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Abstract

After the phenomenal success of the PageRank algorithm, many researchers have extended
the PageRank approach to ranking graphs with richer structures in addition to the simple linkage
structure. Indeed, in some scenarios we have to deal with networks modeling multi-parameters
data where each node has additional features and there are important relationships between such
features.

This paper addresses the need of a systematic approach to deal with multi-parameter data.
We propose models and ranking algorithms that can be applied to a large variety of networks
(bibliographic data, patent data, twitter and social data, healthcare data). We focus on several
aspects not previously addressed in the literature: (1) we propose different models for ranking
multi-parameters data and a class of numerical algorithms for efficiently computing the rank-
ing score of such models, (2) we analyze stability and convergence of the proposed numerical
schemes and we derive a fast and stable ranking algorithm, (3) we analyze the robustness of our
models when data are incomplete. The comparison of the rank on the incomplete data with the
rank on the full structure shows that our models compute consistent rankings whose correlation
is up to 60% when just 10% of the links of the attributes are maintained.

Keywords: Link Analysis, Models for Ranking Graph Nodes, Missing Links, Web Matrix
Reducibility and Permutation

1. Introduction

Ranking algorithms are essential tools for searching in large collections of data and they
are becoming more and more important as the amount of available data gets bigger and richer.
Following the introduction and the success of PageRank and other ranking algorithms [8, 17],
researchers have extended similar techniques to a multitude of domains [4, 5, 10, 13, 18].

With the advent of the semantic web, data containing many types of features and relationships
are becoming common. Algorithms taking advantage of such additional information are needed
and sought. Many analytical techniques have been proposed to better understand these data and
their properties. Particularly important are ranking algorithms that evaluate objects on the basis
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of ranking functions measuring some characteristics of the objects. With such functions any
two objects of the same type can be sorted in a partial order and compared either qualitatively
or quantitatively. Ranking algorithms are widely applied in different network settings to get an
overall view of the data.

In this paper we consider the setting in which the data consist of a collection of linked items,
where each item has a set of additional attributes (features). In this setting it is natural to as-
sume that the ranking of items with common attributes are mutually influenced. Many important
problems are instances of this general framework.

In bibliographic ranking items are scholarly papers with the linkage structure provided by
their citations. To each paper it is natural to associate features such that: authors, publication
venue, subject classification and so on. The ranking of scientific papers on the basis of the
received citations and publication venue has become an increasingly popular topic since the late
80’s due to its importance for recruiting, promotions, and funding.

In patent data analysis items are patents linked by the citations to older patents. To each
patent we can associate inventors, firm, examiner, technologies, etc.. Studies in marketing sci-
ence utilize patents to examine different aspects of innovation: to understand knowledge flow
within and across firms, to describe how knowledge flow influences the success of innovation,
and to identify antecedents and outcomes of product innovation. An example of this line of re-
search is [30] where the author shows that the number of patents owned by a firm (its patent
count) correlates with R&D expenditure and represent a specific type of resource (intellectual
property) the firm can use in various market processes.

Other examples of multi-parameter networks are: social or twitter graphs, where we have
information about status, geographical location, education, etc. of users, and healthcare data
networks where we have information on patients, doctors, treatments, diseases, etc..

With a little abuse of notation in the following we use the term “multigraph” to denote this
kind of relationships between items and features, while other authors identify this kind of graph
with as heterogeneous information networks [28]. As shown by the above examples, the multi-
graph framework encompasses many different applications in which one has to compare different
entities on the basis of their attributes and relationships. For this reason our results should be of
interest for researchers in the information retrieval community as well as economists and people
interested in the analysis of social networks.

In this paper we describe different models for representing the multigraph structure of a
network. We analyze different techniques for assigning weights to features and to use these
weights in the ranking process. These weights capture the importance that each link confers to
the linked object. We then build a fast and stable numerical method for computing the ranking
score according to our models. The proposed algorithm is obtained by combining two non-
stationary methods (BCGStab [23] and TFQMR [23]) and a final phase of iterative refinement.

We perform many tests on two large datasets of patent data extracted from the US patent
office: the first dataset consists of all the patents granted in the period 1976–1990 (roughly
2.5 Million patents), and the second of those issued between 1976 and 2012 (almost 8 Million
patents). The experiments aim at understanding the differences between the various models and
the role of the parameters involved in the algorithm. We also compare the results with those
returned by PageRank and the ordering induced by the simple citation count.

We briefly investigate also the robustness of our models when data are incomplete and un-
recoverable. In this setting our goal is to use all the information available without advantaging
players (items or features) with more complete data respect to those where some information is
missing. We treat unknown values as zeroes, since often we cannot distinguish between missing

2



(not available) or absent (not existent) features. This is the only viable choice when the miss-
ing data are unrecoverable and is the strategy implemented in patent repositories and in citation
databases such as Scopus, Mathscinet where, for example, a citation is not attributed to anyone
when the name of an author has been misspelled.

Following an established approach [36, 16], we evaluate the robustness of our ranking schemas
on incomplete data by randomly removing features from items with an assigned probability. Our
experiments show that, even removing up to half of the features, the ranks provided by our al-
gorithm highly correlate to the ranks computed on the complete data. As expected, as more
and more features are removed, the ranks converge to the rank obtained using only the linkage
structure.

Finally, we tested the robustness of our models with respect to the granularity of the features.
For example if we are dealing with bibliographic data we can group papers into subject classes
where the granularity can be subject macro areas (Math, Computer Science, etc.) or finer classi-
fications (Algebra, Number Theory, Calculus, Algorithms, Data Bases, etc.). In this context it is
desirable that, when using a finer classification, the sum of the ranks of topic A subtopics is close
to A’s rank computed using the coarser classification. Experiments with the US patent dataset
show that most of our models have such desirable feature.

The paper is organized as follows. In Section 1.1 we formally introduce the problem con-
sidered in the paper. In Section 1.2 we motivate our study and connect the techniques and the
algorithm we propose with the existing literature. In Section 2 we briefly present some models
discussing how extra information and features can be added to the citation structure to improve
ranking and possible weighting criteria for such features. In our models the ranking is obtained
approximating the Perron vector of a suitable stochastic matrix.

In Section 3 we discuss different ways for approximating the Perron vector showing that it
can be obtained computing the solution of a linear system. In Section 4 we discuss different
methods for the numerical solution of such linear system and we describe the databases used for
the experiments. In Section 5 we report an extensive numerical testing to compare the different
models in terms of convergence for missing data and consistence for class aggregation. Section 6
contains the conclusion and some discussions about possible improvements of the models.

1.1. Preliminaries and notations on multigraphs

In this paper we consider a multigraph as described by a directed graph G = (V, E) and two
mapping functions, one for the nodes τ : V → A and one for the edges φ : E → R. Each node
v ∈ V belongs to a particular type τ(v) ∈ A and each edge e ∈ E belongs to a particular type
of relation φ(e) ∈ R. Functions φ and τ are such that if e1 and e2 are two edges, e1 = (v1, v2)
and e2 = (w1,w2), with φ(e1) = φ(e2), then τ(v1) = τ(w1) and τ(v2) = τ(w2). When |A| > 1 and
|R| > 1 we say that the graph is a multigraph.

