777 research outputs found

    Schematisation in Hard-copy Tactile Orientation Maps

    Get PDF
    This dissertation investigates schematisation of computer-generated tactile orientation maps that support mediation of spatial knowledge of unknown urban environments. Computergenerated tactile orientation maps are designed to provide the blind with an overall impression of their surroundings. Their details are displayed by means of elevated features that are created by embossers and can be distinguished by touch. The initial observation of this dissertation states that only very little information is actually transported through tactile maps owing to the coarse resolution of tactual senses and the cognitive effort involved in the serial exploration of tactile maps. However, the differences between computer-generated, embossed tactile maps and manufactured, deep-drawn tactile maps are significant. Therefore the possibilities and confines of communicating information through tactile maps produced with embossers is a primary area of research. This dissertation has been able to demonstrate that the quality of embossed prints is an almost equal alternative to traditionally manufactured deep-drawn maps. Their great advantage is fast and individual production and (apart from the initial procurement costs for the printer)low price, accessibility and easy understanding without the need of prior time-consuming training. Simplification of tactile maps is essential, even more so than in other maps. It can be achieved by selecting a limited number from all map elements available. Qualitative simplification through schematisation may present an additional option to simplification through quantitative selection. In this context schematisation is understood as cognitively motivated simplification of geometry and synchronised maintenance of topology. Rather than further reducing the number of displayed objects, the investigation concentrates on how the presentation of different forms of streets (natural vs. straightened) and junctions (natural vs. prototypical) affects the transfer of knowledge. In a second area of research, a thesis establishes that qualitative simplification of tactile orientation maps through schematisation can enhance their usability and make them easier to understand than maps that have not been schematised. The dissertation shows that simplifying street forms and limiting them to prototypical junctions does not only accelerate map exploration but also has a beneficial influence on retention performance. The majority of participants that took part in the investigation selected a combination of both as their preferred display option. Tactile maps that have to be tediously explored through touch, uncovering every detail, complicate attaining a first impression or an overall perception. A third area of research is examined, establishing which means could facilitate map readersĂą options to discover certain objects on the map quickly and without possessing a complete overview. Three types of aids are examined: guiding lines leading from the frame of the map to the object, position indicators represented by position markers at the frame of the map and coordinate specifications found within a grid on the map. The dissertation shows that all three varieties can be realised by embossers. Although a guiding line proves to be fast in size A4 tactile maps containing only one target object and few distracting objects, it also impedes further exploration of the map (similar to the grid). In the following, advantages and drawbacks of the various aids in this and other applications are discussed. In conclusion the dissertation elaborates on the linking points of all three examinations. They connect and it is argued that cognitively motivated simplification should be a principle of construction for embossed tactile orientation maps in order to support their use and comprehension. A summary establishes the recommendations that result from this dissertation regarding construction of tactile orientation maps considering the limitations through embosser constraints. Then I deliberate how to adapt schematisation of other maps contingent to intended function, previous knowledge of the map reader, and the relation between the time in which knowledge is acquired and the time it is employed. Closing the dissertation, I provide an insight into its confines and deductions and finish with a prospective view to possible transfers of the findings to other applications, e.g. multimedia or interactive maps on pin-matrix displays and devices

