parsers, by
using compiler infrastructures or by more reusable means such as pattern or rule
languages and machine learning. Rules for latent defects and coding style often
stem from abstract source code metrics as discussed, e.g., by Ferzund et al (2008).
Among the wide variety of tools6 available for bug pattern detection, free, more
popular or commercial ones are splint7 for C, cppcheck8 for C++, FindBugs9

(Ayewah et al 2008) for Java, FxCop10 for C# or Coverity Static Analysis for all
of these languages (Bessey et al 2010). We use the free tools FxCop and Gendarme
for C# and PMD and FindBugs for Java in our study.

Architecture Conformance. Architectural erosion denotes the problem that struc-
tural knowledge of a system often gets lost over its lifetime (Feilkas et al 2009;
Fiutem and Antoniol 1998; Rosik et al 2008). The documented and the imple-
mented architectures are drifting apart. This e↵ect leads to a downward spiral
in system maintainability. To counteract this, di↵erent approaches are in use to
compare the system’s implementation with its intended architecture.

For example, Passos et al (2010) identify three static concepts existing for
architecture conformance analysis: Reflexion Models (RM), Source Code Query
Languages (SCQL) and Dependency Structure Matrices (DSM).

Reflexion Models (Koschke and Simon 2003) compare two models of a system
and check their conformance. The first model usually represents the intended ar-
chitecture, the second one the implementation of the system (Knodel and Popescu
2007). The intended architecture consists of components and allowed relationships
between components, expressed as rules. Each component itself can contain sub-
components. The system’s code is mapped to these components and then analysed
for conformance to the given rules. This technique is used by the commercial tools
SonarJ11 and Structure10112 as well as the open-source tools ConQAT and de-
pendometer13.

There are tools using SCQL like Semmle.QL (de Moor et al 2007) or DSM
like Lattix (Sangal et al 2005) not further explained here. Both of these concepts
rely strongly on the realisation of the system and cannot provide an architecture
specification that is independent of the system’s implementation (Deissenboeck
et al 2010b).

Apart from this technical perspective, the quality of an architecture specifi-
cation is a crucial factor for the success of architecture conformance. Imprecise,
inconsistent, invalid, outdated, coarse-granular or incomplete specifications also
decrease the quality of findings produced by architecture conformance analysis
and hinder the e↵ective creation of reflexion models. Moreover, the strong connec-
tion of architecture and system’s rationales and quality makes it risky to perform

6 http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
7 http://splint.org
8 http://cppcheck.sourceforge.net
9 http://findbugs.sourceforge.net

10 http://msdn.microsoft.com/en-us/library/bb429476\%28v=vs.80\%29.aspx
11 http://www.hello2morrow.com/products/sonarj
12 http://www.headwaysoftware.com
13 http://source.valtech.com/display/dpm/Dependometer

Static Quality Analysis in SMEs 9

architecture conformance analysis on the basis of a defective architecture specifi-
cation.

In summary, architecture conformance analysis techniques highlight the often
neglected topic of architecture and o↵er a way to automatically analyse its impact
on the code. The technique is fragile in case of defective architecture specifications
but o↵ers possibilities to actively discuss the influence of architectural decisions
on the system’s implementation and to improve both levels iteratively. As with
code clone detection, we use ConQAT for architecture conformance analysis. A
detailed description of its architecture conformance feature can be found in the
work of Deissenboeck et al (2010b).

2.5 Quality Models and Quality Assessment Models

Besides static analysis tools, we evaluate the benefit of quality models. Following
ISO/IEC 25010 (2011), quality models “categorise product quality into character-
istics.” Hence, they mainly define what software quality consists of. In a broader
sense, as discussed by Deissenboeck et al (2009), quality models are able to as-
sess or even predict the quality of a software system. Hence, quality models exist,
among others, as simple taxonomies, guidelines, checklists, metrics or stochastic
models. The aim of quality models is to make the abstract concept of software
quality more tangible. This can result in taxonomies used as checklists for qual-
ity requirements, metrics used for an overall quality assessment or analyses for
detecting critical parts of a software system.

The work on software quality models began in the 1970s with early taxonomies
from Boehm et al (1978) and McCall et al (1977). They broke quality down into
what is colloquially called “-ilities” such as reliability or maintainability. This
influenced the standard ISO/IEC 9126 (2003) and its successor ISO/IEC 25010
(2011). These taxonomies have shown to be too abstract to be used by developers
in their daily work (Wagner et al 2009). The metrics proposed have proven to
be di�cult and the quality attributes are hard to be refined further (Kitchenham
and Pfleeger 1996; Al-Kilidar et al 2005). Therefore, the standards are not yet
widely used (Wagner et al 2012b). Other researchers proposed more structured
quality models. For example, Dromey (1995) used a generic quality model split
into quality attributes, components and component properties as well as their
interrelations. This way, he could express the impacts of specific properties on the
quality attributes more precisely.

The German research project Quamoco14 used the preliminary work of its
project partners (Deissenboeck et al 2007; Plösch et al 2009) to develop a de-
tailed and explicit meta-model for quality models and build a broad, completely
operationalised quality model called base model (Wagner et al 2012a). On the top
level, the Quamoco quality models use quality characteristics well-known from
ISO/IEC 25010 (2011), on the bottom level, they apply concrete measures. In the
base model, these are static measures collected either automatically by ASA tools
or manually by reviews. The base model is split into several modules, a root module
and several technology-specific ones. Between quality characteristics and low level
measures, Wagner et al (2012a) introduced the concept of a product factor which

14 http://www.quamoco.de/

10 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

is similar to the component properties of Dromey (1995). Product factors bridge
the gap between the di↵erent abstractions by being more directly measurable as
well improving the traceability of the impact on the quality characteristics.

Furthermore, Wagner et al (2012a) describe a quality assessment method based
on the aforementioned quality model. It uses the collected data for the measures
together with aggregation rules, so-called evaluation specifications, for the product
factors. Such specifications define how the measures associated to product entities
translate into the degree of presence of product factors. They are also calibrated
using a large number of open-source systems (Lochmann 2012). There are similar
specifications that describe (using weights) how the various product factors impact
the quality characteristics. The overall assessment result is then a value between
1 and 6 according to German school grades (1 is the best, 6 the worst). In empir-
ical validations (Wagner et al 2012a), such results have shown to be significantly
correlated to expert opinions. The base model and tooling are available as open
source, the base model is also accessible in a Web version.15

We introduced an example bug patterns above: the rule uncallable method de-
fined in anonymous class of FindBugs. It can measure the product factor Useless-
ness of a Method which is part of the module on object orientation. Each product
factor has a short description:

A method is useless if it is never referenced but nevertheless explicitly de-
fined. Note: This factor regards completely unnecessary code which could be deleted
without any e↵ect, whereas the “unnecessarily complicated” factor regards code that
is too complicated due to an apparent programming mistake.

This is a factor that influences several quality characteristics of a software system
negatively. The quality model contains impacts to Resource Utilisation, Analysabil-
ity and Functional Correctness. These, in turn, influence higher-level characteris-
tics. For example, Resource Utilisation influences Performance E�ciency which
influences Quality. For evaluating the product factor and its influenced quality
characteristics, we need to measure the degree to which the product factor is
present in a product. To do so, we have assigned measures to the product factor.
In our example, these are Uncallable method defined in anonymous class and Never
called for Java. Both can be collected automatically by the tool FindBugs. We col-
lect the number of findings in relation to the size of the product (e.g. measured
in LoC) and assign an evaluation result to the product factor using an evaluation
specification. Hence, many findings would lead to a large degree of uselessness of
methods which, in turn, could lead to a bad grade such as a 5. This way, the mea-
surements and evaluations at large constitute an overall grade of product quality.

To make building Quamoco quality models and using them in the assessment
of software systems feasible, the project developed extensive tool support. There
is a complete tool chain containing the Quamoco quality model editor for building
the model and the assessment toolkit ConQAT for measuring and calculating the
assessment results (Deissenboeck et al 2011). We used the Quamoco base model
together with the Quamoco tool chain in our study.

15 http://www.in.tum.de/webportal/explorer.html

Static Quality Analysis in SMEs 11

2.6 Procedure

This section explains the planned milestones of our investigation (Steps 1–4). It
explains the start of our research (Step 1) and addresses our research questions,
i.e. which data have to be collected and how to achieve that (Step 2) as well as
how and under which conditions our analyses have to be carried out (Steps 3–
4). Steps 2 and 3 take place during a single, collaborative two-week sprint per
participating enterprise with at least one sprint meeting at the beginning, the
middle and the end of the sprint. During a sprint, the respective study participant
has to provide support for technical questions, such as check-out of the source code
or configuration of the build process and has to attend the sprint meetings.

2.6.1 Step 1: Workshops and Interviews

First, we conduct a series of workshops and interviews to motivate industrial part-
ners to participate in our project and then to understand their context and their
needs. We start with an information event where we explain the general theme
of transferring QA techniques and propose first directions. With all study partic-
ipants (i.e. the companies that agree to join the project), we conduct a kick-o↵
meeting and a workshop to create a common understanding, discuss organisa-
tional issues and plan the complete schedule. In addition, the SPs present the
corresponding study objects and their needs concerning software quality. To in-
tensify our knowledge of these systems and problems, for each participant, we
perform a semi-structured interview with two interviewers and a varying number
of interviewees (i.e. SP including optional sta↵). Both interviewers take notes and
consolidate them. We then compare all interview results to find commonalities and
di↵erences. After that, we hold one or two consolidation workshops to discuss our
results and plan the further investigations.

2.6.2 Step 2: Raw Data Collection

The source code of at least three versions of the study objects, e.g. major releases
chosen by the companies, is retrieved for the application of the chosen techniques
for RQ 1 to analyse e↵ects over time. For bug pattern detection and architecture
conformance analyses, we retrieve or build executables packed with debug symbols
for each of these configurations. For architecture conformance, we also need an
appropriate architecture specification. Accordingly, all study participants have to
provide project artefacts as far as available, i.e. source code, build environment
and/or debug builds, as well as documentation of source code, architectural speci-
fication and project management information. Since the project budget is limited,
we cannot a↵ord the additional e↵ort of creating these project-specific artefacts if
unavailable.

2.6.3 Step 3: Measurement and Analysis

We apply each technique to the gathered raw data via corresponding tool runs
and inspect the results, i.e. findings and statistics. To get comparable results, we
follow a generic procedure for each analysis technique which is presented here. A

12 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

detailed description of the respective process for each technique can be found in
the following paragraphs.

I. Introduction (once per study object):
Individual steps for preparation such as completion of technical and concep-
tual prerequisites, installation and configuration of tools, setup of aggregation
mechanisms, filters and visualisations to obtain tangible results

II. Application (once per SO version or analysis run):
1. Readjustment (optional): Readjustment of the tools according to version

specific characteristics (e.g. new path, excluded code, filtering of false pos-
itives or reconfiguration of the tools)

2. Run analysis: Run of the ASA tool, generation of results
3. Inspection: Inspection, filtering and discussion of findings, identification of

false positives

To provide answers to RQ 1, we consider problems arising and e↵orts spent
while following the structure of the presented procedure for each technique. The
tool runs as well as the application of the quality model and the discussion with
the study participants in sprint meetings enable us to derive answers for RQ 2.1
(the classification of findings as defects, their discussion and analysis) and RQ 3.1
(the comparison of individual ASA results with the results of the quality model).

One person per technique carries out the presented steps (I.1–II.3) for all SOs
and versions. We discuss below in detail how we perform the procedure for each
of the investigated techniques.

Code Clone Detection (CD). We use the clone detection feature (Juergens et al
2009a) of ConQAT 2.7 for all SOs. In conventional clone detection, the configu-
ration consists of two parameters: the minimal clone length and the source code
path. In gapped clone detection, parameters such as maximal allowed number of
gaps per clone and maximal relative size of a gap are required in addition. Based
on the experience of our group and initial experimentation, we set the minimal
clone length to 10 lines of code, the maximal allowed number of gaps per clone to
1 and the maximal relative size of a gap in our analysis to 30%. After providing
the needed parameters we run the analysis.

To inspect the analysis metrics and particular clones, ConQAT provides a list
of clones, lists of instances of a clone, a view to compare files containing clone
instances and a list of discrepancies for gapped clone analysis. This data is used
to recommend corrective actions. In a series of clone detection runs over di↵erent
SO versions, we monitor trends, i.e. how the metrics evolve.

Bug Pattern Detection (BP). For Java-based systems we install and configure
FindBugs 1.3.9 and PMD16 4.2.5. In C#.NET contexts we use Gendarme17 2.6.0
and FxCop 10.0.

Aside from applying all rules, we choose two additional tool settings which we
consider to be relevant for the SOs to gain two focused quality perspectives:

1) Selected categories addressing correctness, performance and security

16 http://pmd.sourceforge.net
17 http://www.mono-project.com/Gendarme

Static Quality Analysis in SMEs 13

2) Selected rules for unused or poorly partitioned code and bad referencing

The tool settings are determined during preliminary analysis test runs. Categories
and rules which are considered not important – based on discussion with the study
participants as well as requirements non-critical to the SOs’ application domains
– are ignored during rule selection. For additional and language-independent met-
rics (e.g. lines of code without comments; code-comment ratio; number of classes,
methods and statements; depth of inheritance and nested blocks; comment qual-
ity) as well as for result preparation and visualisation, we apply ConQAT. To
simplify the issue of defect classification for our investigation, we only distinguish
between rules for bugs (obvious defects), smells (simple to very complex heuris-
tics for latent defects) and pedantry (less critical issues with focal point on coding
style). The readjustment of the tools to di↵erent versions involves a revision of the
rule selection, a filtering of findings and an adjustment of the list of files to anal-
yse. Next, we analyse the finding reports resulting from the tool runs. This step
involves besides the filtering of findings, primarily by rule criticality or finding fre-
quency, the inspection of source code to confirm the severity of and confidence in
these findings and to determine corrective actions. To get feedback and to confirm
our conclusions from the findings, we discuss them with our study participants
during a workshop.