An example of multigraph is a patent network, where each patent has associated different
features in the set A = {Patent, Technology, Firm, Examiner, Inventor and Lawyer }. The dif-
ferent relation types are the edges between patents and firms, patents and examiners, patents and
the set of inventors, and patents and lawyers. In addition each patent has outcoming edges to the
patents cited in its technical description. Each kind of edge has a different semantic meaning:
for example the connections between inventors and patents express intellectual property over
the patents while the edges between patents and examiners represent the fact that a patent was
granted by a particular examiner. Figure 1 shows the relations between the different features and
the different kinds of nodes.
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Figure 1: Schema of a patent graph. Each patent has a relation with other types of nodes.

To better understand multigraphs and the information contained and expressed by the dif-
ferent types of relations (edges) between nodes, we associate to the graph a model describing
the interaction between items, features and the possible interactions between features. In this
paper we define several models and compare them on the basis of a ranking function inspired by
the PageRank algorithm. In particular, the original network schema is enriched by including in
the model other information that can be derived from the relations between nodes, such as the
network of co-inventors, or all the combinations between any two couples of features, i.e. firm-
technology or examiner-inventor, etc. These enriched models allow to define a ranking function
mapping objects to a real non-negative score representing the importance of the object. The rank
accounts for all the information available and not only for the citation network, and allows to
rank all types of nodes on the basis of the linkage structure of the enriched graph.

1.2. Motivations and Related work

Ranking algorithms are essential when searching in large collections of data, being either
web pages, bibliographic items or even healthcare data. Recently, many ranking algorithms have
been developed [8, 17, 20, 27, 31] that take advantage of the specific structure of the underlined
graph. Also in the area of economics it is common practice to use ranking metrics for evaluating
the performance of markets and country economies. Recently, [26] has proposed a ranking algo-
rithm based on PageRank for patent data. Despite the whole information about patents is avail-
able from the USPO (US Patent office) only the citation structure has been considered in [26]
and the multigraph structure of the patent graph, including information on firms inventors and
technologies, has not been fully exploited. Since patents are often used to measure innovation of
entrepreneurial activities [3, 11] a ranking schema taking into account all the features of patents
can be used not only for evaluating the innovation of the patented idea or product, but also to
evaluate firms or for portfolio management. This is the primary reason we tested our ranking
algorithm on patent data, even if the techniques we present can be applied to any multigraph
structure.

Comparing different ranking algorithms is a very difficult task when, as for this problem, no
golden truth is available. In some cases it is possible to take a panel of volunteers and let them
manually evaluate the data, but in most cases, either for the size of the data or for the expertise
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required, this is not possible. For example, manually ranking patents requires a remarkable
knowledge of the field and such expertise is not easy to find. Another difficulty in comparing
ranking algorithms is that we can use the same data to discover different properties: in this case
a direct comparison is not possible. For instance, if we want to evaluate scholars on the basis
of their ability to work in a team, we will design a ranking function highly valuing the scholars
with many coauthors, while if we are interested in scientific personal strength it is natural to
normalize each publication by the number of coauthors. The resulting rankings will likely be
incommensurable.

In this paper we propose a tunable ranking algorithm where by changing parameters we can
accomplish different goals. In particular, the same algorithm can be used on different kind of
data and for different purposes. One of the parameters is the model itself and another one is
the weighting strategy. This is the major difference with previous ranking algorithms that are
designed for specific networks and appear to be less tunable [27, 20, 28, 29, 33]. Together with
the models we propose and analyze some weighting strategies. To change the ranking function
one can implement other weighting strategies and incorporate them into the algorithm.

In the following we review other approaches for ranking multigraphs and compare them with
our strategy. The problem of ranking “multigraphs”, as informally defined above, has been re-
cently considered in some specific domains. In [27] the multigraph is transformed into a layered
graph with a layer for each feature. The ranks of each layer are computed independently and
the final ranks are obtained with a linear combination of the layer ranks’. We believe the inde-
pendent computation for each layer does not fully take advantage of the structure of the problem
because the mutual interactions between the features are not taken into account. For the specific
domain of bibliographic ranking, the PopRank algorithm powering Microsoft Academic Search
introduced by Nie et al. [20] is a two phase extension of PageRank applied to typed multigraphs
with different weights on the links. In particular the formula for the PopRank score combines
with weight ε the so called “web popularity” that is a measure similar to the PageRank and with
weight 1 − ε the popularity propagation factor of ongoing links. This factor is based on the
importance of links pointing to an object and is computed with a learning based technique that
automatically learn the popularity propagation factor for different types of links using the par-
tial ranking of the objects given by domain experts. This ranking schema is very different from
ours since PopRank uses an external human contribution and is therefore problem dependent and
impossible to replicate on a different dataset.

A different approach for ranking multigraphs is the one that makes use of multilinear algebra
and tensors for representing graphs with multiple linkages [18, 14, 1]. The tensor however does
not contain the same information we use in this paper. For example, if we are dealing with
bibliographic data, our models use the full author list for each paper, while the tensor only records
the number of common authors between each pair of papers. Hence it does not allow to obtain a
score for all the features such as authors or journals, and hence it is not possible to compare its
results with those provided by our algorithm.

Sun and al. [28, 29] in the context of a bi-typed network (for example a bipartite biblio-
graphic graph with only authors and conference venues) or star-typed networks (for example a
bibliographic graph where we have papers and all the other features such as authors, conference
venues, terms, are linked via papers) propose a ranking schema combined with clustering, where
the clustering algorithm improves the ranking and vice-versa. One of the ranking function pro-
posed is similar to ours but applies only to the simpler graphs described above with only two
types of nodes. In [34] the authors, still in the context of bibliographic data, proposed a model
similar to one of our models, namely the Simple Heap model (5). It mainly differs from ours
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for the weighting strategy and the use of a non-static model. However, we consider an enriched
structure with a complete set of relations between features. For example in the contest of bibli-
ographic data we enrich the graph adding weighed links between authors, journals, and subject
classification.

In previous papers from the same authors [5, 13, 6] a model is introduced in the context
of bibliographic data that is similar to one of the models (the one we called Stiff model) of
this paper. In particular in [5] an integrated model for ranking scientific publications together
with authors and journals was presented. In that context, particular weighting strategies were
implemented [6] and an exponential decay factor was introduced [13] to take into account aging
of citations, i.e. the fact that if an old paper is not cited recently its importance should fade over
the time. In this paper we further generalize the original ideas introducing several models and
other classes making the model suitable also for ranking other multi parameters data (patents,
healthcare, social data etc.). The new models are more adequate for example to handle updating
of the datasets that can be done at a lower cost than in the Stiff model. In addition, in this
paper the weighting strategies are problem independent, while in the previous papers they were
designed ad hoc for dealing with bibliographic items.

