61 research outputs found

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses

    Get PDF
    summary:In this study, we consider the Takagi-Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the nn-dimensional Clifford-valued neural network into 2mn2^mn-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen's integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results

    Exponential Stability Analysis of Mixed Delayed Quaternion-Valued Neural Networks Via Decomposed Approach

    Full text link
    © 2013 IEEE. With the application of quaternion in technology, quaternion-valued neural networks (QVNNs) have attracted many scholars' attention in recent years. For the existing results, dynamical behavior is an important studying side. In this paper, we mainly research the existence, uniqueness and exponential stability criteria of solutions for the QVNNs with discrete time-varying delays and distributed delays by means of generalized 2-norm. In order to avoid the noncommutativity of quaternion multiplication, the QVDNN system is firstly decomposed into four real-number systems by Hamilton rules. Then, we obtain the sufficient criteria for the existence, uniqueness and exponential stability of solutions by special Lyapunov-type functional, Cauchy convergence principle and monotone function. Furthermore, several corollaries are derived from the main results. Finally, we give one numerical example and its simulated figures to illustrate the effectiveness of the obtained conclusion

    Quaternion Information Theoretic Learning Adaptive Algorithms for Nonlinear Adaptive

    Get PDF
    Information Theoretic Learning (ITL) is gaining popularity for designing adaptive filters for a non-stationary or non-Gaussian environment [1] [2] . ITL cost functions such as the Minimum Error Entropy (MEE) have been applied to both linear and nonlinear adaptive filtering with better overall performance compared with the typical mean squared error (MSE) and least-squares type adaptive filtering, especially for nonlinear systems in higher-order statistic noise environments [3]. Quaternion valued data processing is beneficial in applications such as robotics and image processing, particularly for performing transformations in 3-dimensional space. Particularly the benefit for quaternion valued processing includes performing data transformations in a 3 or 4-dimensional space in a more convenient fashion than using vector algebra [4, 5, 6, 7, 8]. Adaptive filtering in quaterion domain operates intrinsically based on the augmented statistics which the quaternion input vector covariance is taken into account naturally and as a result it incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input [9]. The generalized Hamilton-real calculus (GHR) for the quaternion data simplified product and chain rules and allows us to calculate the gradient and Hessian of quaternion based cost function of the learning algorithms eciently [10][11] . The quaternion reproducing kernel Hilbert spaces and its uniqueness provide a mathematical foundation to develop the quaternion value kernel learning algorithms [12]. The reproducing property of the feature space replace the inner product of feature samples with kernel evaluation. In this dissertation, we first propose a kernel adaptive filter for quaternion data based on minimum error entropy cost function. The new algorithm is based on error entropy function and is referred to as the quaternion kernel minimum error entropy (QKMEE) algorithm [13]. We apply generalized Hamilton-real (GHR) calculus that is applicable to quaternion Hilbert space for evaluating the cost function gradient to develop the QKMEE algorithm. The minimum error entropy (MEE) algorithm [3, 14, 15] minimizes Renyis quadratic entropy of the error between the lter output and desired response or indirectly maximizing the error information potential. ITL methodology improves the performance of adaptive algorithm in biased or non-Gaussian signals and noise enviorments compared to the mean squared error (MSE) criterion algorithms such as the kernel least mean square algorithm. Second, we develop a kernel adaptive filter for quaternion data based on normalized minimum error entropy cost function [14]. We apply generalized Hamilton-real GHR) calculus that is applicable to Hilbert space for evaluating the cost function gradient to develop the quaternion kernel normalized minimum error entropy (QKNMEE) algorithm [16]. The new proposed algorithm enhanced QKMEE algorithm where the filter update stepsize selection will be independent of the input power and the kernel size. Third, we develop a kernel adaptive lter for quaternion domain data, based on information theoretic learning cost function which could be useful for quaternion based kernel applications of nonlinear filtering. The new algorithm is based on error entropy function with fiducial point and is referred to as the quaternion kernel minimum error entropy with fiducial point (QKMEEF) algorithm [17]. In our previous work we developed quaternion kernel adaptive lter based on minimum error entropy referred to as the QKMEE algorithm [13]. Since entropy does not change with the mean of the distribution, the algorithm may converge to a set of optimal weights without having zero mean error. Traditionally, to make the zero mean output error, the output during testing session was biased with the mean of errors of training session. However, for non-symmetric or heavy tails error PDF the estimation of error mean is problematic [18]. The minimum error entropy criterion, minimizes Renyi\u27s quadratic entropy of the error between the filter output and desired response or indirectly maximizing the error information potential [19]. Here, the approach is applied to quaternions. Adaptive filtering in quaterion domain intrinsically incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus that is applicable to Hilbert space for evaluating the cost function gradient to develop the Quaternion Minimum Error Entropy Algorithm with Fiducial point. Simulation results are used to show the behavior of the new algorithm (QKMEEF) when signal is non-Gaussian in presence of unimodal noise versus bi-modal noise distributions. Simulation results also show that the new algorithm QKMEEF can track and predict the 4-Dimensional non-stationary process signals where there are correlations between components better than quadruple real-valued KMEEF and Quat-KLMS algorithms. Fourth, we develop a kernel adaptive filter for quaternion data, using stochastic information gradient (SIG) cost function based on the information theoretic learning (ITL) approach. The new algorithm (QKSIG) is useful for quaternion-based kernel applications of nonlinear ltering [20]. Adaptive filtering in quaterion domain intrinsically incorporates component-wise real valued cross-correlation or the coupling within the dimensions of the quaternion input. We apply generalized Hamilton-real (GHR) calculus that is applicable to quaternion Hilbert space for evaluating the cost function gradient. The QKSIG algorithm minimizes Shannon\u27s entropy of the error between the filter output and desired response and minimizes the divergence between the joint densities of input-desired and input-output pairs. The SIG technique reduces the computational complexity of the error entropy estimation. Here, ITL with SIG approach is applied to quaternion adaptive filtering for three different reasons. First, it reduces the algorithm computational complexity compared to our previous work quaternion kernel minimum error entropy algorithm (QKMEE). Second, it improves the filtering performance by considering the coupling within the dimensions of the quaternion input. Third, it performs better in biased or non-Gaussian signal and noise environments due to ITL approach. We present convergence analysis and steady-state performance analysis results of the new algorithm (QKSIG). Simulation results are used to show the behavior of the new algorithm QKSIG in quaternion non-Gaussian signal and noise environments compared to the existing ones such as quadruple real-valued kernel stochastic information gradient (KSIG) and quaternion kernel LMS (QKLMS) algorithms. Fifth, we develop a kernel adaptive filter for quaternion data, based on stochastic information gradient (SIG) cost function with self adjusting step-size. The new algorithm (QKSIG-SAS) is based on the information theoretic learning (ITL) approach. The new algorithm (QKSIG-SAS) has faster speed of convergence as compared to our previous work QKSIG algorithm