Architecture Conformance Analysis (AC). We start with the analysis of the archi-
tectural specification of each SO and extract relevant information. Subsequently
we contact system architects and validate our perception. After installation of
ConQAT, we create a reflexion model containing components and their mapping
to code parts (e.g. packages, namespaces, classes). We exclude code parts from
the analysis that are not relevant (e.g. certain external libraries). Then ConQAT
checks the conformance of the system to the reflexion model. Every existing de-
pendency that is not allowed by the architectural rules represents a defect. Defects
are visualised by the tool on the level of components and on the level of classes.
To eliminate tolerated architecture violations and to validate the created reflexion
model, we discuss and classify every found defect together with the corresponding
study participant. This allows us to group similar defects and to gain a general
understanding.

Architecture conformance analysis requires an architectural specification of the
system which circumscribes allowed and forbidden dependencies between logical
components and their mapping onto the code. We are aware that this specification
might be missing in some of our study objects. Unfortunately, project constraints
(time, budget) hinder us and our study participants to reconstruct an architectural
specification at least for our investigation if it is missing. Moreover, we want to em-
phasise that this reconstruction is associated with large e↵orts. This circumstance
will also influence the evaluation and discussion of this technique.

Quality Model (QM). We make use of the existing Quamoco base model18 with its
operationalisations for Java and C# to assess the quality of the SOs. We analyse
all of them with respect to the base model using the Quamoco tool chain (Wagner
et al 2012a). Accordingly, we install Quamoco which includes a setup of ConQAT.

18 http://www.in.tum.de/webportal/explorer.html

14 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

To adapt Quamoco for our study we select the appropriate model module (Java
or C#) and configure the paths to the source code and executables. After running
the analysis, we collect tool measurements, grades for the quality characteristics
and their relations.

To answer RQ 3.1, we then use the clone coverage from clone detection, the
total number of all findings per thousands line of codes and the number of critical
findings from the bug pattern tools as well as the number of architecture violations
from architecture conformance analysis (where available). Using this information,
we bring the SOs in a rank order for each of these sums. The higher the number
of findings or violations, the lower the rank. Similarly, we form a rank order using
the overall quality grade from the Quamoco assessment. This allows us then to
compare each ranking from the static analysis tools directly with the aggregated
result from the Quamoco assessment.

2.6.4 Step 4: Questionnaire

We use two kinds of questionnaires during the project. The first one aims at
answering RQ 3.2, the second one is intended to address RQ 2.2.

Comparison of Quality Model Results and Study Participants’ Opinions. By means
of a questionnaire, the companies estimate six characteristics of their systems’
quality which are taken from the Quamoco quality model: functional suitability,
performance e�ciency, reliability, security, maintainability and portability. Con-
cerning maintainability, which is well elaborated in the Quamoco quality model,
we are interested in four sub-attributes which we include in the questionnaire:
analysability, modifiability, reusability and testability. The companies are allowed
to give two estimations for each of the attributes:

1) An estimation for each attribute of the quality of their product, ranging in 7
levels from Insu�cient to Excellent.

2) An estimation of how sure they are of their ratings, ranging in 7 levels from
Unconfident to Confident.

Finally, we compare the outcome of the questionnaires with the rating o↵ered by
the quality model.

Experience in Static Analysis Techniques. First, we evaluate the experience of
the participating enterprises regarding software quality as well as static analysis
techniques. Second, we determine the perceived usefulness of ASA techniques for
SMEs and whether our study participants plan to use the presented techniques
in their future projects. Thus, we perform a survey on our study subjects using
a questionnaire containing nine questions (Q1–9) which can be found in Tables 9
and 10 in Appendix A. The study participants fill out this questionnaire and
we evaluate the answers. To avoid the risk of biased or too narrowly formulated
answers, we use open and closed questions. This way we contribute to RQ 2.2.

2.7 Protocol of Study Preparation (Step 1) and Execution (Steps 2–4)

We held the information event of Step 1 of our procedure in July 2009 and invited
more than thirty SMEs 12 of which finally participated. Of these companies, five

Static Quality Analysis in SMEs 15

committed to act as study participants. The other companies were not showing
commitment because of reasons we did not investigate further. We conducted the
kick-o↵meeting in March 2010, the interviews between March and July and, finally,
two consolidation workshops in July 2010. We used these meetings to analyse the
experience of the enterprises, to present and identify interesting topics related to
software quality and to agree on a procedure and milestones for our collaboration.

Steps 2 and 3 were conducted in two-week sprints with each of the five study
participants from October 2010 to January 2011. At the beginning of each sprint,
the study participants gave us an introduction to their study object, its background
and rationales. We met technical prerequisites (Step 2) such as remote access to
the code repository and build environment, the installation of required libraries
and IDEs, the availability of architectural information and the identification of
irrelevant parts of the study objects such as generated code. Additionally, we
explained to the study participants how we were going to perform the analyses of
the study objects and which goals we wanted to achieve.

We conducted Step 3, the measurement and analysis concentrating on the
three ASA techniques, during the whole sprint. Due to time constraints, quality
models could not be considered in the sprints and were postponed to the time after
the sprints. After one week we held an intermediate meeting where we discussed
potential problems with the study participants and presented the progress of our
analyses. At the end of each sprint, we organised a final meeting with them to
discuss of our findings and their criticality. Furthermore, we explained how the
SPs could introduce and apply the three techniques. In January 2011 and after
the sprints, we carried out the quality model analyses for each study object. The
analyses could benefit from the experience and knowledge we had gained in the
sprints.

In addition, we distributed a questionnaire for RQ 3.2 (Tables 10 & 9) to
each of the study participants. We held the final project workshop at the end of
February 2011. We presented the results and findings of the three ASA techniques
and the quality model to all study participants and discussed the outcomes. After
the final project workshop, we provided each of them with another questionnaire
(Table 13) to answer RQ 2.2.

3 Results

In the following, we present results for each technique for research questions RQ 1
and 2 and describe our findings for RQ 3 using a quality model.

3.1 Code Clone Detection

3.1.1 RQ 1.1 – Technical Problems

Code clone detection turned out to be the most straightforward and least com-
plicated of the three techniques. It has some technical limitations, however, that
could hinder its application in certain software projects.

A major issue was the analysis of projects containing both markup and program
code like JSP or ASP.NET. Since ConQAT supports either a markup language or

16 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

Phase Work Step
Clone
Detection

Bug Pat-
tern Det.

Architecture
Conformance

Quality
Model

I.
Introduction

Individual
procedure for
preparation

 0.5h

setup:
 1h

conception:
 1d 0.5h

aggregation:
 0.5d

reflexion
model: 1h

II.
Application

1. Readjust-
ment

 0.5h 0.5h 0.5h n/a

2. Run analysis 5min 1h 10sec 15min

3. Inspection
 1h,
gapped:
 1.5h

 0.5h 0.5h 1h

Table 2 Maximum e↵ort spent (RQ 1.2) across all study object versions for applying each of
the techniques, following the presented steps in 2.6. Legend: h . . . hour(s), d . . . day(s)

a programming language during a single analysis run, the results for both lan-
guages need to be aggregated. To avoid this complication and concentrate on the
code implementing the application logic, we only considered the code written in
the programming language and ignored the markup code. Nevertheless, spending
the e↵ort of combining markup and program clone detection would provide more
accurate results.

Another technical obstacle was filtering out generated code from the analysed
code base. In one SO, large code portions were generated by the parser generator
ANTLR19. We excluded such code files from our analysis using regular expressions.

Finally, the technique as applied is limited in the types of detectable clone
classes. One may come across semantic clones, i.e. code fragments which exhibit
highly similar input-output behaviour but they di↵er too much to be recognised as
normal or gapped clone instances. Chapter 4 refers to possible solutions to these
issues.

3.1.2 RQ 1.2 – Spent E↵ort

Table 2 gives an overview of the needed e↵ort. The time required to introduce
clone detection is small compared to the other two ASA techniques under study.
The ease of introduction of clone detection is achieved due to the minimalist
configuration of the analysis which, in the simplest case, includes the path to the
source code and the minimal length of a clone. Our estimations were made under
the assumption that relevant tool manuals (Deissenboeck et al 2010a) have already
been consulted.

For all SOs, it took less than an hour to configure clone detection, to get the
first results and to investigate the longest and most frequent clones. Running the
analysis itself took less then five minutes.

In case of gapped clone detection, it took a considerable amount of time to
determine whether a discrepancy is intended or whether it represents a defect. To
speed up the rest of our procedure, ConQAT supports the intended discrepancies
to be fingerprinted and excluded from further analysis runs.

19 http://www.antlr.org

Static Quality Analysis in SMEs 17

SO Ver.
Analysed

Units
[kUnits]

Cloned
Units

[kUnits]

Blow-
up
[%]

Unit
Coverage

[%]

Longest
Clone

[Units]

Most
Clone

Instances

I 15.9 3.5 119.5 22.2 112 39
1 II 25.3 5.8 118.9 23.0 117 39

III 32.3 7.8 119.2 24.0 117 39
I 35.4 14.3 143.1 40.5 63 64

2 II 41.6 18.9 150.2 45.4 132 47
III 39.9 14.6 137.4 36.7 89 44
I 51.7 9.4 114.5 18.2 79 21

3 II 56.8 8.6 111.2 15.1 52 20
III 61.6 8.4 110.0 13.7 52 19
I 8.9 6.0 238.8 68.0 217 22

4 II 22.4 17.3 309.6 77.6 438 61
III 38.3 30.4 336.0 79.4 957 183
I 196.3 48.7 122.3 24.8 141 72

5 II 211.3 53.4 122.7 25.3 158 72
III 208.6 53.2 122.8 25.5 156 72

Table 3 Results of code clone detection. Units: uncommented and normalised source code
statement; kUnits: 1000 Units.

3.1.3 RQ 2.1 – Found Defects

The Tables 3 and 4 show detailed results of conventional and gapped code clone
detection for three versions of each SO. As explained in Section 2.4, the column
“Analysed Units” shows numbers smaller than the actual code size given in Table 1.

The results of conventional clone detection can be interpreted as an indicator
of bad design and software maintainability problems, but they do not point at
actual defects. Nevertheless, these results indicate code parts as candidates for
improvement. The following three types of clones were detected in all analysed
systems to a certain extent: cloning of exception handling code, cloning of logging
code and cloning of interface implementation by di↵erent classes.

In the analysed systems, unit coverage varied between 14 and 79% (Table 3).
Koschke (2007) reports on several case studies with unit coverage values between
7 and 23% and one case study with a value of 59%, which he defines as extreme.
Therefore, SO 1, 3 and 5 exhibit normal clone rates according to Koschke. The
clone rate in SO 2 is higher than the rates reported by Koschke, and for SO 4 it is
extreme. Regarding maintenance e↵orts, the calculated blow-up for each system
may indicate a risk. For example, version III of SO 4 is more than three times
bigger as its hypothetically equivalent system containing no clones. SO 4 shows
that cloning can increase over time, while SO 3 reveals that it is possible to reduce
the amount of its code clones.

Code clones are considered harmful because they increase the chance of uncon-
scious, inconsistent changes, which can lead to faults (Juergens et al 2009b). These
changes can be detected using gapped clone detection. Table 4 shows correspond-
ing results. We found a number of such changes in the cloned code fragments, but
we could not classify them as defects, because we lacked knowledge about the SOs.
Despite our workshop discussions, the study participants were not able to definitely
classify these discrepancies as defects. This indicates that gapped clone detection
is a more resource demanding type of analysis. Nevertheless, in some clone in-
stances we identified additional instructions or deviating conditional statements

18 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

SO Ver.
Analysed

Units
[kUnits]

Cloned
Units

[kUnits]

Blow-
up
[%]

Unit
Coverage

[%]

Longest
Clone

[Units]

Most
Clone

Instances

I 13.3 3.0 119.9 22.3 34 39
1 II 21.0 4.5 117.9 21.5 37 52

III 27.1 6.0 117.4 22.1 52 52
I 24.3 4.6 116.3 19.0 156 37

2 II 34.7 8.7 123.2 25.0 156 37
III 37.1 9.4 123.7 25.3 156 37
I 46.7 12.0 124.4 18.2 73 123

3 II 46.1 10.0 120.0 15.1 55 67
III 49.1 10.0 118.6 20.5 55 64
I 7.8 4.5 192.1 58.6 42 34

4 II 18.8 11.0 206.2 59.8 51 70
III 32.2 19.2 211.1 59.5 80 183
I 142.3 29.4 117.4 20.7 66 68

5 II 154.0 32.8 118.0 21.3 85 78
III 151.9 32.7 118.2 21.5 85 70

Table 4 Results of gapped code clone detection. Units: uncommented and normalised source
code statement; kUnits: 1000 Units.

compared to other instances of the same clone class. Gapped clone detection does
not cross method boundaries, since experiments showed that inconsistent clones
that cross method boundaries in many cases did not capture semantically mean-
ingful concepts (Juergens et al 2009b). This explains why metrics such as cloned
units or unit coverage (Table 4) may di↵er from values observed with conventional
clone detection (Table 3). The smaller numbers in column “Analysed Units” of
Table 4 result from the exclusion of units not meaningful for the gapped variant,
e.g. source code outside from method definitions.

3.1.4 RQ 2.2 – Perceived Usefulness

Following the feedback obtained from the questionnaire (see Q1–Q8 in Tables 9
and 10 in Appendix A), two study participants had limited experience with clone
detection, the other three did not consider it at all (Q2). Three participants es-
timated the relevance of our clone detection results to their projects as high, the
other two estimated it as medium relevant (Q3). SO 2 and 4 had high clone rates.
The participant responsible for SO 2 considered this as medium relevant. For SO 4,
the SP considered its clone rates as highly relevant. The relevance is underpinned
by one SP’s argument that “clone detection is only feasible with tool support”
which we demonstrated (see Q1 in Table 10). Another interesting statement was
that “clones are necessary within short development cycles.” Finally, all SPs eval-
uated the importance of using clone detection in their projects as medium to high
and plan to introduce this technique in the future (Q5).

