188,521 research outputs found

    Investigation of phase-separated electronic states in 1.5µm GaInNAs/GaAs heterostructures by optical spectroscopy

    Get PDF
    We report on the comparative electronic state characteristics of particular GaInNAs/GaAs quantum well structures that emit near 1.3 and 1.5 µm wavelength at room temperature. While the electronic structure of the 1.3 µm sample is consistent with a standard quantum well, the 1.5 µm sample demonstrate quite different characteristics. By using photoluminescence sPLd excitation spectroscopy at various detection wavelengths, we demonstrate that the macroscopic electronic states in the 1.5 µm structures originate from phase-separated quantum dots instead of quantum wells. PL measurements with spectrally selective excitation provide further evidence for the existence of composition-separated phases. The evidence is consistent with phase segregation during the growth leading to two phases, one with high In and N content which accounts for the efficient low energy 1.5 µm emission, and the other one having lower In and N content which contributes metastable states and only emits under excitation in a particular wavelength range

    Spin symmetry breaking in bilayer quantum Hall systems

    Full text link
    Based on the construction of generalized Halperin wave functions, we predict the possible existence of a large class of broken spin symmetry states in bilayer quantum Hall structures, generalizing the recently suggested canted antiferromgnetic phase to many fractional fillings. We develop the appropriate Chern-Simons theory, and establish explicitly that the low-lying neutral excitation is a Goldstone mode and that the charged excitations are bimerons with continuously tunable (through the canted antiferromagnetic order parameter) electric charge on the individual merons.Comment: 4 page

    Quantum Systems as results of Geometric Evolutions

    Full text link
    In the framework of deterministic finslerian models, a mechanism producing dissipative dynamics at the Planck scale is introduced. It is based on a geometric evolution from Finsler to Riemann structures defined in TM{\bf TM}. Quantum states are generated and interpreted as equivalence classes, composed by the configurations that evolve through an internal dynamics, to the same final state. The existence of an hermitian scalar product in an associated linear space is discussed and related with the quantum pre-Hilbert space. This hermitian product emerges from geometric and statistical considerations. Our scheme recovers the main ingredients of the usual Quantum Mechanics. Several testable consequences of our scheme are discussed and compared with usual Quantum Mechanics. A tentative solution of the cosmological constant problem is proposed, as well as a mechanism for the absence of quantum interferences at classical scales.Comment: paper withdraw

    Subdecoherent Information Encoding in a Quantum-Dot Array

    Get PDF
    A potential implementation of quantum-information schemes in semiconductor nanostructures is studied. To this end, the formal theory of quantum encoding for avoiding errors is recalled and the existence of noiseless states for model systems is discussed. Based on this theoretical framework, we analyze the possibility of designing noiseless quantum codes in realistic semiconductor structures. In the specific implementation considered, information is encoded in the lowest energy sector of charge excitations of a linear array of quantum dots. The decoherence channel considered is electron-phonon coupling We show that besides the well-known phonon bottleneck, reducing single-qubit decoherence, suitable many-qubit initial preparation as well as register design may enhance the decoherence time by several orders of magnitude. This behaviour stems from the effective one-dimensional character of the phononic environment in the relevant region of physical parameters.Comment: 12 pages LaTeX, 5 postscript figures. Final version accepted by PR
    corecore