    A Formal Approach to Computer Aided 2D Graphical Design for Blind People

    Get PDF
    The growth of computer aided drawing systems for blind people (CADB) has long been recognised and has increased in interest within the assistive technology research area. The representation of pictorial data by blind and visually impaired (BVI) people has recently gathered momentum with research and development; however, a survey of published literature on CADB reveals that only marginal research has been focused on the use of a formal approach for on screen spatial orientation, creation and reuse of graphics artefacts. To realise the full potential of CADB, such systems should possess attributes of usability, spatial navigation and shape creation features without which blind users drawing activities are less likely to be achieved. As a result of this, usable, effective and self-reliant CADB have arisen from new assistive Technology (AT) research. This thesis contributes a novel, abstract, formal approach that facilitates BVI users to navigate on the screen, create computer graphics/diagrams using 2D shapes and user-defined images. Moreover, the research addresses the specific issues involved with user language by formulating specific rules that make BVI user interaction with the drawing effective and easier. The formal approach proposed here is descriptive and it is specified at a level of abstraction above the concrete level of system technologies. The proposed approach is unique in problem modelling and syntheses of an abstract computer-based graphics/drawings using a formal set of user interaction commands. This technology has been applied to enable blind users to independently construct drawings to satisfy their specific needs without recourse to a specific technology and without the intervention of support workers. The specification aims to be the foundation for a system scope, investigation guidelines and user-initiated command-driven interaction. Such an approach will allow system designers and developers to proceed with greater conceptual clarity than it is possible with current technologies that is built on concrete system-driven prototypes. In addition to the scope of the research the proposed model has been verified by various types of blind users who have independently constructed drawings to satisfy their specific needs without the intervention of support workers. The effectiveness and usability of the proposed approach has been compared against conventional non-command driven drawing systems by different types of blind users. The results confirm that the abstract formal approach proposed here using command-driven means in the context of CADB enables greater comprehension by BVI users. The innovation can be used for both educational and training purposes. The research, thereby sustaining the claim that the abstract formal approach taken allows for the greater comprehension of the command-driven means in the context of CADB, and how the specification aid the design of such a system

    Designing a New Tactile Display Technology and its Disability Interactions

    Get PDF
    People with visual impairments have a strong desire for a refreshable tactile interface that can provide immediate access to full page of Braille and tactile graphics. Regrettably, existing devices come at a considerable expense and remain out of reach for many. The exorbitant costs associated with current tactile displays stem from their intricate design and the multitude of components needed for their construction. This underscores the pressing need for technological innovation that can enhance tactile displays, making them more accessible and available to individuals with visual impairments. This research thesis delves into the development of a novel tactile display technology known as Tacilia. This technology's necessity and prerequisites are informed by in-depth qualitative engagements with students who have visual impairments, alongside a systematic analysis of the prevailing architectures underpinning existing tactile display technologies. The evolution of Tacilia unfolds through iterative processes encompassing conceptualisation, prototyping, and evaluation. With Tacilia, three distinct products and interactive experiences are explored, empowering individuals to manually draw tactile graphics, generate digitally designed media through printing, and display these creations on a dynamic pin array display. This innovation underscores Tacilia's capability to streamline the creation of refreshable tactile displays, rendering them more fitting, usable, and economically viable for people with visual impairments

    Multi-Sensory Interaction for Blind and Visually Impaired People

    Get PDF
    This book conveyed the visual elements of artwork to the visually impaired through various sensory elements to open a new perspective for appreciating visual artwork. In addition, the technique of expressing a color code by integrating patterns, temperatures, scents, music, and vibrations was explored, and future research topics were presented. A holistic experience using multi-sensory interaction acquired by people with visual impairment was provided to convey the meaning and contents of the work through rich multi-sensory appreciation. A method that allows people with visual impairments to engage in artwork using a variety of senses, including touch, temperature, tactile pattern, and sound, helps them to appreciate artwork at a deeper level than can be achieved with hearing or touch alone. The development of such art appreciation aids for the visually impaired will ultimately improve their cultural enjoyment and strengthen their access to culture and the arts. The development of this new concept aids ultimately expands opportunities for the non-visually impaired as well as the visually impaired to enjoy works of art and breaks down the boundaries between the disabled and the non-disabled in the field of culture and arts through continuous efforts to enhance accessibility. In addition, the developed multi-sensory expression and delivery tool can be used as an educational tool to increase product and artwork accessibility and usability through multi-modal interaction. Training the multi-sensory experiences introduced in this book may lead to more vivid visual imageries or seeing with the mind’s eye

    Factors related to braille acquisition among adult and senior learners : establishing evidence-based practice