3.2 Bug Pattern Detection

3.2.1 RQ 1.1 – Technical Problems

We can confirm that bug patterns are a powerful technique to gather a vast variety
of information about potentially defective code. However, most of its e↵ectiveness

Static Quality Analysis in SMEs 19

and e�ciency is achieved through carefully done, project-specific fine-tuning of the
many setscrews available. This is confirmed by Boogerd and Moonen (2009) and
Ruthru↵ et al (2008). In the following, we mention three important issues:

First, the impact of findings on product quality factors or characteristics of
interest and their consequences for the project (e.g. corrective actions, avoidance
or tolerance) were di�cult to determine by the tool-provided rule categories, the
severity and confidence information. Based on our experience, we identified the
following study object characteristics this impact depends on:

– Required usage-level qualities, e.g. security, safety, performance, usability
– Required internal qualities, e.g. code maintainability, reusability
– Technologies, i.e. language, framework, platform, architectural style
– Criticality of the context, the findings belong to, e.g. platform or driver code

Second, some rules exhibited many false positives, either because their techni-
cal way of detection is fuzzy or because a definitely precise finding is considered
not relevant in a project-specific context. The latter case requires an in-depth
understanding of each of the rules, the impacts of findings and, subsequently, a
proper redlining of rules as pedantry or, actually, irrelevant. We neither measured
the rates of false positives nor investigated costs and benefits thereof as our focus
lay on the identification of the most important findings only.

Third, due to restricted selection and filtering mechanisms within the tools as
well as lack of knowledge about the SO life cycles, we were hindered to apply and
calibrate appropriate rule selectors and findings filters. We saw that the usefulness
of results is crucially influenced by the conversion of project-specific information on
rule impacts into queries for rule selection and findings filtering. The tools largely
di↵er in their abilities to achieve this task via their graphical or command-line
interfaces.

We addressed the first two issues by group discussion also with our study
participants and improved rule selection and findings filtering to principally avoid
the finding reports to get overloaded or prone to false positives of the second
kind. The third issue could also only be compensated by manual e↵orts. As most
finding reports were quite homogeneously encoded and technically well accessible,
we utilised ConQAT to gain statistical information for higher-level quality metrics
as listed in Step 3 of our procedure. Chapter 4 refers to approaches to better
overcome these issues.

3.2.2 RQ 1.2 – Spent E↵ort

Table 2 gives an overview of e↵orts. We achieved the initial setup of a single bug
pattern tool in less than an hour. This estimation excluded the time needed to gain
previous knowledge about the internal structure of the SO such as, e.g. its directory
structure and third party code. We used the ConQAT framework to flexibly run
the tools in a specific setting and for further processing of the finding reports.
Having good knowledge of this framework, we completed the analysis setup for
an SO (selection of rules, adjustment of bug pattern parameters and framework
setup) in about half a day.

The runs took between a minute and an hour depending on code size, rules
selection and other parameters. Hence, bug pattern detection should at least be

20 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

selectively included into automated build tasks. Part of the rules are computation-
ally complex and some tools frequently required more than a gigabyte of memory.
The manual e↵ort after the runs can be split into inspection and readjustment.
The inspection of a report took us a few minutes up to half an hour. Readjustment
of the rule selector and the findings filter requires deep knowledge of the type, ob-
jectives and evolution history of an SO. As we could not gain this knowledge in
our two-week sprints (see Section 2.6), readjustment was only done roughly and,
hence, took no more than half an hour.

3.2.3 RQ 2.1 – Found Defects

We conducted bug pattern analysis in three selective tool settings according to
Step 3 but only for one version of each SO. Table 5 summarises noticeable findings
that have been most critically rated by the tools, exhibited relatively high fre-
quencies or have been extraordinarily remarkable. For all SOs, the filtered finding
reports confirmed the defects focused or expected by these settings. We used “*”
to label findings which have been explained to our study participants and consen-
sually confirmed as critical at the final project workshop. Without going into the
quantities and details of single findings, we summarise language-specific results:

C# Among the rules with the most critical or frequent findings in SO 1 and 2,
FxCop and Gendarme reported empty exception handlers, visible constants and
poorly structured code. There was only one kind of findings related to correct-
ness consensually considered to be critical in SO 1, namely unacceptable loss
of precision through wrong cast during an integer division used for accounting
calculations (Table 5).

Java Among the rules with the most critical or frequent findings in SO 3, 4 and
5, FindBugs and PMD reported unused local variables, missing validation of
return values, wrong use of serialisable (mainly SO 3) and extensive cyclomatic
complexity, class or method size, nested block depth, or parameter list (SO 3, 4
and 5). There have only been two kinds of findings related to correctness con-
sensually considered to be critical, both in SO 5, namely foreseeable access of a
null pointer and an integer shift beyond 32 bits in a basic date-time calculation
component (Table 5).

Independent of the programming language and concerning security and stability,
we detected the pattern problematic method call in four out of five SOs (e.g. fre-
quently in SO 3 and 5: constructor calls overwritable method) and found a number
of defects related to error prone handling of pointers. Concerning maintainability,
the SOs exhibited missing or unspecific handling of exceptions, manifold violations
of code complexity metrics and various forms of unused code.

3.2.4 RQ 2.2 – Perceived Usefulness

According to the questionnaire (see Q1–Q8 in Tables 9 and 10 in Appendix A),
all of the study participants considered our bug pattern findings to be medium to
highly relevant for their projects (Q3). The sample findings, we presented during
our final project workshop, particularly Table 5, were perceived as critical enough
to be treated if they had been found during the development of the SOs. However,

Static Quality Analysis in SMEs 21

Tool
(Lang.)

Rule or (G)roup of Rules

Study Objects (Ver.)
Most a↵ected
Qualities

1 2 3 4 5

III III III II II

C# C# J J J

FxCop
(C#)

Empty/general except. handlers 106 47 - - -

MaintainabilityNested use of generic types 17 24 - - -
Gend-
arme
(C#)

Deep namespaces with depth > 4 0 35 - - -

Visible constants 338 18 - - - Security

Suspicious type conversion 3* 0 - - - Correctness

Gend.,
PMD

G: Problematic method calls 2 8 i 0 i Secur., stability

G: Extensive class/method size or
parameter count; too many fields

20 1 i i i

Maintainability
PMD
(Java)

G: Empty methods - - i 0 i

Cyclomatic complexity > 10 - - 256 49 938

Find-
Bugs
(Java)

G: Unused fields/variables - - 132 0 2

G: Ine�cient string manipulation - - 49 0 0 Performance

G: Corrupted serialisable - - 12 0 0
Correctness

Integer shift beyond 32 bits - - 0 0 4*

Return values not validated - - 32 0 0 Correctn., secur.

Access of a null pointer - - 1 0 2* Secur., stability

Maximum Metrics (suggestions in parentheses)

PMD Max. cyclomatic complexity (10) - - 78 156 216
Maintainability

ConQAT Max. nested block depth (5) 11 13 19 17 14

Table 5 Summary of noticeable bug pattern findings and maximum metrics. Legend: Cells
contain the number of findings or a maximum value, - . . . not applicable, i . . . noticeable, but
PMD did not o↵er an appropriate way to exactly count the many findings; * . . . regarded as
consensually critical after group discussion; J . . . Java.

the SPs did not perceive these findings as threats to the business success of the SOs.
The low number of consensually critical findings correlated well with the fact that
the technique was known to all SPs and that most of them have good knowledge
thereof and regularly used such tools in their projects, at least monthly, at mile-
stone or release dates (Q1-2). Monthly use of FindBugs and PMD, as confirmed by
the SP of SO 4, largely explains its relatively positive BP situation. However, three
of the SPs could gain additional education in this technique (Q4). One stated that
the presented analyses are “often not feasible in projects externally conducted at
the customer’s site” (Q8). Nevertheless, all the participants indicated to use bug
patterns as an important QA instrument in their future projects (Q5).

3.3 Architecture Conformance Analysis

3.3.1 RQ 1.1 – Technical Problems

We observe two general problems that prevent or complicate each architectural
analysis: The absence of system architecture specification and the usage of dy-
namic patterns of architecture design, i.e. a programming technique that increases
flexibility through postponing type binding and identification until run-time.

For two of the SOs, no architectural specification was existent. In case of SO 3,
the SP was aware of the lack of such documentation. Nevertheless, they feared

22 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

that the time involved and the sheer volume of code to be covered exceeds the
benefits. The need to update the specification, within several months or each
time a new release is coming out, was stated as an additional argument. For
SO 5, the specification was missing because the project was taken over by SS 5
from a di↵erent organisation that was not documenting the architecture at all, for
reasons we could not determine. The SP argued that any later specification of the
architecture would be too expensive.

In SO 2, a dynamic design pattern was implemented so that no static depen-
dencies could be found between defined components. The components belonging
to the system are connected at run-time. Hence, architecture conformance analy-
sis could not be applied. Additional configuration files used for dynamic patterns
have not been taken into account by the tools we used.

Architecture conformance analysis needs two ingredients apart from the archi-
tecture specification: The source code and the executables of a system to resolve
symbolic references. This is a potential barrier because the source has to be com-
pilable to be analysed.

Another technical problem occurred while using ConQAT. Dependencies to
components solely existing as executables were not recognised by the tool. Hence,
all rules belonging to compiled components with missing source could not be anal-
ysed.

Finally, we could apply this technique to two systems without any technical
problems. An overview of all SOs with respect to their architectural properties can
be found in Table 6.

3.3.2 RQ 1.2 – Spent E↵ort

Table 2 gives an overview of e↵orts. The first step in applying this technique
would be the creation of an appropriate architecture specification. As explained in
Section 2.6.3, we had to leave this out. Hence, we faced two situations: Either we
could use the specification to build a reflexion model of the system or the study
object was lacking such a specification.

In case of a missing specification, we asked the study participants to give rea-
sons for the situation and why neither an a-priori specification nor an a-posteriori
reconstruction was considered. For SO 3, the study participant argued that the
cost-value ratio of a later reconstruction would be too bad considering the e↵ort
to maintain it. As the system is changing continuously and its development is
distributed to many locations, the study participant decided against an architec-
ture specification. During the evolution of SO 5, such a specification was never
produced. As SO 5 grew to a size of 560 kLoC and its inner structure got more
complex, the e↵ort for the creation of an architecture specification was considered
too costly by its SP. As explained in the last section, technical obstacles were
hindering the application of the technique for SO 2. The e↵ort that was required
to create the two other architecture specifications (SO 1, SO 4) could not be pre-
cisely estimated by the study participants. We think that it is di�cult to exactly
determine the whole time that was spent on creating a specification because this
conceptual artefact is usually influenced by many project specific characteristics
and tasks.

The most time consuming task was to inspect the architecture specification
and to understand their content, to discuss them with system architects and to

Static Quality Analysis in SMEs 23

SO Architecture Version
Violating Compo-
nent Relationships

Violating Class
Relationships

12 Components
20 Rules

I 1 5
1 II 3 9

III 2 8
2 dynamic pattern n/a n/a n/a
3 undocumented n/a n/a n/a

14 Components
9 Rules

I 0 0
4 II 1 1

III 2 4
5 undocumented n/a n/a n/a

Table 6 Architectural characteristics of the study objects (SO)

identify relevant code fragments, which took us in total up to one day. The initial
configuration of ConQAT including the creation of the reflexion model could be
achieved in less than one hour.

Table 6 shows the number of modelled components and the rules that were
needed to describe allowed connections. The analysis run finished in less than ten
seconds. The time needed for the interpretation of the analysis results is of course
dependent on the amount of defects found. For each defect, we were able to find
the causative code parts within one minute. We expect that the e↵ort needed for
bigger systems will only increase linearly but will stay small in comparison to the
benefit that can be achieved using architecture conformance analysis.

3.3.3 RQ 2.1 – Found Defects

As shown in Table 6, we observed several discrepancies in the analysed SOs across
nearly all versions. Only one version did not contain architecture violations. Over-
all, we found three types of defects in the analysed SOs. Each defect represents a
code location showing a discrepancy to the architecture specification. All defects
we found could be avoided if this technique had been applied. In the following, we
explain the types of defects found and classified together with the study partici-
pants. All findings were rated by the study participants as critical.

– Circumvention of abstraction layers: Abstraction layers (e.g. presentation layer)
provide a common way to structure a system into logical parts. The defined
layers are hierarchically depending on each other, reducing the complexity in
each layer and allowing to benefit from structural properties like exchangeabil-
ity or flexible deployment of each layer. These benefits vanish once the layered
concept is harmed by dependencies between layers that are not connected to
each other. In our case, e.g. the use of the data layer by the presentation layer
was a typical defect.

– Circular dependencies: We found undocumented circular dependencies between
two components. We consider them – whether or not documented – as defects
themselves because they a↵ect principles of well designed architectures. Two
components that are depending on each other can only be used together and
can thus be considered as one component. The reuse of these components is
strongly restricted. Their source code is harder to understand and to maintain.

– Undocumented use of common functionality: Every system’s internals make
use of a set of common functions (e.g. for date-time manipulation) which are

24 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

often grouped into a “library” component to be easily accessed and maintained.
Thus, it is important to have an overview of where these functions are actually
used. Our investigation showed such dependencies that were not covered by
the architecture specification.

– Data dependencies between components: Aside from using external methods or
remote procedures, components are often also using data structures defined in
other components, e.g. classes, enumerations or user interface elements. Such
dependencies can occur in various contexts, e.g. field declarations, method
arguments or inheritances. Data dependencies between components are often
not obvious and should therefore be documented.

3.3.4 RQ 2.2 – Perceived Usefulness

Following the feedback gained from the questionnaire (see Q1–Q8 in Tables 9
and 10 in Appendix A), we observed that four out of five study participants did
not know about the possibility of automated architecture conformance analysis
(Q1). Only one of them already checked the architecture of their system, but in
a manual way and infrequently. Confronted with the results of the analysis, all
participants rated the relevance of the presented technique as medium to highly
relevant (Q3). One of them stated that, as a new project member, it is easier
to become acquainted with a software system if its architecture conforms to its
documented specification (Q3). All participants agreed on the usefulness of this
technique and plan its future application in their projects (Q5).

3.4 Quality Models

3.4.1 RQ 3.1 – Matching with ASA Results

For this research question, we compare the evaluations of the SOs that one can get
by manually looking at the numbers of findings and violations directly with the
aggregated and weighted evaluation of the Quamoco quality model. This compar-
ison gives us the opportunity to investigate whether the aggregation has an e↵ect.
We can find out some di↵erences but not determine any exact causes for them.

We used the findings and violations from ASA as well as the Quamoco assess-
ment grades to form rank orders for the SOs. The result is shown in Table 7. The
Quamoco model assessment ranks SO 2 as best with a grade of 1.5 and SO 5 last
with a grade of 4.5. There is a large spread considering the grade range from 1
to 6 and only the grades of SO 1 and SO 3 are so close that the order might be
questionable. More details can be found in Tables 11 and 12 in Appendix A.