Another contribution of this paper is the investigation of adequate numerical techniques to
compute the ranking score. In particular, in Section 3 we show how the computation of the ranks
relies upon the solution of a structured linear system and in Section 4 we discuss and compare the
different algorithms that can be used to solve that system. Dealing with big data requires indeed
particular care in the choice of the numerical methods used in the algorithms that should be stable
and fast. The final algorithm (Procedure SystemSolver in Section 4) has been chosen on the
basis of several tests aiming to validate its properties of convergence and stability. A similar
analysis, for the ranking problem, has not been done in the literature, and often even methods
requiring matrix manipulations [29] or spectral algorithms [34] miss to analyze this important
aspect.

Another contribution of the paper is a preliminary analysis of the robustness of the algorithms
in the presence of missing data. The problem of dealing with missing data is by no means unique
to ranking algorithms. For example, in the field of computer vision, some data my be missing
due to the presence of shadows or occlusions in the image. In [21, 9] this problem is addressed
by approximating a matrix with unknown entries as the product of two low rank matrices.

Many techniques have been developed to deal with incomplete data and to make it possible
to use corrupted or incomplete dataset. A common practice– and the easiest to apply– is to use
only the items with complete information discarding those with incomplete data [22]. This is
a rather drastic approach especially when a large portion of data is incomplete. As an alterna-
tive, researchers have proposed to fill in a plausible value for the missing observations. Among
statisticians distributional models for the data, such as maximum likelihood [19, 24] and single
or multiple imputation [24, 25], have been developed to replace non ignorable missing data. The
goal of this paper is not however to study the preprocessing of data for recovery missing fea-
tures. This topic would require adequate models and techniques [19, 22] to recover data and fill
in the missing entries. In this paper we are only interested in quantifying how the ranking score
is affected when some of the data are missing (completely) at random1. To this end we assume
that a missing entry corresponds to a zero value in the linkage structure, such as is done in large

1The data are missing completely at random (MCAR) when the probability that a data is missing cannot depend on
any other data in the model [2]. Alternative assumptions have been studied in the literature [19, 24, 2] such as the Missing
at Random (MAR) or the Not Missing at Random (NMAR) cases.
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bibliographic databases such as Scopus, dblp, or even the web when to a broken link we do not
associate any link. We are aware that replacing a missing value with a zero is not a good choice
when the data do not have homogeneous attributes [37], but in the case of bibliographic data,
patent data or other networks fitting into the model of Figure 1, the set of the features is homo-
geneous. For instance, any paper has at least an author, a publication venue, etc. Adding and
removing links at random is a common practice when evaluating performance of ranking algo-
rithms on large social networks to measure the tolerance of ranking against spurious and missing
links [16, 35, 36]. In Section 5.2 we show that also for our algorithm the ranking obtained with
incomplete data highly correlates with the ranking obtained with the full dataset. Of course, our
analysis does not rule out that in certain contexts an appropriate preprocessing for recovering
missing data can improve the ranking provided by our algorithm.

2. Models

In Section 2.1 we present a link-based ranking for a simple citation graph. In Section 2.2 we
enrich the graph with additional information (features) on the nodes.

2.1. The One-class model

In this model we have a citation matrix C, where ci j = 1 if node i links to node j. There are
many example of such matrices for example the web graph or the graph representing citations
between scholar papers.

Following an idea similar to Google’s PageRank [8], we assume that the importance p j of
node j is given by the importance of the nodes i citing j, scaled by di, the outdegree of i. The
importance given by i is thus uniformly distributed among all the cited nodes, and the principle
that the importance of a subject is neither destroyed nor created is respected.

Here and below, we denote by e the vector of appropriate length with all components equal
to one. We denote by ek the k-th column of the identity matrix of appropriate size. The size of
vectors and matrices, if not specified, is deduced by the context. Given a vector v = (vi) of n
components, with the expression diag(v) we denote the n × n diagonal matrix having diagonal
entries vi, i = 1, . . . , n.

Since nodes may have an empty set of links, the matrix C can have some null rows and in
that case the corresponding outdegrees di are zero. To avoid divisions by zero we introduce a
dummy node, numbered n + 1, that cites and is cited by all the existing nodes except itself. The
new adjacency matrix of size n + 1, denoted by Ĉ, has no null rows and is irreducible. The
dummy node collects the importance of all the nodes and redistributes them uniformly to all its
neighbors.

The outdegrees di =
∑

j ĉi, j define the vector d = (di), that satisfies the equation d = Ĉe.
Moreover, since di , 0 for all i, the matrix

P = (pi, j) = diag(d)−1Ĉ

is row-stochastic, that is, 0 ≤ pi j ≤ 1,
∑

j pi, j = 1.
A similar approach is used in the PageRank model where C is first normalized by row, and

then a random jump probability α is introduced to make the matrix irreducible. In our model the
probability to reach the dummy node is not the same for all nodes, but varies accordingly with
the outdegree of each node.
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The ranking or “importance” of each node is computed solving the following equation

xT = xT P, P = diag(Ĉe)−1Ĉ. (1)

Since the matrix diag(Pe)−1Ĉ is nonnegative and irreducible, from the Perron-Frobenius theo-
rem [32] there exists a unique vector x = (xi) such that xi > 0,

∑
i xi = 1, that solves (1). We call

x the Perron vector of P.
This model, that we call One-class has been introduced in [5]. It has been used to rank

scientific papers [5] and patents [26]. In [7], assuming the citation matrix triangular, this model
and the PageRank model are viewed as special cases of a family of Markov chain-based models.

2.2. Multi-class models

Often, beside the linkage structure we have additional information that can be profitably
used in the ranking process. For example, to evaluate a paper we can use, besides the received
citations, other information available such as the authors or the journal where the paper has
been published. We now show that the mixing of all these ingredients (in this example authors,
citations, journals) makes it possible to compute a better ranking for papers and, at the same
time, a ranking score also for journals and authors.

The idea is to compute a ranking value for authors based on the quality of their papers and of
the journals where the papers appeared. Journals can be evaluated as well using the information
about the importance of the authors writing for that journal and of the papers published therein.
This approach was first proposed in [5] and further extended in [13, 6]. We start with the original
citation matrix C, then we add the information on the features of each item storing them in
rectangular matrices. Examples of features are authors and journals if the items are scholar
papers; or firms, inventors, technologies and lawyers if the items are patents. In general, we
have f , f = |A| − 1, rectangular binary feature matrices F1, . . . , F f (one for each feature) where
entry (i, j) in Fk is different from zero iff item i has attribute j for feature k. For patent items, for
example, we have the “inventorship feature matrix” storing information about the inventors of a
patent, that is, entry (i, j) is nonzero if j is an inventor of patent i.

Given the nC×nC citation matrix C, the feature matrices Fk, for k = 1, 2, . . . , f where each Fk

has size nC×nk, and some weights αi j, we can construct a block matrix A of size N = nC +
∑ f

k=1 nk

in different ways leading to different models. Note that the size of A is equal to the number of
items plus the number of attributes for each feature.

Once we have the block matrix A, we proceed as in the PageRank algorithm and we ob-
tain ranks for both items and attributes. To compute the ranking score as in (1) we first force
irreducibility in the underlying Markov chain and then normalize the resulting matrix to get a
stochastic matrix P.