    Global output feedback stabilization for nonlinear fractional order time delay systems

    Get PDF
    summary:This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained. Finally, simulation results dealing with typical bioreactor example, are given to illustrate that the proposed design procedures are very efficient and simple

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF

    Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay

    Get PDF
    This paper deals with the global Mittag-Leffler stability (GMLS) of Caputo fractional-order fuzzy inertial neural networks with time delay (CFOFINND). Based on Lyapunov stability theory and global fractional Halanay inequalities, the existence of unique equilibrium point and GMLS of CFOFINND have been established. A numerical example is given to illustrate the effectiveness of our results

    Global exponential periodicity of nonlinear neural networks with multiple time-varying delays

    Get PDF
    Global exponential periodicity of nonlinear neural networks with multiple time-varying delays is investigated. Such neural networks cannot be written in the vector-matrix form because of the existence of the multiple delays. It is noted that although the neural network with multiple time-varying delays has been investigated by Lyapunov-Krasovskii functional method in the literature, the sufficient conditions in the linear matrix inequality form have not been obtained. Two sets of sufficient conditions in the linear matrix inequality form are established by Lyapunov-Krasovskii functional and linear matrix inequality to ensure that two arbitrary solutions of the neural network with multiple delays attract each other exponentially. This is a key prerequisite to prove the existence, uniqueness, and global exponential stability of periodic solutions. Some examples are provided to demonstrate the effectiveness of the established results. We compare the established theoretical results with the previous results and show that the previous results are not applicable to the systems in these examples

    Floquet multipliers and the stability of periodic linear differential equations: a unified algorithm and its computer realization

    Full text link
    Floquet multipliers (characteristic multipliers) play significant role in the stability of the periodic equations. Based on the iterative method, we provide a unified algorithm to compute the Floquet multipliers (characteristic multipliers) and determine the stability of the periodic linear differential equations on time scales unifying discrete, continuous, and hybrid dynamics. Our approach is based on calculating the value of A and B (see Theorem 3.1), which are the sum and product of all Floquet multipliers (characteristic multipliers) of the system, respectively. We obtain an explicit expression of A (see Theorem 4.1) by the method of variation and approximation theory and an explicit expression of B by Liouville's formula. Furthermore, a computer program is designed to realize our algorithm. Specifically, you can determine the stability of a second order periodic linear system, whether they are discrete, continuous or hybrid, as long as you enter the program codes associated with the parameters of the equation. In fact, few literatures have dealt with the algorithm to compute the Floquet multipliers, not mention to design the program for its computer realization. Our algorithm gives the explicit expressions of all Floquet multipliers and our computer program is based on the approximations of these explicit expressions. In particular, on an arbitrary discrete periodic time scale, we can do a finite number of calculations to get the explicit value of Floquet multipliers (see Theorem 4.2). Therefore, for any discrete periodic system, we can accurately determine the stability of the system even without computer! Finally, in Section 6, several examples are presented to illustrate the effectiveness of our algorithm
    • …
    corecore