Clone Coverage vs. Overall Grade. Extreme clone rates of more than 79% lead
to the last place of SO 4 while SO 3 ranks best with a rather low clone coverage
of almost 14%. SO 1 and SO 5 have similar clone coverage around 25%. SO 2
ranks fourth with a clone coverage of almost 37%. Surprisingly, the clone coverage
results are not reflected in the quality grades. The worst ranked SO 4 in terms of
cloning reaches rank 2 in the quality grades. Instead, other study objects, which
possess normal clone rates (SO 1, SO 5), are ranked worst by the quality model.

Static Quality Analysis in SMEs 25

SOs ranked by

R
a
n
k

C
l
o
n
e
D
e
t
e
c
t
i
o
n

C
lo
n
e
C
o
ve
ra
ge

B
u
g
P
a
t
t
e
r
n

T
o
ta
l

F
in
d
in
gs

pe
r
1
0
0
0
L
o
C

B
u
g
P
a
t
t
e
r
n

C
ri
ti
ca
l
F
in
d
in
gs

A
r
c
h
i
t
e
c
t
u
r
e

C
o
n
f
o
r
m
a
n
c
e

V
io
la
ti
n
g
C
la
ss
es

Q
u
a
l
i
t
y

M
o
d
e
l

O
ve
ra
ll
G
ra
d
e

1. 3 (13.7%) 4 (0.49) 2, 3, 4 (0) 4 (4) 2 (1.5)
2. 1 (24.0%) 2 (0.67) 1 (9) 4 (2.0)
3. 5 (25.5%) 5 (1.69) 3 (2.5)
4. 2 (36.7%) 3 (2.41) 1 (3) 1 (2.8)
5. 4 (79.4%) 1 (4.68) 5 (6) 5 (4.5)

Table 7 Ranking (1. to 5.) of the study objects on the basis of ASA results and based on the
grades given by the quality model. Legend : In brackets, clone coverage, number of findings or
the grade given by the quality model.

In summary, code clone coverage as a single factor gives strongly di↵erent quality
rankings in comparison to the results given by the quality model.

Total Bug Pattern Findings vs. Overall Grade. The numbers of total bug pattern
findings per 1000 lines of code range from 0.49 to 4.68. The highest rank is achieved
by SO 4 with SO 2 as a close second. SO 3 and SO 1 are ranked as the worst.
This ranking is close to the one from the quality model assessment. The only
di↵erence is that SO 5 is on the third position when purely counting findings
while the aggregated assessment ranks it last. Aggregation and weighting based
on a calibration over various open source systems introduces a view di↵ering from
purely counting findings.

Critical Bug Pattern Findings vs. Overall Grade. Because there were only a few
critical bug pattern findings, we cannot completely separate them by ranks. SO 2,
SO 3 and SO 4 did not show any critical findings and are ranked best. SO 1 is
on position 4 with three critical findings and SO 5 on position 5 with six critical
findings. Apart from the di↵erentiation of three SOs, this is an even better fit to
the quality model ranking. The worst SOs are ranked exactly the same. There-
fore, concentrating on critical findings seems to provide a picture similar to the
aggregated quality model result.

Architecture Conformance Violations vs. Overall Grade. Finally, the results for
architecture conformance violations are limited because we only have two SOs for
this technique. We can rank them. SO 4 is on the best position with four violations
while SO 1 ranks second with nine violations. We cannot say if the overall ranking
would be similar to the ranking from the quality model, but the order of the two
SOs is the same. The quality model also sees SO 4 as having a better quality than
SO 1. Hence, these evaluations seems similar.

3.4.2 RQ 3.2 – Comparison to the Study Participants’ Opinions

Following our procedure, we received three answered questionnaires from the study
participants for SO 1, 3 and 5. Their evaluation revealed di↵ering results compared

26 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

1
2
3
4
5
6

Functional
Suitability

Performance
Efficiency

Reliability

Security

Maintainability

Analyzability

Modifiability

Reusability

Testability

Portability
SO 1

(a) Study object 1

1
2
3
4
5
6

Functional
Suitability

Performance
Efficiency

Reliability

Security

Maintainability

Analyzability

Modifiability

Reusability

Testability

Portability
SO 3

(b) Study object 3

1
2
3
4
5
6

Functional
Suitability

Performance
Efficiency

Reliability

Security

Maintainability

Analyzability

Modifiability

Reusability

Testability

Portability

SO 5

QM assessm.
SP opinion
SP certainty

(c) Study object 5

Fig. 1 The result of the questionnaire in contrast to the quality model. The results were

normalised according to German school grades on a scale from 6 (fail,
^
= grade 6 in the quality

model, level 1 in the questionnaire) to 1 (excellent,
^
= grade 1 in the quality model, level 7 in the

questionnaire). Dashed line: assessment of the quality model; solid line: opinion of the study
participants according to the questionnaire; dotted line: certainty of the study participants
according to the questionnaire.

to the grades given by the quality model. Three radar charts, as illustrated by
Figure 1, show the estimated rating and confidence by the study participants as
well as the result of the quality model. The three SPs rated their study object in
most of the characteristics better than it is was done by the quality model. The
most interesting deviation occurs for “maintainability”, where each of the three
study objects achieved a bad (SO 3: grade 4.76) or even the worst possible grade
(SO 1 and 5: grade 6), whereas all study participants gave better ratings.

Interestingly, all of the study participants reported that they were quite con-
fident (5 out of 7) of their estimation. Accordingly, there is a mismatch between
the ratings provided by the quality model and the opinion of the SPs. Tables 12
and 13 provide further details.

3.5 Summary and Overview of Results

Table 8 depicts the most relevant findings among the results and answers to RQ
1, 2 and 3 in the previous sub-sections. This overview will be reflected and further
interpreted in the following discussion.

Static Quality Analysis in SMEs 27

RQ
Clone Detection
(CD)

Bug Pattern De-
tection (BP)

Architecture Confor-
mance (AC)

1.1
Technical
obstacles

F1) multiple lan-
guages and semantic
clones
F2) false positives
by generated code

F3) hard estimation
of criticality and
false positives
F4) di�cult rule se-
lection and findings
filtering

F5) non-existent archi-
tecture specification (2
SOs)
F6) usage of dynamic
patterns (1 SO)

1.2
Spent e↵ort

F7) low e↵ort for
CD
F8) medium e↵ort
for gapped CD

F9) high e↵ort for
aggregating data
F10) needs frequent
readjustment

F11) high e↵ort for un-
derstanding of specifica-
tion
F12) low e↵ort of appli-
cation
F13) e↵ort for applica-
tion scales with number
of findings
F14) creation of a miss-
ing architecture specifica-
tion is too costly

2.1
Found
defects

F15) two of five
SOs exhibited high
clone rates
F16) no evidently
inconsistent changes
F17) large clone
classes

F18) few consensu-
ally critical findings
in two of five SOs
F19) many
language-
independent code
complexity issues

F20) four types of criti-
cal findings
F21) avoidable defects in
productive code

2.2
Perceived
usefulness

F22) CD was rela-
tively new to partic-
ipants
F23) perceived as
useful and planned
to be introduced

F24) already in use
but should be en-
hanced

F25) AC was new to
participants
F26) all partners rated
AC medium to highly
important and plan its
application

RQ Quality Model (QM)

3.1 Match-
ing with
ASA

F27) QM ranking is similar to critical BP and AC rankings but di↵ers
slightly from total BP ranking
F28) QM ranking di↵ers strongly from CD ranking

3.2 Match-
ing with SP

F29) mismatch between the QM and the study participants’ assessment

Table 8 Summary and overview of findings 1 to 29 of RQ 1–3

4 Discussion

In the following, we discuss the results of Section 3, particularly focusing Table 8
which summarizes our findings (denoted by Fx), some general observations as well
as possible solutions to critical problems and lessons learned from performing our
analyses.

28 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

4.1 Reflection of Results

Regarding RQ 1.1, we faced some obstacles during introduction and application of
all ASA techniques. For RQ 1.2, clone detection required relatively low e↵ort (F7)
whereas the other two techniques took significantly more time to be conducted
(F9, F11). Regarding RQ 2.1, we found large clone classes in SO 2 and 4 (F17),
aside from smells and pedantry a su�cient20 number of pattern-based bugs in
SO 1 and 5 (F18), and unacceptable architecture violations in SO 1 and 4 (F20).
For RQ 3, the quality model assessment was di↵erent from both, the ASA results
(F28, F27) and the opinions of the study participants.

4.2 General Observations

Observation 1: Code clone detection and architecture conformance analysis were
quite new to our study participants as opposed to bug pattern detection (F22, F23).
This may result from the fact that checking coding guidelines or style as well as
simple bug pattern detection are standard features of modern development envi-
ronments. However, we consider it as important to know that code clone detection
can indicate critical and complex relationships residing in the code at minimum
e↵ort (F7). Through our work we made our SPs aware of the usefulness of ar-
chitecture conformance analysis (F26), both in the case of available architecture
specification and the construction of a specification.

Observation 2: As expected, we found that all of the three techniques can be in-
troduced and applied with resources a↵ordable for small enterprises. Except for
readjustment phases at project initiation or after substantial product changes, we
assume that the e↵ort of readjusting the settings for the techniques (F10) stays
very low. This e↵ort is compensated by the time earned through narrowing results
to successively more relevant findings. Moreover, our SPs predominantly perceived
the discussed and demonstrated techniques as useful (F23, F24) for their future
projects (see Q5 in Table 9 and Q8 in Table 10).

Observation 3: We perceived our analyses of the study objects to be successful in
finding the expected maintainability issues as well as few critical defects (F17, F18,
F20). We share this perception with our study participants as they considered our
results to be relevant (see Q3 in Table 9). In our questionnaire, we asked about
their expectations on the results. The background of the SME collaboration and
the answers to Q6 and Q7 indicate two expectations of the SPs: First, they are
interested in getting a more precise idea of their SO’s current quality. Second, they
want to improve their capabilities, i.e. to intensify their QA provisions, ASA tool
usage and team communication. This reflects our own expectations.

Observation 4: Quality models provided di↵erent rankings in comparison to single
ASA techniques (F27, F28). We found a mixed picture in comparing the rank-
ings of single ASA techniques and the aggregated and weighted rankings of the
Quamoco quality model. Two rankings were almost the same as the quality model

20 Following Wagner et al (2008), three released bugs would su�ce to justify ASA e↵orts.

Static Quality Analysis in SMEs 29

ranking: Critical bug pattern findings and architecture violations. The total bug
pattern ranking was similar but ranked one SO di↵erently and the clone detection
ranking was completely di↵erent. This means that the aggregation in the model
leads to notably di↵erent evaluation results for the SOs. The critical bug patterns
findings were ranked similar. This could mean that we considered findings to be
critical which were weighted strongly in the quality model. Assuming that the de-
signers of the quality model created sensible aggregations, our results suggest that
it gives distinct and useful information from merely counting findings and viola-
tions. We conclude that a quality model can provide a more strongly argued view
on the quality of a software system. This view can be achieved in an automated
and more e�cient manner which, in turn, is a↵ordable for SMEs.

Observation 5: Quality models saved time in application compared to ASA tech-
niques. It took us less than 90 minutes to run the analysis and to inspect the
findings. Quality models reduce the e↵ort in comparison to the individual use
of ASA techniques, especially for bug pattern detection. This fact substantiates
when taking into account that the Quamoco tool chain performs several automated
analyses and uses more rules than we had chosen for our individual analyses.

Observation 6: Contrary to our expectation, we partially observed a strong mis-
match between the opinions of the study participants and the ratings of the quality
model (F29). Such a mismatch was observable although the study participants
already knew of the (partially critical) defects we found by static analysis. The
mismatch might stem from the fact that the quality model and the SPs apply
di↵erent instruments to evaluate a certain software system. Our quality model
mainly aggregates ASA findings to assess quality characteristics: Software quality
is evaluated using technical information which predominantly resides in a system’s
source code. Hence, bug pattern detection is the dominating method.

A study participant has di↵erent access to study objects and their quality
assessment. The SP usually knows the course of events throughout the SO life
cycle, the measures being taken, the structure of the system, the problems that
arose and the money that has been spent for di↵erent actions. His understanding
of software quality characteristics is based on intuition rather than an explicit
quality model. Accordingly, he weighs his knowledge, tries to estimate di↵erent
characteristics and reasons about his confidence.

In contrast, there are factors used by the quality model which the study partic-
ipant may not include in his estimation or ascribe a lesser importance or continuity
of observation to them. Possible factors are e.g. the amount of clones in the code
or the usage of default cases in switch statements. Such factors can hardly be
estimated by humans without the usage of static analyses but form the basis for
the quality model assessment. It is also possible that a study participant is not
well prepared to process the huge amount of di↵erent aspects and static analysis
warnings and, hence, neglects some information. We cannot give a clear answer
to whether the quality model or the study participants achieve a better quality
assessment.

30 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

4.3 Overcoming Obstacles and Limitations in RQ 1.1 and 2.1

Technical problems during ASA (RQ 1.1) and limitations in finding defects (RQ 2.1)
are strongly governed by the e↵ort spent and the techniques applied for incorpo-
rating highly specific knowledge about the SOs into the analysis, e.g. very careful
fine-tuning of the ASA tools, clone and bug-pattern filters or architecture mod-
els. In the following, we discuss some approaches overcoming these obstacles and
limitations.

For code clone detection (F1, F2), Lanubile and Mallardo (2003) performed
research on finding clones in web applications usually consisting of mixtures of
mark-up and procedural code. Our approach is technically limited in analysing
such software. Introducing a semi-automatic approach could remove this limita-
tion. Deissenboeck et al (2012) discuss the challenges concerning semantic clones.
Elva and Leavens (2012) sketch their dynamic detection based on what they call
input-output-e↵ect behaviour. Although their investigation of false positives lacks
maturity, their detector for identifying such clones has potential to improve our
results.