We now show that by varying the structure of the blocks combining the features and the strat-
egy for forcing irreducibility we get four different base models. Combining these base models
with different weighting strategies we obtain a total of 15 models summarized in Table 1.

Stiff model Each matrix Fk as well as the matrix C is embedded in a matrix with an additional
row and column as follows

F̂k =

[
Fk e
eT 0

]
, Ĉ =

[
C e
eT 0

]
.
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The matrix Â is

Â =



F̂T
1 Ĉ F̂1 F̂T

1 F̂2 · · · F̂T
1 F̂ f F̂T

1
F̂T

2 F̂1 F̂T
2 Ĉ F̂2 · · · F̂T

2 F̂ f F̂T
2

...
. . .

. . . · · ·
...

F̂T
f F̂1 · · ·

. . . F̂T
f Ĉ F̂ f F̂T

f
F̂1 F̂2 · · · F̂ f Ĉ


. (2)

The matrix Â is the adjacency matrix of a more complex multigraph respect to the one
described by the schema in Figure 1. In fact all the possible relations between any pair of
features is accounted for, meaning that the graph is complete and we have ( f + 1)2 types of
edges. The diagonal blocks are of the form F̂T

k ĈF̂k and contain the co-citations between
features. For example, if Fk is the authorship matrix each entry of F̂T

k ĈF̂k accounts for the
number of citations between any two authors. For off-diagonal blocks of type F̂T

k F̂h, for
example when Fh is the paper-journal matrix2, each entry accounts for how many papers
an author has published on a given journal.

For the construction of the stochastic and irreducible matrix P we proceed as follows. We
normalize by row each block of matrix Â, obtaining the stochastic and irreducible matrices
Pi, j, for i, j = 1, 2, . . . , f , f + 1, where P f +1, f +1 corresponds to the row normalization of Ĉ.
Then, given a row stochastic matrix of weights Γ = (γi j) with i, j = 1, 2, . . . , f , f + 1, we
build matrix P as follows

P =



γ1,1 P1,1 γ1,2 P1,2 · · · γ1, f +1 P1, f +1
γ2,1 P2,1 γ2,2 P2,2 · · · γ2, f +1 P2, f +1

...
...

...
γ f ,1 P f ,1 · · · γ f , f P f , f γ f , f +1 P f , f +1

γ f +1,1 P f +1,1 · · · γ f +1, f P f +1, f γ f +1, f +1 P f +1, f +1


. (3)

We called this model Stiff because it lacks flexibility. In fact, if we add an attribute to
a feature, we need to recompute not only the corresponding Fk and the matrices involving
Fk in (2), but also renormalize each of the changed blocks. This approach was followed
in [13, 6] for ranking papers, authors and journals3. In [13] some discussion about possible
choices of the weights γi j are reported. Note that since the matrix of the weights Γ is
stochastic and also the blocks Pi j are stochastic, matrix P describes a coupled Markov
chain.

Static model This model differs from the previous because instead of adding a row and a
column to each of the feature matrices, we add a dummy item to the whole matrix, and

2In the paper-journal matrix an entry (i, j) is nonzero if the paper i was published on journal j.
3In [13, 6] each block was normalized in a particular way because row normalization was not always well suited for

that particular problem.
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then weight each block with suitable parameters αi j. We obtain the matrix

Â =



α1,1 FT
1 C F1 α1,2 FT

1 F2 · · · α1, f FT
1 F f α1, f +1 FT

1
α2,1 FT

2 F1 α2,2 FT
1 C F1 · · · α2, f FT

2 F f α2, f +11 FT
2

...
. . .

. . . · · ·
...

α f ,1 FT
f F1 · · ·

. . . α f , f FT
f CF f α f , f +1 FT

f
α f +1,1 F1 α f +1,2 F2 · · · α f +1, f F f α f +1, f +1 C̃

e

eT 0


. (4)

We then normalize by row to get the stochastic irreducible matrix P = diag(Âe)−1 Â. For
this and the remaining models proposed in this section, whenever we add a new attribute
to an existing feature we have to change only the matrix of the feature involved. Indeed,
we do not need to build the matrix Â explicitly but all the computation can be done using
only the matrices Fk and C.

The next two models are designed for dealing with problems where the feature data is in-
complete. For example in a bibliographic database where we only know the first author of each
paper. In this case, we cannot expect to compute an accurate rank for authors, but still we would
like to use the available author information to better rank papers. The structure of the blocks is
now homogeneous among off-diagonal and diagonal blocks so that we can ideally consider all
the features heaped in just a matrix F containing all the information on the different attributes.
Matrix F has size nC × nt, nt being the total number of attributes, for example the sum of distinct
authors, journals, etc. available. Since the Heap model can be used also with complete data we
describe the model keeping the features distinct, knowing that the features can be squeezed in a
unique matrix when the features classes are scarcely populated.

Heap model The Heap model differs from the Static model in the off-diagonal blocks. Blocks
FT

k Fh are replaced by FT
k CFh. In the previous example where Fk was the paper-journal

matrix and Fh is the paper-author matrix, the entry (i, j) of FT
k Fh is the number of pa-

pers author j has published on journal i, while the (i, j) entry of FT
k CFh is the number of

citations from papers written by author j to all papers published in journal i.

Assigning to each block a weight αi, j, we get the matrix Â

Â =



α1,1 FT
1 C F1 α1,2 FT

1 C F2 · · · α1, f FT
1 C F f α1, f +1 FT

1
α2,1 FT

2 C F1 α2,2 FT
1 C F1 · · · α2, f FT

2 C F f α2, f +11 FT
2

...
. . .

. . . · · ·
...

α f ,1 FT
f C F1 · · ·

. . . α f , f FT
f C F f α f , f +1 FT

f
α f +1,1 F1 α f +1,2 F2 · · · α f +1, f F f α f +1, f +1 C̃

e

eT 0


.

To get the stochastic matrix P we just normalize Â by row.

Simple Heap model In this model we assume that there is no interaction between features so
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that cross-citations do not influence the rank.

Â =

 O α1,2 FT

α2,1 F α2,2C̃ e

eT

 , (5)

where F is a matrix containing all the relations between items and attributes, i.e. F =

[F1, F2, . . . , F f ]. As already observed this model uses a simplified setting to deal with the
case where we have incomplete data.

To check consistency of the proposed models, we have to prove that as α f +1, f +1 → 1 and
αi, j → 0, for all the other values of i, j, the rank obtained with these models converges to the
rank obtained with the one-class model. This is however guaranteed because in all the models,
for the limit value of αi, j, Â collapses to a matrix of the form O O

O C̃ e

eT

 ,
and the rank of the items is the same (up to a scaling factor) of the one obtained with the one-class
model, while all the features will get an uniform score.

2.3. Weighting strategies

Weighting strategies play an important role in the tuning of the algorithm, since by varying
them we can change the relative importance of features vs citations and consequently change the
final ranking. We propose five different weighting strategies for our models, but not all strategies
can be applied to each model, and for different models two weighting schemes may coincide
after normalization of the matrix Â.