    Full text link
    Les difficultĂ©s de lecture sont les raisons les plus frĂ©quentes pour lesquelles des personnes sont orientĂ©es vers un service de rĂ©adaptation visuelle. Bien qu’il existe une base historique solide Ă  propos de l’enseignement du braille chez les enfants aveugles, il existe trĂšs peu de donnĂ©es probantes concernant l’apprentissage du braille chez les personnes en Ăąge de travailler et les personnes ĂągĂ©es. De surcroĂźt, bien qu’il soit clair que le vieillissement est associĂ© Ă  un dĂ©clin des capacitĂ©s tactiles, motrices et cognitives, on sait peu de choses sur la maniĂšre dont ces variables peuvent influencer les rĂ©sultats de la lecture du braille. Pour examiner cette problĂ©matique, une Ă©tude en quatre phases a Ă©tĂ© conceptualisĂ©e. Dans la premiĂšre phase, une Ă©tude de la portĂ©e a Ă©tĂ© menĂ©e afin de synthĂ©tiser les connaissances existantes concernant la relation entre le dĂ©clin des capacitĂ©s liĂ© au vieillissement et la performance de la lecture en braille. La seconde a voulu Ă©tudier les obstacles et les facilitateurs rencontrĂ©s par les adultes qui suivent une formation en braille. La troisiĂšme a explorĂ© les variables qui sont en corrĂ©lation avec la performance de lecture en braille Ă  l’ñge adulte. Enfin, la derniĂšre phase a voulu se pencher sur l’influence du support de lecture sur la performance de lecture des adultes ayant une sensibilitĂ© tactile rĂ©duite. Les preuves antĂ©rieures concernant le braille et le vieillissement restent rares. Il existe une variĂ©tĂ© de facteurs personnels, sociaux et institutionnels qui façonnent le processus d’apprentissage du braille chez les adultes, incluant la stigmatisation envers le braille et le vieillissement perçue par certains praticiens, des services inadĂ©quats et des difficultĂ©s Ă  l’accĂšs aux Ă©quipements brailles. Des donnĂ©es soulignent la nĂ©cessitĂ© de commencer l’apprentissage du braille le plus tĂŽt possible, d’évaluer des mesures objectives de l’acuitĂ© tactile tout en considĂ©rant le rĂŽle de la fonction du toucher, de fournir une formation accrue en matiĂšre de perception tactile et d’envisager une plus grande intĂ©gration d’appareils braille. Les rĂ©sultats font Ă©galement ressortir la nĂ©cessitĂ© d’augmenter le financement et les services ; de dĂ©finir des critĂšres d’éligibilitĂ© qui tiennent compte des rĂ©alitĂ©s uniques des clients ĂągĂ©s et l’accĂšs au braille ; et d’étudier plus avant le rĂŽle de la stigmatisation vis-Ă -vis du braille et du vieillissement. En somme, tous ces Ă©lĂ©ments rĂ©unis peuvent influencer Ă  la fois les dĂ©cisions cliniques et les rĂ©sultats d’apprentissage.Reading difficulties are the most common reasons for referral to vision rehabilitation. Though there is a strong historical basis for the provision of braille instruction among blind children, there is little evidence-based research on the needs of working-age and older adults. Aging is associated with declines in tactile, motor and cognitive capacities. Moreover, learning in adulthood is distinct from childhood learning, owing to differences in cortical plasticity and development. Little is known about how these variables may influence braille reading outcomes, but such knowledge is needed to inform the design of evidence-based strategies. For example, low-cost braille devices incorporate dots of greater height and density, but the extent to which such approaches may enhance reading performance for older adults with reduced tactile sensitivity remains unexplored. These questions are especially imperative as the prevalence of age-related vision loss continues to increase. A four-phase study was devised to synthesize prior evidence on the interrelationship between factors known to decline with age and braille reading performance; to investigate the barriers and facilitators encountered by working-age and older adults who pursue braille training; to identify variables that correlate with braille reading performance in adulthood; and to explore the influence of reading medium on the reading performance of adults with reduced tactile sensitivity. This thesis confirms that prior evidence on braille and aging remains scant, heightening the imperative for further research in this domain. Moreover, there are a variety of personal, social and institutional factors which shape the adult braille learning process, including perceived stigma towards braille and aging among some practitioners, inadequate services and access to braille devices. Braille learning age, frequency of usage, and measures of active tactile acuity emerged as significant correlates of braille reading speed. Preliminary evidence suggests that using braille displays with greater dot height enhances performance for those with reduced tactile sensitivity, while also enabling immediate access to relevant reading content. Collectively, these findings point to the need for rehabilitation practitioners to introduce braille as early as possible, evaluate objective measures of tactile acuity while also considering the role of functional touch, provide increased training in tactile perception, and consider a wider integration of braille devices. Findings also highlight the need for increased funding and services, eligibility criteria which takes into account the unique realities of older braille clients, and the need to further explore the role of stigma towards braille and aging which may influence both clinical decisions and learning outcomes