For bug pattern detection (F3, F4), Bessey et al (2010) confirm that misun-
derstood explanations of findings causes true errors to be ignored or, worse, trans-
muted into false positives. Thus, complicated analyses have to be well explained to
developers. More than 30% of perceived false positives give them reasons to ignore
ASA tools at all. The tools used for this report made it quite di�cult and tedious to
manually adjust filters to compensate for this problem. However, scientists worked
on several solutions: For example, Ferzund et al (2008) report on the e↵ectiveness
of rules for smell detection. The rules they developed are based on machine learn-
ing and source file statistics provided by static code metrics. They used training
information from two software projects including bug databases. Kremenek (2008)
thoroughly discusses false positive filtering using Bayesian networks and statistical
reasoning. Beyond that, he utilises specification inference to enhance detection to
further types of defects. Ruthru↵ et al (2008) statistically analysed warnings of
FingBugs deployed in a large software organisation. They could successfully re-
duce both, (a) spurious false positive warnings (in several studies up to a third
of the warnings even from sophisticated tools) and (b) legitimate warnings with-
out action (about half of the warnings in their study). For a television control
system, Boogerd and Moonen (2009) investigated the relationship between coding
guideline violations detected by ASA tools and bugs identified and treated by de-
velopers. The positive correlation is restricted to a small part of the applied rules
(10 out of 88) and very sensitive to the project. In the report at hand, we did not
address the estimation of rule e↵ectiveness but focused on their manual selection
and application.

For architecture conformance analysis (F5, F6), we confirm the general limita-
tions reported by Passos et al (2010). Constraints depending on dynamic informa-
tion can not be checked by current architecture conformance tools. Nevertheless,
we think that this limit could be compensated by the use of dynamic analyses
which we did not take into consideration. To the best of our knowledge this ap-
proach is not described in the literature.

In summary, utilising some of these approaches alleviates the perceived ob-
stacles and limitations by decreasing but not necessarily eliminating the need to
incorporate individual or SO-specific knowledge into the analysis.

Static Quality Analysis in SMEs 31

4.4 Usage Guidelines

During the repetitive conduct of Steps 2 and 3 of our procedure, we gained more
experience in applying the chosen techniques. For their introduction and applica-
tion to a new project, we consider the following generic procedure as helpful:

1) Establish a project-specific configuration. This particularly includes the choice
of bug pattern rules and the customisation of the quality model to reflect the
relevant design or coding guidelines and quality characteristics.

2) Define events for measurement, findings filtering, quality assessment and for
documentation. Filtering and assessment requires in-depth knowledge of stake-
holder requirements, the system and its critical components. For bug pattern
detection this knowledge influences severity and confidence levels. For architec-
ture conformance analysis this knowledge influences the definition of allowed,
tolerated, and forbidden dependencies.

3) Decide whether to treat or tolerate findings and bad quality grades. This deci-
sion involves (i) the inspection of results and defective code, (ii) the issuing of
change requests for defect removal and, (iii) the documentation of e↵orts spent
to assess e�ciency.

4) Determine whether and how defects or bad quality grades can be avoided using
the lessons learned from defect treatment for future coding practice and process
management.

5) Strengthen quality gates through improved criteria that follow patterns, such
as “Clone coverage in critical code package A below X% prior to any bun-
dled feature introduction.”, “No critical security errors with confidence > Y%
according to tool Z for any release.”, “No architecture violations originating
from change sets of new features.”, or “Grade 2.0 for analysability of core
components.”

6) For project control in the context of continuous integration, derive statistics and
trends from findings reports by a quality control dashboard such as ConQAT
or the Quamoco tool chain.

Chandra et al (2006) provide comparable usage guidelines for static analysis tools.

5 Threats to Validity

In the following, we discuss threats to the validity of our results. We structure
them into internal and external threats.

5.1 Internal Validity

First, a potential threat to the internal validity is that most of our project part-
ners had little experience with most of the applied ASA tools. This could imply
additional technical problems (RQ 1.1), which would not have occurred when col-
laborating with advanced tool users or experts. Furthermore, the e↵orts measured
for RQ 1.2 may be larger. We mitigated this risk through discussions with experts
and we assume that the introduction in other companies would also be performed
by non-experts.

32 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

Second, we did not record exact time measurements of the e↵orts spent. We
rather made order of magnitude estimations. We consider this threat to be small
as such estimations should be su�cient in a project management context.

Third, we did not check empirically whether or how the defects, which we
consensually perceived to be critical, contributed to costly system failures during
operation or significant budget overruns during the SO life cycle (Section 3.2.4).
Due to the lack of knowledge about these life cycles, the defect criticality may have
been estimated improperly. As discussed for the results of gapped clone detection
or bug pattern detection, it is hard to properly estimate the impact of such defects.
As already mentioned, there were many easily detectable false positives. Aside
from these, we tried to reduce more subtle false positives among the most relevant
defects listed, through detailed inspection and group discussion.

Fourth, the questionnaire results could be wrong, due to study participants
either knowingly or unknowingly giving incorrect answers. We mitigated this threat
by asking them to be careful in filling it out while, at the same time, assuring
anonymity to them.

Fifth, we did not check all the relationships and evaluation specifications in
the Quamoco base quality model. Hence, it is possible that there are incorrect
relationships distorting our results. We consider this threat to be small as the
quality model was inspected by several experts and showed good empirical vali-
dation results (Wagner et al 2012a). Furthermore, we discuss di↵erences between
the results of the quality model assessments and our manually interpreted ASA
results in RQ 3.1.

Sixth, the quality model aggregates findings in a specific way that may not
be suitable for every quality perception. For example, the weighted aggregation of
product factors may not take into account relative frequencies of findings. Such a
normalisation leads to the e↵ect that a few findings of one measure, normalised
by a few related entities, are weighted the same as a large number of findings of
another measure, even if the measures themselves have equal weights.

Seventh, we only considered popular free or open source ASA tools in our
study. The problems we discussed for RQ 1.1 and in Section 4, in particular the
di�culties in rule selection and findings filtering, may have been less severe if we
used high-end commercial ASA tools providing additional capabilities and comfort
in use. However, we had no budget and time available for obtaining proper licenses.
We reduced this threat by additional e↵ort for thorough manual interpretation and
reflection of all finding reports.

Eighth, we did not receive all questionnaires for RQ 3.2 from our project part-
ners (3 out of 5). This lack of data could weaken our observation of a mismatch
between the assessment of study participants and the quality model. We decided
to include the results but made transparent that our interpretation relies on in-
complete data.

Finally, in our procedure for bug pattern detection, we left out unimportant
rules. This influences both, the quality model and the manual ASA interpretation.
The Quamoco tool chain was only provided with the ASA tool results as an input
rather than with the original code base to fully rerun these analyses. However, we
do not consider this threat as a source of discrepancies in the answers to RQ 3.1.

Static Quality Analysis in SMEs 33

5.2 External Validity

For an experience report on a technology transfer project, the results are inherently
di�cult to generalise. We had five SMEs located in Germany and four SOs specified
or developed in this region. We restricted our analysis to systems realised in Java
and C# and only applied specific analysis tools. Hence, the problems, defects, and
perceptions may be particular to this setting.

Nevertheless, we think that most of our experiences are valid for other contexts
as well. The SMEs we collaborated with range in size from only several to one
hundred employees. The domains they build software for di↵er strongly. Finally,
we used more popular ASA tools that had been used in industrial projects before.
However, the restriction to two programming languages has a strong e↵ect. For
other languages, there may exist di↵erent tools and defects. For instance, with bug
pattern detection, Ahsan et al (2009) report that characteristics of bug patterns
can be language specific.

6 Related Work

We first discuss the relevance of SMEs in our research domain followed by a survey
of applications of single ASA techniques. The chapter closes with related research
on quality models.

6.1 Consideration of Software Quality in SMEs

The work at hand enhances previous results published in (Gleirscher et al 2012)
by investigating how quality models help in understanding data gained from static
analysis. We focus on applying static quality analysis to leverage SMEs mitigating
their risks of defect-related costs. Deviating from our aim, the research community
devotes its attention primarily to software process improvement (SPI) in SMEs.
Kautz et al (2000) and Pino et al (2008, 2009) report on SPI introduced in many
SMEs from the late 90’s till 2006 to assess software processes, change the organi-
sations and increase their software productivity. However, they do not investigate
the impact of SPI on software product quality attributes at all. Even the process
improvements are often only measured by means of informal and non-objective
processes based on SME employees’ perceptions. Pino et al (2008) conclude that
SEI CMM(i) and ISO SPICE are di�cult to be applied to SMEs.

Kautz (1999) developed and used metrics at three SMEs to evaluate how new
practices and tools for configuration and change management were a↵ecting their
software processes. Thereafter, the key to successful software measurement is mak-
ing metrics meaningful and tailoring them to a particular organisation. We confirm
this observation for software measurement.

von Wangenheim et al (2006) assessed software processes in SMEs and devel-
oped MARES, a set of guidelines for ISO/IEC 15504-conforming software process
assessment in small companies. Our usage guidelines may form a bridge between
ASA and more general guidelines for software process improvement.

Hofer (2002) states that only 10% of the surveyed SMEs in the Austrian soft-
ware industry believe to su↵er from a lack of methods. He concludes that proper

34 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

tool support as well as knowledge of methods are available. On the contrary, we
argue that SMEs may not be aware of the most e↵ective methods and can therefore
not estimate their lack concerning these techniques.

6.2 Application of ASA Techniques in SME Projects

To the best of our knowledge, there is no study on combined automated static
analysis in an SME context. However, the following publications propose and in-
vestigate single techniques separately and in di↵erent application contexts:

Code Clone Detection. Lague et al (1997) report on application of clone detection
to a large telecommunication software system. They restricted the technique to the
comparison of whole methods. Opposed to that, we allowed arbitrary code frag-
ments to be compared with each other but analysed smaller systems. Nevertheless,
we confirm that clone detection can improve software maintainability. Juergens
(2011) performed clone detection in di↵erent software artefacts like source code,
requirements specifications and models at five enterprises. He presents a large case
study investigating the impact of cloning on program correctness, an analytical
cost model that quantifies the impact of code cloning on maintenance activities
and a comprehensive method for clone control and tool support for practical use.

Bug Pattern Detection. Ayewah et al (2007) evaluate the accuracy and value of
FindBugs and discuss but not solve the problem of properly filtering false positives.
They use the term trivial bugs for what we call smells and pedantry. We confirm
their conclusions on the usefulness of findings and believe that an application of
bug pattern detection has to undergo calibration guided by the sta↵ of a software
project. Moreover, by answering RQ 2 with relevant findings of several tools, we
contribute to Foster’s, Hicks’ and Pugh’s (2007) question “Are the defects reported
by [static analysis] tools important?”

Based on an industrial robot control system (⇡ 2500 kLoC), Kienle et al (2012)
encountered drawbacks of generic ASA, i.e. low e↵ectiveness, too many violations
or false positives, and lack of result verifiability. They propose ASA to be tailored
by system-specific rule selection to reduce false positives and ease violation han-
dling. This includes the analysis of annotations in comments, C macros, coding
constraints specific to files or methods (i.e. call structure, control or data flow
patterns), and constraints on thread scheduling or shared data usage. Accord-
ingly, Sjøberg et al (2012) report an overrating of many maintainability metrics
or predictors—often represented by bug pattern rules—and suggest more sophisti-
cated evaluation of their system-level impacts. For the positive impact on software
quality characteristics, they conjecture: Individual rule selection is better than
taking generic tool presets. They did not empirically validate this conjecture. But
we qualitatively confirm it through our results on RQ 2.1 which also motivated
rule selection as a cornerstone of our usage guidelines.

Wagner et al (2008) similarly applied FindBugs and PMD to two industrial
projects. They could not find defects reported from the field that are covered by
bug pattern detection. However, our results show that this technique could indeed
prevent critical defects from staying hidden until after product release.

Static Quality Analysis in SMEs 35

Architecture Conformance Analysis. Rosik et al (2008) conducted an industrial
case study on architecture conformance with three participating software engi-
neers. They conclude that this technique should be integrated into the software
engineering process and applied continuously. We think that the procedure we
presented is able to satisfy their needs, because it explicitly focuses on continu-
ous integration. Mattsson et al (2007) illustrate their experience in an industrial
project and the huge e↵ort needed to keep the architecture specification in con-
formance with the implementation. However, they tried to reach this goal in a
manual way. Our results show that automation can reduce e↵orts dramatically.
Feilkas et al (2009) analysed three .NET platform projects of Munich Re, a large
insurance carrier, in a way similar to our procedure. In addition, they regarded loss
of architectural knowledge and its e↵ects. Compared to our results, they report a
much higher e↵ort of about five days to apply the technique primarily due to time
consuming discussions. We think that the lower e↵ort we are reporting is mainly
caused by the fact that we were collaborating with small enterprises with a lower
communication overhead.

6.3 Quality Models

To the best of our knowledge, there are no studies on applying quality models in
SMEs. Hence, we describe the relation of our study to investigations on quality
standards in SMEs and practical applications of quality models.

Pusatli and Misra (2011) reported on a survey with SMEs and their usage of
quality standards. They found that quality is often not a prime objective in smaller
companies and especially the micro-companies do not even know the standards.

Bansiya and Davis (2002) proposed QMOOD, a quality model based on object-
oriented metrics. These metrics are static measures capturing the quality of an
object-oriented design. In a validation study, they found a statistically significant
correlation between their quality index and expert opinions. They applied a much
larger quality model outside an SME context.

Heitlager et al (2007) developed a quality model similar to what we used in
our study. Their model includes static maintainability measures. They discussed
measurements for real systems but no further validation, especially not in SMEs.
Bijlsma et al (2012) applied a maintainability model to analyse open source sys-
tems and compared the quality rating with defect resolution times. They found a
statistically significant correlation. Again, we used a more detailed quality model
in the SME context.

Plösch et al (2010) proposed a method for continuous code quality management
using static analysis based on a quality model. They did not prescribe a specific
model but they suggested to tailor existing ones. These authors used such a model
to get di↵erent views on and understand static analysis results. Furthermore, they
reported on positive experience inside Siemens, a very large organisation, but
neglected the specific situation of SMEs.

Wagner et al (2012a) described the Quamoco model used in our study. They
applied it to open source as well as commercial systems where they found a statis-
tically significant correlation between quality ranking and expert opinions. In an
extended version, Wagner et al (2013) investigated its acceptance with software

36 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

developers. The developers perceived the results to be reasonable and helpful for
explaining the (static) measures.

In summary, there are only a few studies looking at quality models that link
quality characteristics with tangible measures and apply them in a practical set-
ting. The existing studies derived promising correlations between expert opinions
and calculated quality evaluations. Studies applying such models to SME projects
have been missing so far.