The simplest strategy is the Uniform (U) one, that corresponds to choosing αi, j = 1 for each
i, j = 1, . . . , f + 1. By adopting this weighting schema the contribution of each class (feature or
citation) is valued in the same way, independently of its size. This approach appears adequate
only when the sizes of each class are of the same order of magnitude, otherwise we are giving a
bigger role in the determination of the ranking to scarcely populated classes.

For this reason, we also consider schemes that keep track of the size of each class. We have
different choices.

Dimension-based (D) We set αi, j = n j/nC , and αi, f +1 = 1. In this way we guarantee that
the average value of the features are the same [13], and we do not advantage more popu-
lated classes respect to those less populated. The weights are the same for each block of
columns.

Double-Dimension-based (DD) We have a symmetric weight matrix, setting αi, j = αiα j,
where αi = ni/nC is the normalized size of the i-th feature. In the case the citation matrix
is much larger respect to the size of Fi, this scheme gives more importance to citations
than to features.

11



models\weights U D DD H HH

Stiff Stiff-U Stiff-D - - -
Static StaticU Static-D Static-DD - -
Heap Heap-U Heap-D Heap-DD Heap-H Heap-HH
Simple-Heap SHeap-U SHeap-D SHeap-DD SHeap-H SHeap-HH

Table 1: The 15 models obtained combining the basic models with the different weighting strategies.

Heap (H) We set α = (
∑ f

k=1 nk)/nC for the first f blocks of columns, that is αi, j = α for
i = 1, . . . , f + 1 and j = 1, . . . , f for the blocks in the last column we get α j, f +1 = 1, for
j = 1, . . . , f + 1. This weighting strategy is particularly suited for the Heap or Simple
Heap model.

Double-Heap (HH) In this case the weights are not the same along the blocks of columns but
defining α = (

∑ f
k=1 nk)/nC , we have αi, j = α2 for i, j = 1, . . . , f , and the weights of blocks

in the last column are α j, f +1 = α, and in the last row α f +1, j = α. Moreover α f +1, f +1 = 1.
Also this scheme is particularly suited for the Heap or Simple Heap model since they
have the same value in the upper left blocks. Assuming α < 1 we are giving again more
importance to citations when determining the ranking scores of the other nodes.

While it is always possible to apply an Uniform weight to each base model, it doesn’t make
sense to apply some of the weighting strategies to the Stiff or Static model. In fact the H or
the HH weighting techniques make sense only when the structure of diagonal and off diagonal
blocks is the same as in the case of the Heap or Simple-Heap model. Using the H or the HH

weighting techniques in combination with the Heap model we can rewrite the matrix Â in a more
compact form collecting all the features in a unique matrix F. We get

Â =

 α1,1 FT C T α1,2 FT

α2,1 F α2,2C̃ e

eT 0

 .
In Table 1 we summarize the fifteen full models obtained combining the four basic models, with
the five weighting schemas.

3. Computation of the Perron vector

In all our models to compute the rank we have to solve an eigenvector problem involving
a stochastic irreducible matrix. More precisely, we have to find the left Perron vector x such
that xT = xT P, with P stochastic. We now show that the Perron vector can be computed as the
solution of a linear system involving a matrix M̂, where

M̂ =

{
Ĉ if f = 1
Â if f ≥ 2.

separating the last row and column of M̂ we have

M̂ =

[
M u
vT 0

]
,

12



where M has size N × N and u, v are suitable N-vectors (for the Stiff models u, v are the last
column and row of P in (3), while for all other models u = v = e). The matrix P is obtained
normalizing by row M̂, that is P = diag(M̂ e)−1 M̂. Let

D = diag(M̂ e)−1 =

[
D(u)

1/(vT e)

]
,

where D(u) = diag(M e + u)−1. Setting xT = (x̄T , xn+1), where x̄T is an n-vector, the equation
xT = xT P can be rewritten as 

x̄T = x̄T D(u) M +
xn+1

vT e
vT

xn+1 = x̄T D(u) u.
(6)

Since we are interested in the direction of the Perron vector and not in its norm, we can chose
xn+1 = vT e, obtaining x̄T = x̄T D(u) M + vT . The vector x̄ is then the solution of the linear
system (

I − MT D(u)
)

x̄ = v, (7)

or can be computed by the iterative method

x̄T (i+1) = x̄T (i)D(u) M + vT . (8)

Note that for the Stiff models it is D = I.
It is important to observe that in the proposed models we can simply work with the matrices

F j without explicitly normalize and store the complete matrix M̂. For example, for the Static

model in (4) the i-th block, i = 1, . . . , f of the vector M̂e = Me + u, used for constructing matrix
D, can be computed as follows

zi =
∑
j,i

αi, j FT
i F je j + αi,iFT

i CFiei + ei, i = 1, . . . , f

and

z f +1 =

f∑
j=1

α f +1, jF je j + α f +1, f +1C̃ e f +1 + e f +1.

The cost for computing zi is linear in the number of non zeros (denoted as nnz) of all the matrices
Fi and C, that is O(

∑
i nnz(Fi) + nnz(C)) since the matrices Fi are stored in a sparse format and

the cost of multiplying a sparse matrix by a vector is equal to the number of non zeros in the
matrix.

Letting wi denote the vectors of length ni, whose entries are the reciprocal of the entries of
the vectors zi, and noticing that the i-th diagonal block of matrix D(u) contains the entries of wi,
an iteration of (6) becomes

x̄T (k+1)
j =



∑
i, j

αi, j(x̄T (k)
i ∗ wi)FT

i F j + (x̄T (k)
j ∗ w j)FT

j C̃F j + e j

j ≤ f

f∑
i=1

α f +1,i(x̄T (k)
i ∗ w j)FT

i + α f +1, f +1(x̄T (k)
f +1 ∗ w f +1)C̃ + e f +1

j = f + 1,
13



where ∗ denotes the component-wise (Hadamard) product between vectors. The component-wise
products can be computed in O(

∑
i ni + nC) multiplications, and the total cost of computing the

new vector x̄T (k+1) is proportional to the number of non zeros in the matrix [F1, F2, . . . F f ,C] +∑
i ni + nC . We can proceed analogously on the other models.

4. Solution of the Linear System with non-stationary methods

Once the problem of the computation of the Perron vector is reformulated as the solution of
the linear system (7) we can employ the iterative method described in (8) or stationary methods
such as Jacobi or Gauss-Seidel iterations, or the more promising Krylov methods. In fact, also
non-stationary methods need only the computation of matrix-vectors products and are in general
more effective than stationary ones (see [12, 15] for a comparison between stationary and non-
stationary methods on similar problems). Recall that to compute the product Mx then, we do not
explicitly form and store the matrices M and D(u) but we store in sparse form only the matrices
of the features Fi and the citation matrix C.

We implemented different Krylov methods, and among them we chose the three more per-
forming: BCGStab, CGS, TFQMR (see [23] for the details on these methods).

To refine the final result we add a few steps of the iterations (8) in accordance with the
Iterative Refinement algorithm described below. In particular we perform some additional
iterative step until either the distance of two successive iterations is less than tol or we are stuck
and the vector is not changing anymore.