    Skyler and Bliss

    Get PDF
    Hong Kong remains the backdrop to the science fiction movies of my youth. The city reminds me of my former training in the financial sector. It is a city in which I could have succeeded in finance, but as far as art goes it is a young city, and I am a young artist. A frustration emerges; much like the mould, the artist also had to develop new skills by killing off his former desires and manipulating technology. My new series entitled HONG KONG surface project shows a new direction in my artistic research in which my technique becomes ever simpler, reducing the traces of pixelation until objects appear almost as they were found and photographed. Skyler and Bliss presents tectonic plates based on satellite images of the Arctic. Working in a hot and humid Hong Kong where mushrooms grow ferociously, a city artificially refrigerated by climate control, this series provides a conceptual image of a imaginary typographic map for survival. (Laurent Segretier

    Tabletop tangible maps and diagrams for visually impaired users

    Get PDF
    En dĂ©pit de leur omniprĂ©sence et de leur rĂŽle essentiel dans nos vies professionnelles et personnelles, les reprĂ©sentations graphiques, qu'elles soient numĂ©riques ou sur papier, ne sont pas accessibles aux personnes dĂ©ficientes visuelles car elles ne fournissent pas d'informations tactiles. Par ailleurs, les inĂ©galitĂ©s d'accĂšs Ă  ces reprĂ©sentations ne cessent de s'accroĂźtre ; grĂące au dĂ©veloppement de reprĂ©sentations graphiques dynamiques et disponibles en ligne, les personnes voyantes peuvent non seulement accĂ©der Ă  de grandes quantitĂ©s de donnĂ©es, mais aussi interagir avec ces donnĂ©es par le biais de fonctionnalitĂ©s avancĂ©es (changement d'Ă©chelle, sĂ©lection des donnĂ©es Ă  afficher, etc.). En revanche, pour les personnes dĂ©ficientes visuelles, les techniques actuellement utilisĂ©es pour rendre accessibles les cartes et les diagrammes nĂ©cessitent l'intervention de spĂ©cialistes et ne permettent pas la crĂ©ation de reprĂ©sentations interactives. Cependant, les rĂ©centes avancĂ©es dans le domaine de l'adaptation automatique de contenus laissent entrevoir, dans les prochaines annĂ©es, une augmentation de la quantitĂ© de contenus adaptĂ©s. Cette augmentation doit aller de pair avec le dĂ©veloppement de dispositifs utilisables et abordables en mesure de supporter l'affichage de reprĂ©sentations interactives et rapidement modifiables, tout en Ă©tant accessibles aux personnes dĂ©ficientes visuelles. Certains prototypes de recherche s'appuient sur une reprĂ©sentation numĂ©rique seulement : ils peuvent ĂȘtre instantanĂ©ment modifiĂ©s mais ne fournissent que trĂšs peu de retour tactile, ce qui rend leur exploration complexe d'un point de vue cognitif et impose de fortes contraintes sur le contenu. D'autres prototypes s'appuient sur une reprĂ©sentation numĂ©rique et physique : bien qu'ils puissent ĂȘtre explorĂ©s tactilement, ce qui est un rĂ©el avantage, ils nĂ©cessitent un support tactile qui empĂȘche toute modification rapide. Quant aux dispositifs similaires Ă  des tablettes Braille, mais avec des milliers de picots, leur coĂ»t est prohibitif. L'objectif de cette thĂšse est de pallier les limitations de ces approches en Ă©tudiant comment dĂ©velopper des cartes et diagrammes interactifs physiques, modifiables et abordables. Pour cela, nous nous appuyons sur un type d'interface qui a rarement Ă©tĂ© Ă©tudiĂ© pour des utilisateurs dĂ©ficients visuels : les interfaces tangibles, et plus particuliĂšrement les interfaces tangibles sur table. Dans ces interfaces, des objets physiques reprĂ©sentent des informations numĂ©riques et peuvent ĂȘtre manipulĂ©s par l'utilisateur pour interagir avec le systĂšme, ou par le systĂšme lui-mĂȘme pour reflĂ©ter un changement du modĂšle numĂ©rique - on parle alors d'interfaces tangibles sur tables animĂ©es, ou actuated. GrĂące Ă  la conception, au dĂ©veloppement et Ă  l'Ă©valuation de trois interfaces tangibles sur table (les Tangible Reels, la Tangible Box et BotMap), nous proposons un ensemble de solutions techniques rĂ©pondant aux spĂ©cificitĂ©s des interfaces tangibles pour des personnes dĂ©ficientes visuelles, ainsi que de nouvelles techniques d'interaction non-visuelles, notamment pour la reconstruction d'une carte ou d'un diagramme et l'exploration de cartes de type " Pan & Zoom ". D'un point de vue thĂ©orique, nous proposons aussi une nouvelle classification pour les dispositifs interactifs accessibles.Despite their omnipresence