7 Conclusions and Future Work

It is most e↵ective to combine several QA methods to find most of the defects (Lit-
tlewood et al 2000). However, this entails the cost of performing many di↵erent
techniques. Particularly, SMEs have di�culties in assigning large e↵orts to diverse
techniques and training specialists for them. Automated static analysis techniques
promise to be an e�cient contribution to software QA, because their repeated
application requires only little manual e↵ort.

We reported our experience of applying three static analysis techniques to small
enterprises: Code clone detection, bug pattern detection and architecture confor-
mance analysis. We assessed potential barriers for introducing these techniques as
well as the observations we could make in a one-year project with five German
SMEs.

We found several technical problems, such as multi-language projects with
single-language clone analysis and false positives with bug pattern analysis. How-
ever, we believe that these are no major road blocks for the adoption of static
quality analysis. Overall, the e↵ort for introducing the analyses was small. Two of
the techniques and the quality model could be set up with an e↵ort of less than one
person-hour. We found various defects, such as high rates of cloning, null pointer
access, erroneous calculations or circumvention of architecture layers. In the end,
our study participants found all of the presented techniques relevant for inclusion
into their quality assurance processes. The use of a quality model enabled us to
e�ciently gain additional insights but revealed results that di↵ered from the study
participants’ opinions.

In our view, static analysis tools combined with quality models can e�ciently
improve quality assurance in SMEs if the techniques are continuously used through-
out the development process and technically well integrated into the tool infras-
tructure. As our research was not focused on long term observations we can not
address continuous use. Hence, it is a promising area of future work to investigate
the long-term e↵ects of static analyses on SME software projects and the analy-
ses’ continuous integration into the development processes. Questions arising from
the application of these techniques such as their long-term e�ciency, their inclu-
sion into an overall QA strategy, their acceptance by developers, their application
to non-code development artefacts, or their e↵ects on daily work could then be
investigated.

We are going to continue working in this area to better understand the needs
of SMEs and investigate our current findings. In particular, we will use our expe-
riences from this and other studies to continue improving the structure of quality
models. For example, Lochmann and Goeb (2011) propose an extension of the
Quamoco approach that improves the support of procedural aspects of software

Static Quality Analysis in SMEs 37

quality. In addition, further studies are needed that investigate the application of
quality models apart from code quality assessments, for example, to the systematic
derivation of software quality requirements (Lochmann 2010).

Acknowledgements We would like to thank Christian Pfaller, Bernhard Schätz and Elmar
Jürgens for their technical and organisational support throughout the project. The authors owe
sincere gratitude to Klaus Lochmann for his advice and support in issues related to quality
models. We thank all involved companies as well as the OpenMRS lead developers for their
reproachless collaboration and assistance. Last but not least, we thank Veronika Bauer, Georg
Hackenberg, Maximilian Junker and Kornelia Kuhle as well as our anonymous peer reviewers
for many helpful remarks.

References

Ahsan SN, Ferzund J, Wotawa F (2009) Are there language specific bug patterns? Results
obtained from a case study using Mozilla. In: Proc. Fourth International Conference on
Software Engineering Advances (ICSEA’09), IEEE Computer Society, pp 210–215

Al-Kilidar H, Cox K, Kitchenham B (2005) The use and usefulness of the ISO/IEC 9126
quality standard. In: Proc. International Symposium on Empirical Software Engineering
(ISESE’05), IEEE Computer Society, pp 126–132

Ayewah N, Pugh W, Morgenthaler JD, Penix J, Zhou Y (2007) Evaluating static analysis
defect warnings on production software. In: Proc. 7th Workshop on Program Analysis for
Software Tools and Engineering (PASTE ’07), ACM Press, pp 1–8, DOI http://doi.acm.
org/10.1145/1251535.1251536

Ayewah N, Hovemeyer D, Morgenthaler JD, Penix J, Pugh W (2008) Using static analysis to
find bugs. IEEE Software 25:22–9, DOI http://doi.ieeecomputersociety.org/10.1109/MS.
2008.130

Baca D, Carlsson B, Lundberg L (2008) Evaluating the cost reduction of static code analysis for
software security. In: Proceedings of the third ACM SIGPLAN workshop on Programming
languages and analysis for security, ACM, New York, NY, USA, PLAS ’08, pp 79–88,
DOI 10.1145/1375696.1375707, URL http://doi.acm.org/10.1145/1375696.1375707

Bansiya J, Davis CG (2002) A hierarchical model for object-oriented design quality assessment.
IEEE Transactions on Software Engineering 28(1):4 –17, DOI 10.1109/32.979986

Beizer B (1990) Software Testing Techniques, 2nd edn. Thomson
Bessey A, Block K, Chelf B, Chou A, Fulton B, Hallem S, Henri-Gros C, Kamsky A, McPeak

S, Engler D (2010) A few billion lines of code later: using static analysis to find bugs in
the real world. Commun ACM 53(2):66–75, DOI 10.1145/1646353.1646374, URL http:
//doi.acm.org/10.1145/1646353.1646374

Bijlsma D, Ferreira MA, Luijten B, Visser J (2012) Faster issue resolution with higher technical
quality of software. Software Quality Journal 20(2):265–285

Boehm BW, Brown JR, Kaspar H, Lipow M, Macleod GJ, Merrit MJ (1978) Characteristics
of Software Quality. North-Holland

Boogerd C, Moonen L (2009) Evaluating the relation between coding standard violations
and faults within and across software versions. In: 6th IEEE Int. Working Conf. Mining
Software Repositories (MSR), pp 41 –50, DOI 10.1109/MSR.2009.5069479

Chandra P, Chess B, Steven J (2006) Putting the tools to work: how to succeed with source
code analysis. Security Privacy, IEEE 4(3):80–3, DOI 10.1109/MSP.2006.77

Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Quarterly

Deissenboeck F, Wagner S, Pizka M, Teuchert S, Girard JF (2007) An activity-based quality
model for maintainability. In: Proc. IEEE International Conference on Software Mainte-
nance

Deissenboeck F, Juergens E, Lochmann K, Wagner S (2009) Software quality models: Purposes,
usage scenarios and requirements. In: Proc. ICSE Workshop on Software Quality

Deissenboeck F, Feilkas M, Heinemann L, Hummel B, Juergens E (2010a) ConQAT Book.
Technische Universität München, Institut fr Informatik, Software & Systems Engineering,
v2.6 edn, URL http://conqat.cs.tum.edu/index.php/ConQAT

38 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

Deissenboeck F, Heinemann L, Hummel B, Juergens E (2010b) Flexible architecture confor-
mance assessment with ConQAT. In: Proc. 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ACM Press, pp 247–250, DOI http://doi.acm.org/10.
1145/1810295.1810343, URL http://doi.acm.org/10.1145/1810295.1810343

Deissenboeck F, Heinemann L, Herrmannsdoerfer M, Lochmann K, Wagner S (2011) The
Quamoco tool chain for quality modeling and assessment. In: Proc. 33rd International
Conference on Software Engineering

Deissenboeck F, Heinemann L, Hummel B, Wagner S (2012) Challenges of the dynamic detec-
tion of functionally similar code fragments. In: Mens T, Cleve A, Ferenc R (eds) CSMR,
IEEE, pp 299–308

Dromey RG (1995) A model for software product quality. IEEE Transactions on Software
Engineering 21(2):146–162

Elva R, Leavens G (2012) Jsctracker: A semantic clone detection tool for java code
European Commission (2003) Commission recommendation of 6 May 2003 concerning the

definition of micro, small and medium-sized enterprises. O�cial Journal of the European
Union L 124:36–41

Feilkas M, Ratiu D, Juergens E (2009) The loss of architectural knowledge during system
evolution: An industrial case study. In: Proc. IEEE 17th International Conference on
Program Comprehension (ICPC’09), IEEE Computer Society, pp 188–197

Ferzund J, Ahsan SN, Wotawa F (2008) Analysing bug prediction capabilities of static code
metrics in open source software. In: Proc. International Conferences on Software Process
and Product Measurement (IWSM/Metrikon/Mensura ’08), Springer, LNCS, vol 5338, pp
331–343

Fiutem R, Antoniol G (1998) Identifying design-code inconsistencies in object-oriented
software: A case study. In: Proc. International Conference on Software Maintenance
(ICSM’98), IEEE Computer Society

Foster J, Hicks M, Pugh W (2007) Improving software quality with static analysis. In: Proc. 7th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE’07), ACM Press, pp 83–84

Gleirscher M, Golubitskiy D, Irlbeck M, Wagner S (2012) On the benefit of automated static
analysis for small and medium-sized software enterprises. In: Lecture Notes in Business
Information Processing, vol 94, pp 14–38, previously accepted at: 1st Research Track at
Software Quality Days, Vienna, 2012

Heitlager I, Kuipers T, Visser J (2007) A practical model for measuring maintainability. In:
Proc. 6th International Conference on Quality of Information and Communications Tech-
nology

Hofer C (2002) Software development in Austria: Results of an empirical study among small
and very small enterprises. In: Proc. 28th Euromicro Conference, IEEE Computer Society,
pp 361–366, DOI http://doi.ieeecomputersociety.org/10.1109/EURMIC.2002.1046219

ISO/IEC 25010 (2011) Systems and software engineering – systems and software quality re-
quirements and evaluation (SQuaRE) – system and software quality models. International
standard

ISO/IEC 9126 (2003) Software engineering – product quality – quality model. International
standard

Juergens E (2011) Why and how to control cloning in software artifacts. PhD thesis, Technische
Universitaet Muenchen

Juergens E, Göde N (2010) Achieving accurate clone detection results. In: Proceedings 4th
International Workshop on Software Clones, ACM Press, pp 1–8

Juergens E, Deissenboeck F, Hummel B (2009a) CloneDetective – A workbench for clone detec-
tion research. In: Proc. 31th International Conference on Software Engineering (ICSE’09),
IEEE Computer Society, pp 603–606, DOI http://doi.ieeecomputersociety.org/10.1109/
ICSE.2009.5070566

Juergens E, Deissenboeck F, Hummel B, Wagner S (2009b) Do code clones matter? In:
Proc. 31th International Conference on Software Engineering (ICSE’09), IEEE Computer
Society, pp 485–495

Kautz K (1999) Making sense of measurement for small organizations. IEEE Software 16:14–20
Kautz K, Hansen HW, Thaysen K (2000) Applying and adjusting a software process im-

provement model in practice: the use of the ideal model in a small software enter-
prise. In: Proceedings of the 22nd international conference on Software engineering,
ACM, New York, NY, USA, ICSE ’00, pp 626–633, DOI 10.1145/337180.337492, URL

Static Quality Analysis in SMEs 39

http://doi.acm.org/10.1145/337180.337492
Kienle H, Kraft J, Nolte T (2012) System-specific static code analyses: a case study in the

complex embedded systems domain. Software Quality Journal 20:337–67, URL http://
dx.doi.org/10.1007/s11219-011-9138-7, 10.1007/s11219-011-9138-7

Kitchenham B, Pfleeger SL (1996) Software quality: The elusive target. IEEE Software 13(1)
Knodel J, Popescu D (2007) A comparison of static architecture compliance checking ap-

proaches. In: Proc. IEEE/IFIPWorking Conference on Software Architecture (WICSA’07),
IEEE Computer Society, pp 12–12

Koschke R (2007) Survey of research on software clones. In: Duplication, Redundancy, and
Similarity in Software, Schloss Dagstuhl, Germany

Koschke R, Simon D (2003) Hierarchical reflexion models. In: Proc. 10th Working Conference
on Reverse Engineering (WCRE’03), IEEE Computer Society, p 368

Kremenek T (2008) From uncertainty to bugs: Inferring defects in software systems with
static analysis, statistical methods, and probabilistic graphical models. PhD thesis, Dept.
of Computer Science, Stanford University

Lague B, Proulx D, Mayrand J, Merlo EM, Hudepohl J (1997) Assessing the benefits of
incorporating function clone detection in a development process. In: Proc. International
Conference on Software Maintenance (ICSM’97), IEEE Computer Society, pp 314–321

Lanubile F, Mallardo T (2003) Finding function clones in web applications. In: Proc. 7th
European Conference on Software Maintenance and Reengineering (CSMR 2003), IEEE
Computer Society, pp 379–388

Littlewood B, Popov PT, Strigini L, Shryane N (2000) Modeling the e↵ects of combining
diverse software fault detection techniques. IEEE Transactions on Software Engineer-
ing 26:1157–67, DOI 10.1109/32.888629, URL http://portal.acm.org/citation.cfm?id=
358134.357482

Lochmann K (2010) Engineering quality requirements using quality models. In: Proceed-
ings of 15th International Conference on Engineering of Complex Computer Systems
(ICECCS’10), IEEE Computer Society, St. Anne’s College, University of Oxford, United
Kingdom

Lochmann K (2012) A benchmarking-inspired approach to determine threshold values for
metrics. In: Proc. of the 9th International Workshop on Software Quality (WoSQ’12),
ACM, Research Triangle Park, Cary, USA, to appear in November 2012

Lochmann K, Goeb A (2011) A unifying model for software quality. In: Proc. of the 8th
International Workshop on Software Quality (WoSQ’11), ACM, Szeged, Hungary

Mattsson A, Lundell B, Lings B, Fitzgerald B (2007) Experiences from representing software
architecture in a large industrial project using model driven development. In: Proc. Sec-
ond Workshop on SHAring and Reusing architectural Knowledge Architecture, Rationale,
and Design Intent (SHARK-ADI ’07), IEEE Computer Society, DOI http://dx.doi.org/
10.1109/SHARK-ADI.2007.7, URL http://dx.doi.org/10.1109/SHARK-ADI.2007.7

McCall JA, Richards PK, Walters GF (1977) Factors in Software Quality. National Technical
Information Service

Mishra A, Mishra D (2006) Software quality assurance models in small and medium organi-
sations: A comparison. International Journal of Information Technology and Management
5(1):4–20

de Moor O, Verbaere M, Hajiyev E, Avgustinov P, Ekman T, Ongkingco N, Sereni D, Tibble
J (2007) .QL for source code analysis. In: Proc. Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2007), IEEE Computer
Society, pp 3–16