Procedure Iterative Refinement

Input: x(i−1), x(i), x(i+1), tol
while ‖x(i) − x(i−1)‖ < tol or

∣∣∣‖x(i) − x(i−1)‖ − ‖x(i+1) − x(i)‖
∣∣∣ < tol

do a step of the iterative method (8), i = i + 1
endwhile

4.1. Models Validation: Stability and Convergence

To test the methods for the solution of (7) we constructed two datasets with real data extracted
from the US patent office and we used five features: Firms, Inventors, Technologies, Lawyers
and Examiners. In particular, we denote by F1 the patent-technology matrix where entry (i, j)
is one if patent i uses technology j; by F2 the patent-firm matrix, recording the firm owning the
patent, by F3 the patent-inventors matrix that maps patents to inventors, by F4 the patent-lawyers
where each patent is matched to the lawyers applying for the patent, and by F5 the matrix where
at each patent is associated the examiners from the US Patent Office who approved the patent.
The matrix C contains the citations between patents and is almost triangular since each patent
can be based only on patents from the past.

DS1: Consists of nC = 2 474 786 US patents from 1976-1990. Of these patents we have ad-
ditional information that can be grouped into 5 major features, namely n1 = 472 Tech-

nologies, n2 = 165 662 Firms, n3 = 965 878 Inventors, n4 = 25 341 Lawyers and
n5 = 12 817 Examiners, giving rise to a matrix Â of size nC +

∑5
i=1 ni that is approxi-

mately of 3.7 millions.
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models BCGstab CGS TFQMR

it log10(res) it log10(res) it log10(res)
Stiff-U 18 -10.49 100 -7.71 21 -3.90
Stiff-D 23 -11.77 100 -11.20 19 -4.75
Static-U 35 -9.03 100 -6.25 40 -7.83
Static-D 39 -11.13 100 -7.22 37 -9.60
Static-DD 35 -12.33 100 -12.20 30 -11.99
Heap-U 32 -9.86 100 -7.44 36 -8.59
Heap-D 36 -11.26 100 -7.73 38 -9.74
Heap-DD 41 -11.48 100 -9.46 33 -11.51
Heap-H 36 -10.83 100 -6.46 30 -7.72
Heap-HH 24 -9.85 100 -7.14 27 -8.38
SHeap-U 32 -11.56 100 -8.00 29 -9.91
SHeap-D 32 -11.72 100 -8.51 28 -9.85
SHeap-DD 37 -11.43 100 -11.83 28 -11.97
SHeap-H 28 -10.56 100 -8.33 25 -9.98
SHeap-HH 29 -11.34 100 -6.75 24 -10.05

Table 2: Performance comparison between three Krylov methods on the 15 models on a problem of size 3.7 million.

DS2: Consists of 7 984 635 US patents from 1976-2012. The size of the five features are as
follows 475 Technologies, 633 551 Firms, 4 088 585 Inventors, 120 668 Lawyers

and 64 088 Examiners, giving rise to a matrix Â of size approximately of 13 millions.

The feature matrices and the citation matrix C are used to obtain ranks both for patents
and features, i.e. Technologies, Firms, Inventors Lawyers and Examiners with the techniques
described in this section.

When using iterative solvers we have always to address the question of numerical stability.
The three proposed methods, BCGStab, CGS and TFQMR have been tested on the two datasets with
an error goal of 10−11 and with maximum number of iterations equal to 100. For the refinement
steps of the power method we set tol = 10−13. Applying to dataset DS1 the three methods to all
the models we obtain the results summarized in Table 2, where instead of the actual residuals we
report only their base 10 logarithm.

It is evident that CGS is inadequate to cope with this kind of problems since after 100 iterations
we have still a high residual norm. Moreover BCGstab is better then TFQMR since it achieves
almost always a lower residual norm. For these reasons we restrict our analysis to BCGStab and
TFQMR comparing them on the dataset of size 13M. We obtain the results reported in Table 3.

We note that BCGstab is clearly better than TFQMR, but sometimes fails to reach an acceptable
accuracy. Hence a three step algorithm, described in Procedure SystemSolver has been devised.
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models BCGstab TFQMR

it log10(res) it log10(res)
Stiff-U 14 -10.57 19 -3.83
Stiff-D 21 -11.30 25 -3.71
Static-U 37 -6.77 52 -3.09
Static-D 52 -10.53 53 -7.89
Static-DD 39 -11.38 43 -8.70
Heap-U 36 -8.87 47 -7.58
Heap-D 45 -6.47 51 -6.11
Heap-DD 41 -9.40 41 -6.56
Heap-H 40 -9.63 43 -7.31
Heap-HH 35 -9.49 43 -7.52
SHeap-U 40 -9.78 38 -7.48
SHeap-D 38 -10.36 36 -8.10
SHeap-DD 36 -11.75 34 -9.79
SHeap-H 31 -7.90 35 -4.54
SHeap-HH 35 -10.63 35 -5.91

Table 3: Performance comparison between two Krylov methods applied to the 15 models of Table 1 on a problem of size
13 million.

Procedure SystemSolver
Input: Initial guess x(0), ErrorGoal, maxiter, tol
Apply BCGStab with error goal=ErrorGoal and maximum iterations=maxiter
if res > ErrorGoal

Apply TFQMR with error goal=ErrorGoal and maximum iterations=maxiter
endif
Apply Iterative Refinement with tolerance tol

Applying this procedure, with ErrorGoal=10−10, maxiter=100 and tol=10−13, on both
the datasets we get the results displayed in Table 4.

From Table 4 we observe that the models that are more stable for the two datasets considered
are the Stiff-D, Static-DD, and among the Heap-like models, we have good performance of
Heap-DD, SHeap-DD.

5. Numerical Experiments

The problem of validating a ranking model is rather a difficult task since no ground truth is
known in the general case. Moreover the validity of a model clearly depends on what we would
like to measure. For example, if we want to measure the aptitude of a scholar to work in a team
we will highly value the articles written in collaboration while if we want to measure the scientific
strength and personal skills, we may want to normalize each of the articles by the number of co-
authors. In this respect the extreme variety of our models and the different weighting strategies
allows to tune the parameters to better satisfy the different needs.
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models DS1 size=3.7M DS2 size =13M
time(sec.) log10(res) time(sec.) log10(res)

Stiff-U 237 -12.095 1078 -11.952
Stiff-D 179 -12.762 1422 -12.1884
Static-U (*)239 -10.536 (*)2314 -9.0309
Static-D 188 -11.740 2096 -10.536
Static-DD 161 -13.002 1688 -11.7138
Heap-U 509 -11.138 (*)5992 -9.7579
Heap-D 467 -11.740 (*)7509 -10.536
Heap-DD 450 -12.535 (*)5849 -11.6019
Heap-H 440 -11.138 (*)5978 -9.93399
Heap-HH (*)403 -11.439 (*)4999 -10.235
SHeap-U 80 -11.740 (*)717 -11.1381
SHeap-D 70 -11.439 661 -11.4391
SHeap-DD 67 -13.107 604 -12.3703
SHeap-H 86 -12.041 (*)662 -10.8371
SHeap-HH 60 -11.689 595 -10.536

Table 4: Performance of procedure SystemSolver on the 15 models on DS1 and DS2. The results labeled with (∗) are
those where TFQMR has been applied since the required precision of 10−11 on the residual norm was not satisfied after
100 steps of BCGStab.