and essential role in our everyday lives, online and printed graphical representations are inaccessible to visually impaired people because they cannot be explored using the sense of touch. The gap between sighted and visually impaired people's access to graphical representations is constantly growing due to the increasing development and availability of online and dynamic representations that not only give sighted people the opportunity to access large amounts of data, but also to interact with them using advanced functionalities such as panning, zooming and filtering. In contrast, the techniques currently used to make maps and diagrams accessible to visually impaired people require the intervention of tactile graphics specialists and result in non-interactive tactile representations. However, based on recent advances in the automatic production of content, we can expect in the coming years a growth in the availability of adapted content, which must go hand-in-hand with the development of affordable and usable devices. In particular, these devices should make full use of visually impaired users' perceptual capacities and support the display of interactive and updatable representations. A number of research prototypes have already been developed. Some rely on digital representation only, and although they have the great advantage of being instantly updatable, they provide very limited tactile feedback, which makes their exploration cognitively demanding and imposes heavy restrictions on content. On the other hand, most prototypes that rely on digital and physical representations allow for a two-handed exploration that is both natural and efficient at retrieving and encoding spatial information, but they are physically limited by the use of a tactile overlay, making them impossible to update. Other alternatives are either extremely expensive (e.g. braille tablets) or offer a slow and limited way to update the representation (e.g. maps that are 3D-printed based on users' inputs). In this thesis, we propose to bridge the gap between these two approaches by investigating how to develop physical interactive maps and diagrams that support two-handed exploration, while at the same time being updatable and affordable. To do so, we build on previous research on Tangible User Interfaces (TUI) and particularly on (actuated) tabletop TUIs, two fields of research that have surprisingly received very little interest concerning visually impaired users. Based on the design, implementation and evaluation of three tabletop TUIs (the Tangible Reels, the Tangible Box and BotMap), we propose innovative non-visual interaction techniques and technical solutions that will hopefully serve as a basis for the design of future TUIs for visually impaired users, and encourage their development and use. We investigate how tangible maps and diagrams can support various tasks, ranging from the (re)construction of diagrams to the exploration of maps by panning and zooming. From a theoretical perspective we contribute to the research on accessible graphical representations by highlighting how research on maps can feed research on diagrams and vice-versa. We also propose a classification and comparison of existing prototypes to deliver a structured overview of current research

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    Development and Characterization of a Dispersion-Encoded Method for Low-Coherence Interferometry

    Get PDF
    This Open Access book discusses an extension to low-coherence interferometry by dispersion-encoding. The approach is theoretically designed and implemented for applications such as surface profilometry, polymeric cross-linking estimation and the determination of thin-film layer thicknesses. During a characterization, it was shown that an axial measurement range of 79.91 ”m with an axial resolution of 0.1 nm is achievable. Simultaneously, profiles of up to 1.5 mm in length were obtained in a scan-free manner. This marked a significant improvement in relation to the state-of-the-art in terms of dynamic range. Also, the axial and lateral measurement range were decoupled partially while functional parameters such as surface roughness were estimated. The characterization of the degree of polymeric cross-linking was performed as a function of the refractive index. It was acquired in a spatially-resolved manner with a resolution of 3.36 x 10-5. This was achieved by the development of a novel mathematical analysis approach
    • 

    corecore