120,464 research outputs found

    Interacting String Multi-verses and Holographic Instabilities of Massive Gravity

    Full text link
    Products of large-N conformal field theories coupled by multi-trace interactions in diverse dimensions are used to define quantum multi-gravity (multi-string theory) on a union of (asymptotically) AdS spaces. One-loop effects generate a small O(1/N) mass for some of the gravitons. The boundary gauge theory and the AdS/CFT correspondence are used as guiding principles to study and draw conclusions on some of the well known problems of massive gravity - classical instabilities and strong coupling effects. We find examples of stable multi-graviton theories where the usual strong coupling effects of the scalar mode of the graviton are suppressed. Our examples require a fine tuning of the boundary conditions in AdS. Without it, the spacetime background backreacts in order to erase the effects of the graviton mass.Comment: 51 pages, 3 figures; v2 typos corrected, version published in NPB; v3 added appendix E on general class of fixed points in multi-trace deformation

    Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws

    Get PDF
    We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.Comment: Revision from v2; 57 pages, 19 figure

    Global stability of steady states in the classical Stefan problem

    Full text link
    The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result [28] in which we studied nearly spherical shapes.Comment: 14 pages. arXiv admin note: substantial text overlap with arXiv:1212.142

    Defect-Mediated Stability: An Effective Hydrodynamic Theory of Spatio-Temporal Chaos

    Full text link
    Spatiotemporal chaos (STC) exhibited by the Kuramoto-Sivashinsky (KS) equation is investigated analytically and numerically. An effective stochastic equation belonging to the KPZ universality class is constructed by incorporating the chaotic dynamics of the small KS system in a coarse-graining procedure. The bare parameters of the effective theory are computed approximately. Stability of the system is shown to be mediated by space-time defects that are accompanied by stochasticity. The method of analysis and the mechanism of stability may be relevant to a class of STC problems.Comment: 34 pages + 9 figure

    Pattern formation driven by cross--diffusion in a 2D domain

    Full text link
    In this work we investigate the process of pattern formation in a two dimensional domain for a reaction-diffusion system with nonlinear diffusion terms and the competitive Lotka-Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, hexagonal patterns

    The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions

    Get PDF
    Fundamental global similarity solutions of the standard form u_\g(x,t)=t^{-\a_\g} f_\g(y), with the rescaled variable y= x/{t^{\b_\g}}, \b_\g= \frac {1-n \a_\g}{10}, where \a_\g>0 are real nonlinear eigenvalues (\g is a multiindex in R^N) of the tenth-order thin film equation (TFE-10) u_{t} = \nabla \cdot(|u|^{n} \n \D^4 u) in R^N \times R_+, n>0, are studied. The present paper continues the study began by the authors in the previous paper P. Alvarez-Caudevilla, J.D.Evans, and V.A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, No. 4, Vol. 10 (2013), 1759-1790. Thus, the following questions are also under scrutiny: (I) Further study of the limit n \to 0, where the behaviour of finite interfaces and solutions as y \to infinity are described. In particular, for N=1, the interfaces are shown to diverge as follows: |x_0(t)| \sim 10 \left( \frac{1}{n}\sec\left( \frac{4\pi}{9} \right) \right)^{\frac 9{10}} t^{\frac 1{10}} \to \infty as n \to 0^+. (II) For a fixed n \in (0, \frac 98), oscillatory structures of solutions near interfaces. (III) Again, for a fixed n \in (0, \frac 98), global structures of some nonlinear eigenfunctions \{f_\g\}_{|\g| \ge 0} by a combination of numerical and analytical methods
    corecore