Table 5 summarize the experiments we performed on the two patents datasets. In the first set
of experiments we compare the different ranking scores obtained with our models with simpler
ranking methods, namely the Pagerank algorithm applied only to the citation matrix C, the rank-
ing provided by one-class model and the simple citation count. The evaluation measure P@N is
also presented for comparing the top N ranked items by some of our models with simple citation
count and PageRank. The top N firms obtains with some of our ranking methods are compared
with the rank induced by number of patents issued by each form.

A second set of tests aims at showing that our different models are adequate to deal with
incomplete data. In order to empirically prove that, we remove increasingly percentages of
the attributes links to show that when dealing with incomplete database, our methods are still
robust in providing a ranking “similar” to the one obtained with the full data. Of course, when
the majority of the links are removed the rank should converge to the rank obtained with the
One-class model. A direct comparison between the top ranked results with full and partial data
is done as well.

With the third set of experiments we compare the ranking scores of the same algorithms with
a finer or coarser aggregation in subclasses.

5.1. Comparison between models

The experiments reported in this section have different purposes. First we compare the rank
provided by each model with the rank obtained with the one-class model, with the standard
PageRank model and with the simple in-link counting. The idea is that the provided rank should
differ substantially from the ranking obtained by simply counting the number of citations re-
ceived, but the presence of the features should refine the ranking without completely reversing
the importance of the players obtained by the one-class model or by the PageRank model.
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Purpose experiment models Section

Comparison (pat. and firms)

One-class All

5.1
PageRank All
# Citations All

P@N StiffD, StaticDD,HeapHH, SHeapHH

Incomplete data
p = 0.1 All

5.2p = 0.5 All
Top N vs p StaticDD

Consistence for class aggregation
finer All

5.3
coarser All

Table 5: Description of the experiments performed.

In Figure 2 it is shown the rank provided by our one-class model versus the rank provided by
the standard PageRank algorithm [8]. A dot with coordinates (xi, yi) represents the i-th patent and
xi is the ranking score computed with the classical PageRank algorithm, and yi the ranking score
computed using our One-class model. We see that the two ranks are very alike because most of
the points are located on a narrow strip along the main diagonal, reflecting the high correlation
between the two ranks. In fact the only difference in the two models is the probability of reaching
the dummy node that is 0.15 in the PageRank while it changes accordingly with the outdegree of
each node in our model.

Figure 2: Comparison of the rank provided by the PageRank algorithm with random jump probability equal to 0.15 and
the one obtained by the one-class model applied to DS1.

Examining the plots of the ranks obtained with all the models in Table 1 versus the number
of citations received it turns out that the Uniform weighting scheme is not very adequate. In fact,
for example in Figure 3(a), we see that there are objects that rank very high and have very few
citations while some of those with many citations receive a very low rank value. This effect is
less noticeable in the Static or Heap models but still the influence of number of citations on
the actual ranking seems to be too weak. These problems together with the instability observed
in previous section (see Tables 2, 3, 4 noting that for each model procedure SystemSolver

performs better with other weighting schemes) suggest that uniform weighting strategies are
inadequate.

The results provided by most of the models using a dimension based weighting scheme ap-
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Figure 3: Comparison between the rank provided by three models with an Uniform weighting strategy (val) and citation
count (#ref).
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Figure 4: Comparison between the rank provided by three models with a dimensional based weighting strategy (val)
and citation count (#ref).

pear to be better. In fact, documents with a high number of citations receive a good ranking score
but the rank provided is not simply a citation count. As we can observe in Figure 4 there is not a
substantial difference in the shape of the cloud of points obtained using different models. Similar
results can be observed with double-dimension or heap weighting strategy.

Many authors use the precision-at-N (P@N) measure as evaluation method. This measure is
defined as follows, for a given N ∈ N

P@N =
|EN ∩ FN |

N
,

where EN are the top ranked N objects according to the ranking method one has to evaluate, and
FN are the top ranked N objects accordingly with the “perfect” ranking. Of course since the
“perfect” ranking is not available, the top objects are generally manually ranked by volunteers
or other algorithms are taken into consideration. In our case, when ranking patents it is very
hard to find reliable volunteers because of the expertise required to find the most valuable patents
into a such large database. We used instead as comparison the rank provided by PageRank and
the citation count. Figure 5 for values of N = 50, 100, 200 depicts the performance of four of
our models, i.e. Stiff-D, Static-DD, Heap-HH, SHeap-HH respect to citation count (thick
bars) and PageRank (thin bars). We note that our methods are more related to the rank produced
by PageRank than to the simple citation count. The similarity is higher for the SHeap model since
in that case the attributes are used in a less significant way. Surprisingly enough the Static-DD
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model shares more of 60% of the top hits with PageRank, despite the two models are very
different.
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Figure 5: P@N performance of four of our models,
i.e. Stif-D, Static-DD, Heap-HH, SHeap-HH

respect to citation count (for each color the thick bars
) and PageRank (for each color the thin bars)
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Figure 6: For firms the P@N performance of four of
our models, i.e. Stiff-D, Static-DD, Heap-HH,

SHeap-HH respect to number of patent granted to each
firm shows an hight correlation.

The precision measure P@N can be used also to evaluate the firms. In Figure 6 we show
the comparison with the rank induced by sorting the firms by the number of patents issued. We
see that there is a very high correlation with the number of patents issued by a given firm, up to
90% for the Stiff-D model. The precision is lower for the Heap-HH model where the citations
matrix is combined with those of the features mitigating the effect of the the number of patents
granted by a firm. In all the models in the top position we find very popular firms such as: IBM,
Canon, Motorola, Philips, Sony, Bell etc.. Among the top results we have also firms such as
Bell Labs, or Bayer AG, that despite in the time range [1976-2012] have issued a relatively low
number of patents (2,617 and 896 respectively) show at the top of the list.

5.2. Convergence with incomplete data

An important problem when dealing with large collections of multivariate data is the incom-
pleteness of the data. To see how robust our methods are when part of the data are missing,
we performed many experiments leaving the citation matrix unaltered and varying the level of
information about the features. In particular, we construct feature matrices F̃s obtained taking a
nonzero from Fs with a fixed probability p, that is

P
(
F̃s(i, j) = 1

)
= p Fs(i, j).

Then we replace in all the models the matrices Fs, s = 1, . . . , f with the matrices F̃s.
The experiments performed have two different purposes. First, we would like to test if there

are models for which the rank obtained decreasing the number of nonzero in the feature matrices
does not converge to the one obtained with the one-class model. In fact a good model should
exhibit a smooth convergence to the one-class model as p goes to zero. Second, we are interested
to see if some of the models are predictive, in the sense that the rank obtained with missing data
is “close enough” to the rank obtained using the full data, suggesting a good behavior when the
data are partial or missing.
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Figure 7: Comparison between the rank provided by the one-class model and the Stiff-U model for different values of
the probability p.