Passos L, Terra R, Valente MT, Diniz R, das Chagas Mendonca N (2010) Static architecture-
conformance checking: An illustrative overview. IEEE Software 27:82–9, DOI http://dx.
doi.org/10.1109/MS.2009.117, URL http://dx.doi.org/10.1109/MS.2009.117

Pino FJ, Garcia F, Piattini M (2008) Software process improvement in small and medium
software enterprises: a systematic review. Software Quality Journal 16(2):237–61, URL
http://dx.doi.org/10.1007/s11219-007-9038-z, 10.1007/s11219-007-9038-z

Pino FJ, Garcia F, Piattini M (2009) Key processes to start software process improvement in
small companies. In: Proceedings of the 2009 ACM symposium on Applied Computing,
ACM, New York, NY, USA, SAC ’09, pp 509–516, DOI 10.1145/1529282.1529389, URL
http://doi.acm.org/10.1145/1529282.1529389

Plösch R, Gruber H, Körner C, Pomberger G, Schi↵er S (2009) A proposal for a quality model
based on a technical topic classification. In: Tagungsband des 2. Workshops zur Software-

40 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

Qualitätsmodellierung und -bewertung
Plösch R, Gruber H, Körner C, Saft M (2010) A method for continuous code quality man-

agement using static analysis. In: Proc. Seventh International Conference on the Quality
of Information and Communications Technology (QUATIC), IEEE Computer Society, pp
370–375

Pusatli O, Misra S (2011) A discussion on assuring software quality in small and medium
software enterprises: An empirical investigation. Technical Gazette 18(3):447–452

Richardson I, Von Wangenheim C (2007) Guest editors’ introduction: Why are small software
organizations di↵erent? IEEE Software 24(1):18–22, DOI 10.1109/MS.2007.12, URL http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4052546

Rosik J, Le Gear A, Buckley J, Babar M (2008) An industrial case study of architecture
conformance. In: Proc. 2nd ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM ’08), ACM Press, pp 80–89

Roy CK, Cordy JR (2007) A survey on software clone detection research. Tech. rep., Queen’s
University at Kingston

Ruthru↵ JR, Penix J, Morgenthaler JD, Elbaum S, Rothermel G (2008) Predicting accu-
rate and actionable static analysis warnings: an experimental approach. In: Proceed-
ings of the 30th international conference on Software engineering, ACM, New York, NY,
USA, ICSE ’08, pp 341–350, DOI 10.1145/1368088.1368135, URL http://doi.acm.org/
10.1145/1368088.1368135

Sangal N, Jordan E, Sinha V, Jackson D (2005) Using dependency models to manage
complex software architecture. In: Proc. 20th annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’05),
ACM Press, pp 167–176, DOI http://doi.acm.org/10.1145/1094811.1094824, URL http:
//doi.acm.org/10.1145/1094811.1094824

Sjøberg DIK, Anda B, Mockus A (2012) Questioning software maintenance metrics: a com-
parative case study. In: Runeson P, Höst M, Mendes E, Andrews AA, Harrison R (eds)
ESEM, ACM, pp 107–110

Wagner S (2008) Defect classification and defect types revisited. In: Proc. 2008 Workshop on
Defects in Large Software Systems (DEFECTS 2008), ACM Press, pp 39–40

Wagner S, Juerjens J, Koller C, Trischberger P (2005) Comparing bug finding tools with
reviews and tests. In: Proc. 17th International Conference on Testing of Communicating
Systems (TestCom ’05), LNCS, vol 3502, pp 40–55

Wagner S, Deissenboeck F, Aichner M, Wimmer J, Schwalb M (2008) An evaluation of two
bug pattern tools for java. In: Proc. First International Conference on Software Testing,
Verification, and Validation (ICST 2008), IEEE Computer Society, pp 248–257

Wagner S, Lochmann K, Winter S, Goeb A, Klaes M (2009) Quality models in practice:
A preliminary analysis. In: Proc. 3rd International Symposium on Empirical Software
Engineering and Measurement, DOI 10.1109/ESEM.2009.5316003

Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch R, Seidl A, Goeb A,
Streit J (2012a) The Quamoco product quality modelling and assessment approach. In:
Proc. 34th International Conference on Software Engineering

Wagner S, Lochmann K, Winter S, Goeb A, Kläs M, Nunnenmacher S (2012b) Software quality
models in practice. Technical Report TUM-I129, Technische Universität München, Institut
für Informatik

Wagner S, Lochmann K, Heinemann L, Kläs M, Lampasona C, Trendowicz A, Plösch R, Mayr
A, Seidl A, Goeb A, Streit J (2013) Practical product quality modelling and assessment:
The Quamoco approach. Submitted manuscript

von Wangenheim CG, Anacleto A, Salviano CF (2006) Helping small companies assess software
processes. IEEE Software 23:91–8

Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl JP, Vouk MA (2006) On the value of
static analysis for fault detection in software. IEEE Transactions on Software Engineering
32:240–253, DOI http://doi.ieeecomputersociety.org/10.1109/TSE.2006.38

Static Quality Analysis in SMEs 41

A Results of the two Questionnaires and the Quality Model

42 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

Q
u
e
stio

n
C
lo
se

d
A
n
sw

e
r
s
(w

ith
o
u
t
co

m
m
en

ts)

Q
1
)
W

h
ich

of
th

ese
sta

tic
an

a
ly
sis

tech
-

n
iq
u
es

h
av

e
yo

u
a
lrea

d
y

b
een

u
sin

g
in

y
ou

r
p
ro

jects?

daily

weekly

monthly

less freq.

never

A
rch

itectu
re

con
form

an
ce

0
0

0
1

4
B
u
g
p
a
ttern

d
etectio

n
2

2
1

0
0

C
o
d
e
clo

n
e
d
etectio

n
0

0
0

2
3

Q
2
)
W

h
a
t
is

yo
u
r
estim

a
te

o
f
th

e
ex

-
p
erien

ce
o
f
yo

u
r
co

m
p
a
n
y
in

th
ese

tech
-

n
iq
u
es?

+
+

+
o

–
-
-

n
o
n
e

A
rch

itectu
re

con
form

an
ce

1
2

1
1

0
0

B
u
g
p
a
ttern

d
etectio

n
1

3
1

0
0

0
C
o
d
e
clo

n
e
d
etectio

n
0

0
1

0
1

3
Q
3
)
H
ow

d
o
you

p
erceiv

e
th

e
relevan

ce
o
f
o
u
r
a
n
a
ly
sis

resu
lts

fo
r
yo

u
r
stu

d
y
o
b
-

ject?

h
ig
h

o
low

n
o
n
e

A
rch

itectu
re

con
form

an
ce

3
2

0
0

B
u
g
p
a
ttern

d
etectio

n
2

3
0

0
C
o
d
e
clo

n
e
d
etectio

n
3

2
0

0
Q
4
)

H
ow

m
u
ch

ed
u
cation

cou
ld

you
g
a
in

fro
m

th
e

to
p
ics

o
f
o
u
r

resea
rch

p
ro

ject?

m
u
ch

o
little

n
o
n
e

A
rch

itectu
re

con
form

an
ce

2
2

1
0

0
0

B
u
g
p
a
ttern

d
etectio

n
2

0
1

1
1

0
C
o
d
e
clo

n
e
d
etectio

n
2

2
1

0
0

0
Q
5
)

W
h
ich

of
th

e
fo
llow

in
g

a
n
a
ly
sis

tech
n
iq
u
es

d
o
y
o
u
p
la
n
to

a
p
p
ly

a
t
w
h
ich

lev
el

o
f
p
rio

rity
?

+
+

+
o

–
-
-

n
o
n
e

*
)

A
rch

itectu
re

con
form

an
ce

1
3

0
1

0
0

5
B
u
g
p
a
ttern

d
etectio

n
4

1
0

0
0

0
5

C
o
d
e
clo

n
e
d
etectio

n
0

2
3

0
0

0
5

*
)
a
p
p
lica

tio
n
o
f
th

e
tech

n
iq
u
e
is

p
la
n
n
ed

T
a
b
le

9
S
u
m
m
a
ry

o
f
clo

sed
a
n
sw

ers
o
f
th

e
q
u
estio

n
n
a
ire

fo
r
R
Q

2
.2

(fi
v
e
resu

lts,
co

n
ten

ts
a
n
d
a
n
sw

ers
h
av

e
b
een

tra
n
sla

ted
fro

m
G
erm

a
n
to

E
n
g
lish

).
L
e
g
e
n
d
:
+
+

..
v
ery

h
ig
h
,
+

..
h
ig
h
,
o
..
m
ed

iu
m
,
–
..
low

,
-
-
..
v
ery

low

Static Quality Analysis in SMEs 43

Comments and Open Answers

Q1) Architecture conformance analysis has not been used because . . .

– SS2: “projects have been developed cleanly or without [need of] architecture.”
– SS1: “manual inspection was carried through.”
– SS5: “the prerequisites . . . would have needed to be established for our projects. Manual

inspection (code reviews) already takes place irregularly.”
– SS3: “it was not known to us.”

Code clone detection has not been used because . . .

– SS2: “[clones were] not known to us as a problem.”
– SS3: “we did not recognise its necessity.”

Q3) The results have been relevant because . . .

– SS1: “manual [code] analysis is significantly more cost-intensive, . . . clone detection is only
feasible with tool support.”

– SS5: “we learned about concepts, experiences and tools . . . it is easier to become acquainted
with [a project if its architecture conforms to its documented specification].”

– SS4: “Clones are necessary within short development cycles.”

Q5) SS4: “The results of this research project shall be included into our internal develop-
ment process.” SS5: “...bug pattern tools are important for early defect detection, architecture
conformance and clone detection for structuring the projects.”

Q6) Your estimate of the current status of your organisation w.r.t. software quality:
Strengths: “Seamless process for requirements QA . . . regarded design guidelines for all lan-
guages used (SS1) . . . flexible adaptation of guidelines to customer needs (SS1) . . . performed
QA provisions (from unit testing to selective pair programming) seem to work (SS5) . . . so
far we only experienced high customer satisfaction (SS5) . . .mature in testing techniques and
management (SS3).”
Weaknesses: “No consequent QA provisions (SS2) . . . no systematic QA (SS2) . . . automation
and tool usage either project specific or even left out (SS1) . . . still learning to apply the tools
(SS3).”

Q7) Where do you expect the highest potential of your organisation to improve its software
quality?

– SS2: “Consequent QA provisions,”
– SS1: “integrated tools and more automation . . . QA dashboard for project managers,”
– SS5: “better knowledge transfer between teams and projects,”
– SS4: “improved quality control . . . backflow of QA results into development process.”

Q8) Your estimate of the usefulness of static analysis for your software projects:
Positive: SS2: “Important”, SS3: “high”, SS5: “trend analyses are important”, SS5: “very
important, because of early and e�cient defect detection . . . help identify structural deficits
. . . ease [code] maintenance”, SS4: “quality improvement starting with first build”, SS1: “for
internal projects better control and indication of deficits.”
Negative: SS1: “Often not feasible in projects externally conducted at the customer’s site.”

Table 10 Summary of comments and open answers of the questionnaire for RQ 2.2 (five
results, contents and answers have been translated from German to English, SS . . . study
subject, except from SS3, SSx corresponds to SOx)

44 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

T
a
b
le

1
1
:
Q
u
a
lity

m
o
d
el

resu
lts

m
a
tch

ed
w
ith

in
d
iv
id
u
al

A
S
A

resu
lts

fo
r
R
Q

3
.1

(w
orst

th
ree

ch
a
ra
cteristics

fo
cu

sed
,
m
ea

su
res

are
o
rd

ered
b
y

th
eir

w
eig

h
ted

im
p
a
ct).

L
e
g
e
n
d
:
C
D

...C
o
d
e
C
lo
n
e
D
etectio

n
,
B
P
...B

u
g
P
attern

D
etectio

n
,

A
C

...A
rch

itectu
re

C
o
n
fo
rm

a
n
ce

A
n
a
ly
sis,

Q
M

...q
u
a
lity

m
o
d
el.

G
ra
d
es

a
re

in
b
ra
ck
ets

(1
...b

est,
6
...w

o
rst).

M
o
s
t
A
↵
e
c
t
e
d

Q
u
a
l
i
t
y
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s

a
s
gra

d
ed

by
Q
u
a
m
oco

qu
a
lity

m
od

el
Im

p
r
e
ssio

n
a
n
d

J
u
stifi

c
a
tio

n
b
a
sed

o
n
n
o
ticea

b
le

resu
lts

fro
m

R
Q

2
.1

O
b
se

r
v
a
tio

n

S
O

1

S
e
c
u
r
i
t
y
(2
.4
2
)
in
fl
u
en

ced
by

(B
P
)
a
vo

id
lo
n
g
pa

ra
m
eter

list
(B

P
)
v
isib

le
co

n
sta

n
ts,

co
n
stru

cto
r
ca

lls
ov

er-
w
rita

b
le

m
eth

o
d
;
(A

C
)
critica

l
v
io
la
tio

n
s

D
i↵
eren

t
ru

les
a
n
d
A
C
,

sim
ila

r
im

p
ressio

n
M

a
i
n
t
a
i
n
a
b
i
l
i
t
y
(6
.0
)
in
fl
u
en

ced
by

(B
P
)
a
vo

id
ref

a
n
d
o
u
t

pa
ra
m
eters,

a
vo

id
m
essa

ge
ch

a
in
,
a
vo

id
p
ro
perties

w
ith

o
u
t
get

a
ccesso

r,
a
vo

id
u
n
n
eed

ed
ca
lls

o
n
strin

g,
a
vo

id
u
n
n
ecessa

ry
specia

lisa
tio

n
,
a
vo

id
lo
n
g
pa

ra
m
eter

list,
a
vo

id
red

u
n
d
a
n
cy

in
m
eth

od
n
a
m
e;

(C
o
n
Q
A
T
)

o
verly

lo
n
g
fi
le,

clo
n
e
co
vera

ge

(B
P
)
em

p
ty
/
g
en

eral
ex

cep
tio

n
h
a
n
d
lers,

n
ested

u
se

o
f
g
en

eric
ty
p
es,

d
eep

n
a
m
esp

a
ces;

(C
o
n
Q
A
T
)
b
lo
ck

d
ep

th
;
(C

D
)
n
o
rm

a
l
clo

n
e

cov
era

g
e;

