17,834 research outputs found

    A critical cluster analysis of 44 indicators of author-level performance

    Full text link
    This paper explores the relationship between author-level bibliometric indicators and the researchers the "measure", exemplified across five academic seniorities and four disciplines. Using cluster methodology, the disciplinary and seniority appropriateness of author-level indicators is examined. Publication and citation data for 741 researchers across Astronomy, Environmental Science, Philosophy and Public Health was collected in Web of Science (WoS). Forty-four indicators of individual performance were computed using the data. A two-step cluster analysis using IBM SPSS version 22 was performed, followed by a risk analysis and ordinal logistic regression to explore cluster membership. Indicator scores were contextualized using the individual researcher's curriculum vitae. Four different clusters based on indicator scores ranked researchers as low, middle, high and extremely high performers. The results show that different indicators were appropriate in demarcating ranked performance in different disciplines. In Astronomy the h2 indicator, sum pp top prop in Environmental Science, Q2 in Philosophy and e-index in Public Health. The regression and odds analysis showed individual level indicator scores were primarily dependent on the number of years since the researcher's first publication registered in WoS, number of publications and number of citations. Seniority classification was secondary therefore no seniority appropriate indicators were confidently identified. Cluster methodology proved useful in identifying disciplinary appropriate indicators providing the preliminary data preparation was thorough but needed to be supplemented by other analyses to validate the results. A general disconnection between the performance of the researcher on their curriculum vitae and the performance of the researcher based on bibliometric indicators was observed.Comment: 28 pages, 7 tables, 2 figures, 2 appendice

    Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks

    Full text link
    Heterogeneous information networks (HINs) are ubiquitous in real-world applications. In the meantime, network embedding has emerged as a convenient tool to mine and learn from networked data. As a result, it is of interest to develop HIN embedding methods. However, the heterogeneity in HINs introduces not only rich information but also potentially incompatible semantics, which poses special challenges to embedding learning in HINs. With the intention to preserve the rich yet potentially incompatible information in HIN embedding, we propose to study the problem of comprehensive transcription of heterogeneous information networks. The comprehensive transcription of HINs also provides an easy-to-use approach to unleash the power of HINs, since it requires no additional supervision, expertise, or feature engineering. To cope with the challenges in the comprehensive transcription of HINs, we propose the HEER algorithm, which embeds HINs via edge representations that are further coupled with properly-learned heterogeneous metrics. To corroborate the efficacy of HEER, we conducted experiments on two large-scale real-words datasets with an edge reconstruction task and multiple case studies. Experiment results demonstrate the effectiveness of the proposed HEER model and the utility of edge representations and heterogeneous metrics. The code and data are available at https://github.com/GentleZhu/HEER.Comment: 10 pages. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, United Kingdom, ACM, 201

    A multi-class approach for ranking graph nodes: models and experiments with incomplete data

    Get PDF
    After the phenomenal success of the PageRank algorithm, many researchers have extended the PageRank approach to ranking graphs with richer structures beside the simple linkage structure. In some scenarios we have to deal with multi-parameters data where each node has additional features and there are relationships between such features. This paper stems from the need of a systematic approach when dealing with multi-parameter data. We propose models and ranking algorithms which can be used with little adjustments for a large variety of networks (bibliographic data, patent data, twitter and social data, healthcare data). In this paper we focus on several aspects which have not been addressed in the literature: (1) we propose different models for ranking multi-parameters data and a class of numerical algorithms for efficiently computing the ranking score of such models, (2) by analyzing the stability and convergence properties of the numerical schemes we tune a fast and stable technique for the ranking problem, (3) we consider the issue of the robustness of our models when data are incomplete. The comparison of the rank on the incomplete data with the rank on the full structure shows that our models compute consistent rankings whose correlation is up to 60% when just 10% of the links of the attributes are maintained suggesting the suitability of our model also when the data are incomplete

    Will This Paper Increase Your h-index? Scientific Impact Prediction

    Full text link
    Scientific impact plays a central role in the evaluation of the output of scholars, departments, and institutions. A widely used measure of scientific impact is citations, with a growing body of literature focused on predicting the number of citations obtained by any given publication. The effectiveness of such predictions, however, is fundamentally limited by the power-law distribution of citations, whereby publications with few citations are extremely common and publications with many citations are relatively rare. Given this limitation, in this work we instead address a related question asked by many academic researchers in the course of writing a paper, namely: "Will this paper increase my h-index?" Using a real academic dataset with over 1.7 million authors, 2 million papers, and 8 million citation relationships from the premier online academic service ArnetMiner, we formalize a novel scientific impact prediction problem to examine several factors that can drive a paper to increase the primary author's h-index. We find that the researcher's authority on the publication topic and the venue in which the paper is published are crucial factors to the increase of the primary author's h-index, while the topic popularity and the co-authors' h-indices are of surprisingly little relevance. By leveraging relevant factors, we find a greater than 87.5% potential predictability for whether a paper will contribute to an author's h-index within five years. As a further experiment, we generate a self-prediction for this paper, estimating that there is a 76% probability that it will contribute to the h-index of the co-author with the highest current h-index in five years. We conclude that our findings on the quantification of scientific impact can help researchers to expand their influence and more effectively leverage their position of "standing on the shoulders of giants."Comment: Proc. of the 8th ACM International Conference on Web Search and Data Mining (WSDM'15

    Geo-Spotting: Mining Online Location-based Services for Optimal Retail Store Placement

    Full text link
    The problem of identifying the optimal location for a new retail store has been the focus of past research, especially in the field of land economy, due to its importance in the success of a business. Traditional approaches to the problem have factored in demographics, revenue and aggregated human flow statistics from nearby or remote areas. However, the acquisition of relevant data is usually expensive. With the growth of location-based social networks, fine grained data describing user mobility and popularity of places has recently become attainable. In this paper we study the predictive power of various machine learning features on the popularity of retail stores in the city through the use of a dataset collected from Foursquare in New York. The features we mine are based on two general signals: geographic, where features are formulated according to the types and density of nearby places, and user mobility, which includes transitions between venues or the incoming flow of mobile users from distant areas. Our evaluation suggests that the best performing features are common across the three different commercial chains considered in the analysis, although variations may exist too, as explained by heterogeneities in the way retail facilities attract users. We also show that performance improves significantly when combining multiple features in supervised learning algorithms, suggesting that the retail success of a business may depend on multiple factors.Comment: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, 2013, Pages 793-80

    Ranking users, papers and authors in online scientific communities

    Get PDF
    The ever-increasing quantity and complexity of scientific production have made it difficult for researchers to keep track of advances in their own fields. This, together with growing popularity of online scientific communities, calls for the development of effective information filtering tools. We propose here a method to simultaneously compute reputation of users and quality of scientific artifacts in an online scientific community. Evaluation on artificially-generated data and real data from the Econophysics Forum is used to determine the method's best-performing variants. We show that when the method is extended by considering author credit, its performance improves on multiple levels. In particular, top papers have higher citation count and top authors have higher hh-index than top papers and top authors chosen by other algorithms.Comment: 7 pages, 3 figures, 3 table
    • …
    corecore