We report some plots obtained for values of p equal to 1, 0.5 and 0.1. For p = 0.1 only 10% of
the attributes are present so the ranking obtained should be very similar to the one obtained using
only citations. Plotting the ranking values versus the rank obtained with the one-class model,
we see that Uniform weighting schemas behave very poorly, since there is no convergence (see
Figure 7). This fact, confirms the observation in the previous section about the inadequateness
of Uniforms weighting strategies. On the contrary with the other weighting schemas all models
exhibit a good convergence, showing the robustness to missing data. In Figure 8 and 9 are
depicted the results for the three values of p for the Static-DD and the Heap-H models.
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Figure 8: Comparison between the rank provided by the one-class model and the Static-DD model for different values
of the probability p.

To better understand the effectiveness of the proposed methods when links are missing, we
can compare the rank provided with all the links with that obtained using a small percentage of
the link of the features. In Figure 10 and 11 are depicted the comparison between the rank of
the patents for dataset DS1, and the rank of the patents using only 10% or 50% of the links of
the features for the Heap-H model. We see that the rank obtained with partial information are
not the same of those provided using the full matrix, but however the cloud has a reasonable
shape, showing a good predictive properties of these models for missing data. Moreover, for
lower percentage of missing links, the cloud is located in an thinner region around the diagonal.
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Figure 9: Comparison between the rank provided by the one-class model and the Heap-H model for different values of
the probability p.

N p=0.1 p=0.5
50 62% 66%

100 74% 77%
200 73% 77%

Table 6: Measure of intersection between the top N patents ranked using the Static-DD model and the rank obtained
with the same model removing each edge of the attributes with probability 0.1 or 0.5).

For Static-DD model, and for the first N position in the ranked list, we measure the in-
tersection between the rank provided with the full data and the one obtained with only 10% or
50% of the links of the attributes. The results in Table 6 show that the rank of the patents are
very similar since among the top 100 patents we have that 77 are still in the top position even
removing 50% of the links of the features, meaning that the most interesting patents show in the
top position also with incomplete data.

5.3. Consistence for class aggregation

For some problems it is possible to tune the granularity of the subdivision in classes. For
example, in our databases of patents we can decide how to group the technologies (in classes
or subclasses) or geographical areas (regions or nations) and for scientific publications we can
classify papers on the basis of their specific subject classification (there are many subject clas-
sifications tables such as AMS, MSC, ACM) or use a coarser grain based on disciplines. The
granularity chosen depends of course on what the ranking is used for, but a good ranking schema
should provide compatible results when using different granularities.

As an example, consider the patents in Table 7. All these patents are in the same class 15
(BRUSHING, SCRUBBING, AND GENERAL CLEANING) but have a secondary subclass as
well. The rank of the patents obtained using the extended Technologies–Patent matrix should be
similar to that obtained using a more compact Technologies–Patent matrix where, for example,
the four patents in Table 7 are all grouped under the same Technology 15.

Figure 12 shows the comparison of the patents’ ranks obtained using two different Technology-
Patent matrices. In the compacted model we use only the main technology class, i.e. in the
example of Table 7 the four patents associated with different subclasses will be classified as
belonging to the same class 15. In the extended model, on the contrary, we will use a fatter
Technology-Patent matrix, with a row for each different subclass. We see that the rank of the
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Figure 10: Comparison between the rank provided by
the Heap-H model for the patents and the same model
using only 10% of the links.
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Figure 11: Comparison between the rank provided by
the Heap-H model for the patents and the same model
using only 50% of the links.

Patent number Technology Subclass

6895624 15 111 Brush and scraper
6895625 15 28 Rotary disk
6895626 15 50.1 Scrubber
6895627 15 98 Floor and wall cleaner:

Table 7: Four patents in the class 15- BRUSHING, SCRUBBING, AND GENERAL CLEANING, with different sub-
classes.

patents is minimally affected by the change. Of course the rank of Technologies changes a bit
more. To compare the rank of the main 472 technologies (compact model) we summed up the
rank of all the subclasses (extended model) of a technology.

The plot obtained using models with a weighting scheme of type DD are less grouped around
the diagonal, meaning that the ranks obtained with the compact or extended technologies differ
more than using the dimension based technique.

5.4. Considerations about the execution time

Our ranking algorithm works offline, in the sense that the scores are precomputed and stored
as is done in Google’s ranking algorithm. The computation of the rank can be done periodically.
For example, for patents it is reasonable to update the rank weekly, while for scientific papers a
recompilation after a month would be sufficient since most of the journals have monthly issues.
Our algorithms require a time ranging from 20 minutes to 2 hours to compute the ranking on the
larger dataset DS2 (where the matrix involved has size approximately of 13 millions) on a quad-
core Intel Xeon @2.8GHz. To search among the documents one has to add a search module and
retrieve the documents relevant to a given query. The ranking score of the relevant documents
can be simply obtained pulling out from the list of all the documents sorted by ranking score.
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Figure 12: In the first picture a comparison between the rank of the patents provided by the Static-D model using the
extended and compact Technology–Patent matrix. In the second picture the comparison of the ranks of Technologies for
the extended and compact model.

6. Conclusion

In this paper we propose several models for ranking multi-parameters data on the basis of the
linkage structure. We assume the citation matrix is enriched with other attributes (features) that
can be represented by multi-class models. We use the attributes to improve the ranking process
and, as a byproduct, we obtain a ranking of the attributes as well. After describing the models
and different weighting strategies for measuring the influence of each feature in the ranking,
we describe an algorithm for computing the rank based on an iterative scheme that combines
non-stationary and stationary methods. We test some of the numerical methods on two large
datasets of US patents. We address issues such as stability and convergence of the algorithm
applied to each model, convergence with incomplete data, and consistence for class aggregation.
In particular, the experimental part on large datasets shows that these techniques can be used in
real applications where we have objects with multiple attributes and where some information can
be missing due to the errors or incompleteness of the data. To search among the ordered list of
objects one has to add a searching module and retrieve only objects relevant to a given query in
analogy to what is done in the context of web search engines. A limitation of our approach is that
the rank provided is static, hence the addition of a new document will require the computation of
new ranks from scratch. We plan to investigate more efficient techniques for updating the ranks.

We also plan to address the problem of spam introducing mechanisms for penalizing self-
citations and spammers. A possible approach to deal with cheating could consists in appropri-
ately weighting citations and in modifying the main diagonal of the diagonal blocks to mitigate
the influence of spammers on the final rank.

Another challenging future work is the incorporation of a preprocessing phase aimed at re-
covering missing entries. Unfortunately automatic techniques such the one proposed in [16] do
not seem straightforwardly applicable to our case. However, a recovery strategy based on data
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similarity could be successfully employed in specific domains. For example for bibliographic
ranking one could use static indicators such as Impact Factor or Mathematical citation quotient.
We plan to investigate how this information can be used in our scheme for improving the ranking
process or as a starting point to reduce the number of iterations.
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