(A
C
)
critica

l
v
io
la
tio

n
s

D
i↵
eren

t
ru

les,
Q
M

p
ro
-

v
id
es

m
ore

sev
ere

im
p
res-

sio
n
th

a
n
to
o
ls

d
irectly

P
e
r
f
o
r
m
a
n
c
e
E
�

c
i
e
n
c
y
(2
.1
1
)
in
fl
u
en

ced
by

(B
P
)
a
vo

id
u
n
n
eed

ed
ca
lls

o
n
strin

g
R
Q

2
.1

o
↵
ered

n
o
releva

n
t
fi
n
d
in
g
s
fo
r
th

is
Q
M

p
rov

id
es

n
ew

im
p
res-

sio
n

S
O

2
P
e
r
f
o
r
m
a
n
c
e
E
�

c
i
e
n
c
y
(1
.8
4
)
in
fl
u
en

ced
by

(B
P
)
im

p
ro
per

u
se

o
f

“
sy
n
ch

ro
n
ized

”
R
Q

2
.1

o
↵
ered

n
o
in
d
ica

tio
n
to

eva
lu
a
te

th
is

Q
M

p
rov

id
es

n
ew

im
p
res-

sio
n

M
a
i
n
t
a
i
n
a
b
i
l
i
t
y
(2
.7
)
in
fl
u
en

ced
by

(B
P
)
im

p
ro
per

u
se

o
f

“
sy
n
ch

ro
n
ized

”
,
u
n
n
ecessa

ry
specia

lisa
tio

n
;
(C

o
n
Q
A
T
)
lo
n
g
fi
le,

d
u
p
lica

tio
n

(B
P
)
em

p
ty
/
g
en

eral
ex

cep
tio

n
h
a
n
d
lers,

n
ested

u
se

o
f
g
en

eric
ty
p
es,

d
eep

n
a
m
esp

a
ces;

(C
o
n
Q
A
T
)
n
ested

b
lo
ck

d
ep

th
;
(C

D
)
b
a
d

clo
n
e
cov

era
g
e

D
i↵
eren

t
ru

les,
Q
M

p
ro
-

v
id
es

sim
ilar

im
p
ression

th
a
n
to
o
ls

d
irectly

S
O

3
F
u
n
c
t
i
o
n
a
l
S
u
i
t
a
b
i
l
i
t
y
(2
.4
)
in
fl
u
en

ced
by

(B
P
)
co
va

ria
n
t
co
m
pa

re
m
eth

od
,
sta

tic
d
a
te

fo
rm

a
t,

fi
eld

is
m
u
ta
ble

h
a
sh

ta
ble,

su
percla

ss
u
ses

su
bcla

ss
d
u
rin

g
in
it,

u
n
u
sed

fi
eld

(B
P
)
co

n
stru

cto
r
ca

lls
ov

erw
rita

b
le

m
eth

o
d
,

co
rru

p
ted

seria
lisa

b
le,

retu
rn

va
lu
es

n
o
t
va

li-
d
a
ted

D
i↵
eren

t
ru

les,
Q
M

p
ro
-

v
id
es

sim
ilar

im
p
ression

th
a
n
to
o
ls

d
irectly

M
a
i
n
t
a
i
n
a
b
i
l
i
t
y
(4
.7
6
)
in
fl
u
en

ced
by

(C
o
n
Q
A
T
)
m
issin

g
co
m
m
en

ts;
(F

in
d
B
u
gs)

su
percla

ss
u
ses

su
bcla

ss
d
u
rin

g
in
it,

p
u
blic

h
a
sh
ta
ble

d
ecla

red
a
s
co
n
sta

n
t,

fi
eld

is
m
u
ta
ble

h
a
sh

ta
ble,

u
se

o
f
u
n
h
a
sh
a
ble

cla
ss,

ba
d
ca
sts,

m
u
ta
ble

h
a
sh

ta
ble,

referen
ce

to
m
u
ta
ble

o
bject,

co
va

ria
n
t
co
m
pa

re
m
eth

od
,
su

percla
ss

n
a
m
es;

(C
D
)
d
u
p
lica

tio
n

(B
P
)
u
n
u
sed

lo
ca

l
va

ria
b
les,

em
p
ty

m
eth

o
d

in
a
b
stra

ct
cla

ss,
cy

clo
m
atic

co
m
p
lex

ity
;

(C
o
n
Q
A
T
)
n
ested

b
lo
ck

d
ep

th
;
(C

D
)
n
o
rm

a
l

clo
n
e
cov

era
g
e

D
i↵
eren

t
ru

les,
Q
M

p
ro
-

v
id
es

a
sim

ilar
im

p
ression

less
d
ep

en
d
en

t
o
n
freq

u
en

cy
o
f
fi
n
d
in
g
s

P
e
r
f
o
r
m
a
n
c
e
E
�

c
i
e
n
c
y
(2
.6
)
in
fl
u
en

ced
by

(B
P
)
u
n
u
sed

fi
eld

,
strin

g
co
n
ca
ten

a
tio

n
,
red

u
n
d
a
n
t
n
u
ll
ch

eck,
u
n
u
sed

loca
l
va

ria
ble

(B
P
)
in
e�

cien
t
strin

g
m
a
n
ip
u
la
tio

n
M
ore

ru
les

in
Q
M
,
b
u
t
sim

-
ila

r
im

p
ressio

n
(co

n
tin

u
ed

o
n
n
ex

t
p
a
g
e)

Static Quality Analysis in SMEs 45

M
o
s
t
A
↵
e
c
t
e
d

Q
u
a
l
i
t
y
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s

a
s
gra

d
ed

by
Q
u
a
m
oco

qu
a
lity

m
od

el
Im

p
r
e
ssio

n
a
n
d

J
u
stifi

c
a
tio

n
b
a
sed

o
n
n
o
ticea

b
le

resu
lts

fro
m

R
Q

2
.1

O
b
se

r
v
a
tio

n

S
O

4

P
e
r
f
o
r
m
a
n
c
e
E
�

c
i
e
n
c
y
(2
.1
2
)
in
fl
u
en

ced
by

(B
P
)
u
n
u
sed

F
ield

,
red

u
n
d
a
n
t
n
u
ll
ch

eck,
u
n
ca
lled

m
eth

od
,
u
n
u
sed

loca
l
va

ria
ble

(A
C
)
critica

l
v
io
la
tio

n
s

R
Q

2
.1

su
g
g
ests

less
sev

ere
im

p
ressio

n
d
u
e
to

ig
n
o
red

ru
les

b
u
t
reg

a
rd

s
A
C

M
a
i
n
t
a
i
n
a
b
i
l
i
t
y
(4
.4
)
in
fl
u
en

ced
by

(C
o
n
Q
A
T
)
im

p
ro
per

co
m
m
en

ts,
clo

n
e
co
vera

ge;
(B

P
)
fi
eld

sh
o
u
ld

be
pa

cka
ge

p
ro
tected

,
referen

ce
to

m
u
ta
ble,

qu
estio

n
a
ble

ca
st,

d
u
p
lica

te
bra

n
ch

es,
d
efa

u
lt

ca
se

m
issin

g

(B
P
)
ex

ten
siv

e
cla

ss/
m
eth

o
d
size

o
r
p
a
ra
m
e-

ter
co

u
n
t
o
r
to
o
m
a
n
y
fi
eld

s,
cy

clo
m
a
tic

co
m
-

p
lex

ity
;
(C

o
n
Q
A
T
)
n
ested

b
lo
ck

d
ep

th
;
(C

D
)

ex
trem

e
clo

n
e
ra
te;

(A
C
)
critica

l
v
iolation

s

D
i↵
eren

t
ru

les,
R
Q

2
.1

su
g
-

g
ests

less
sev

ere
im

p
ressio

n
b
u
t
reg

a
rd

s
A
C

S
O

5
F
u
n
c
t
i
o
n
a
l
S
u
i
t
a
b
i
l
i
t
y
(4
.8
)
in
fl
u
en

ced
by

(B
P
)
im

p
ro
per

n
u
ll

pa
ra
m
eter,

retu
rn

va
lu
e
ign

o
red

,
bitw

ise
O
R

o
f
sign

ed
by

te,
n
o
su

ita
ble

co
n
stru

cto
r,

ba
d
fi
eld

sto
re,

ca
ll
to

sta
tic

d
a
te

fo
rm

a
t,

u
seless

su
bstrin

g,
red

u
n
d
a
n
t
n
u
ll
ch

eck,
u
seless

co
n
tro

l
fl
o
w

(B
P
)
a
ccess

o
f
a
n
u
ll
p
o
in
ter,

in
teg

er
sh

ift
b
ey

o
n
d
3
2
b
its;

(C
D
)
n
orm

a
l
clo

n
e
ra
te

Q
M

p
rov

id
es

m
u
ch

m
o
re

a
rg
u
m
en

ts
th

a
n
R
Q

2
.1

P
e
r
f
o
r
m
a
n
c
e
E
�

c
i
e
n
c
y
(4
.9
5
)
in
fl
u
en

ced
by

(B
P
)
im

p
ro
per

u
se

o
f

rem
o
veA

ll,
u
seless

su
bstrin

g,
kn

o
w
n
n
u
ll
va

lu
e,

u
se

o
f
in
e�

cien
t

itera
to
r,

u
n
n
eed

ed
bo
xin

g
o
f
va

lu
e,

loca
l
d
o
u
ble

a
ssign

m
en

t,
red

u
n
d
a
n
t

n
u
ll
ch

eck,
u
seless

co
n
tro

l
fl
o
w
,
u
seless

ga
rba

ge
co
llectio

n
,
u
n
u
sed

loca
l

va
ria

ble

R
Q

2
.1

su
m
m
a
rised

n
o
in
d
ica

tio
n
to

eva
lu
a
te

th
is

Q
M

p
rov

id
es

n
ew

im
p
res-

sio
n

M
a
i
n
t
a
i
n
a
b
i
l
i
t
y
(6
)
in
fl
u
en

ced
by

(C
o
n
Q
A
T
)
im

p
ro
per

co
m
m
en

ts,
d
u
p
lica

tio
n
;
(B

P
)
sy
n
ch

ro
n
isa

tio
n
o
n
boo

lea
n
,
im

p
ro
per

u
se

o
f

excep
tio

n
s,

th
rea

d
sta

rted
by

ru
n
,
m
u
ta
ble

o
bject

a
s
co
n
sta

n
t,

fi
eld

sh
o
u
ld

be
pa

cka
ge

p
ro
tected

,
m
u
ta
ble

h
a
sh

ta
ble,

expo
su

re
o
f
in
tern

a
ls,

bitw
ise

O
R

o
f
sign

ed
by

te,
in
itia

lisa
tio

n
circu

la
rity

,
u
se

o
f
in
e�

cien
t

itera
to
r,

ca
ll
to

sta
tic

d
a
te

fo
rm

a
t,

in
co
n
sisten

t
sy
n
ch

ro
n
isa

tio
n
,

qu
estio

n
a
ble

ca
st,

im
p
ro
per

u
se

o
f
rem

o
veA

ll,
d
u
p
lica

te
bra

n
ch

es,
u
seless

su
bstrin

g,
kn

o
w
n
n
u
ll
va

lu
e,

red
u
n
d
a
n
t
n
u
ll
ch

eck,
u
seless

co
n
tro

l
fl
o
w
,
im

p
ro
per

referen
ce

to
m
u
ta
ble,

u
n
rela

ted
ty
pes,

d
efa

u
lt

ca
se

m
issin

g

(B
P
)
ex

ten
siv

e
cla

ss/
m
eth

o
d
size

o
r
p
a
ra
m
-

eter
co

u
n
t
o
r
to
o
m
a
n
y
fi
eld

s,
cy

clo
m
a
tic

co
m
p
lex

ity,
em

p
ty

m
eth

o
d
in

a
b
stra

ct
cla

ss;
(C

o
n
Q
A
T
)
n
ested

b
lo
ck

d
ep

th
;
(C

D
)
n
o
rm

a
l

clo
n
e
ra
tes

Q
M

p
rov

id
es

m
o
re

a
rg
u
-

m
en

ts
th

a
n
R
Q

2.1
to

co
n
-

clu
d
e
a
sim

ila
rly

sev
ere

g
ra
d
e

46 M. Gleirscher, D. Golubitskiy, M. Irlbeck, S. Wagner

Quality Characteristic SO 1 SO 2 SO 3 SO 4 SO 5

Overall Quality [2.6-3.0] [1.3-1.7] [2.4-2.6] [1.9-2.1] [4.4-4.6]

Functional Suitability [1.6-2.2] [1.0-1.5] [2.3-2.5] [1.7-1.9] [4.7-4.9]

Performance E�ciency [1.8-2.5] [1.5-2.2] [2.4-2.9] [1.9-2.4] [4.7-5.2]

Reliability 1.6 1.1 2.0 1.2 4.6

Maintainability 6.0 [2.2-3.2] [4.5-5.0] [4.2-4.6] 6.0

Analysability 6.0 [3.2-5.0] [4.0-5.1] [5.0-6.0] 6.0

Reusability 1.0 1.0 4.7 1.0 2.4

Modifiability 6.0 2.7 5.7 6.0 6.0

Testability 6.0 [1.0-2.8] [3.7-4.1] [1.0-1.5] [1.7-2.1]

Security 2.4 1.0 1.7 1.4 3.0

Portability 1.0 1.0 1.0 1.0 1.5

Table 12 Results of the quality model for RQ 3.1, rounded to one decimal; rating given in
German school grades - 1: excellent, 6: insu�cient. Intervals indicate that manual reviews are
missing, which are required by the quality model to state more precise results.

Characteristics
Study object 1 Study object 3 Study object 5

Estim. Conf. Estim. Conf. Estim. Conf.

Functional Suitability 6 6 6 4 6 6
Performance E�ciency 5 6 5 5 5 5
Reliability 5 5 6 7 6 6
Maintainability 4 5 5 7 5 5
Analysability 4 5 5 7 5 5
Modifiability 3 5 5 6 4 5
Reusability 3 5 6 7 4 5
Testability 4 5 3 5 5 6
Security 6 6 7 7 5 5
Portability 4 2 7 6 6 6

Table 13 Results of the questionnaire Comparison between the results of the quality model
and the study participants’ opinions (RQ 3.2). The quality estimation and confidence can
range from 1 (Insu�cient/Unconfident) to 7 (Excellent/Confident).

