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Abstract: Global exponential periodicity of nonlinear neural networks with multiple time-varying
delays is investigated. Such neural networks cannot be written in the vector-matrix form because of
the existence of the multiple delays. It is noted that although the neural network with multiple time-
varying delays has been investigated by Lyapunov-Krasovskii functional method in the literature, the
sufficient conditions in the linear matrix inequality form have not been obtained. Two sets of sufficient
conditions in the linear matrix inequality form are established by Lyapunov-Krasovskii functional and
linear matrix inequality to ensure that two arbitrary solutions of the neural network with multiple
delays attract each other exponentially. This is a key prerequisite to prove the existence, uniqueness,
and global exponential stability of periodic solutions. Some examples are provided to demonstrate
the effectiveness of the established results. We compare the established theoretical results with the
previous results and show that the previous results are not applicable to the systems in these examples.
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1. Introduction

When we design a nonlinear delayed neural network and apply it to some practical applications
including collect computation, associative memory, pattern recognition, learning theory, and
optimization [1–3], we have to consider the existence and stability of the equilibrium point of the
delayed neural network. This is because the stable equilibrium point plays an important role in these
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applications and can avoid some suboptimal responses. Some stability results of various types of
nonlinear delayed neural network have been published, see [4–16] and the references cited.

The periodic solution is also an important dynamical behavior of the nonlinear delayed neural
networks. It is clear that an equilibrium point is a special case of the periodic solution because it
can be viewed as a special periodic solution with an arbitrary period. So the analysis of the periodic
solution of the nonlinear delayed neural network is more meaningful and complicated. The periodic
solution of a class of nonlinear delayed neural networks has been used to learning theory because
learning often needs to be repeated [17]. The neural network studied in this paper is a class of recurrent
neural networks. As known, periodic solution of recurrent neural network can be used to store acoustic
characteristics in speech recognition. The reason why the periodic solutions of a recurrent neural
network can store the acoustic characteristics is that the periodic solution contains the information
for a time series, and the length of the time series usually corresponds to the length of the acoustic
characteristics. In practice, a time series of an audio signal is fed as input into the network, if the
weights of the network meet our result, then the output is the periodic solution of the time series. We
can calculate the average power spectral density (PSD) of the periodic solution and compare it with
the PSD of the original audio signal. If the difference between them is small, then the periodic solution
can be considered as effectively storing the acoustic characteristics. Some interesting and valuable
results of periodic solutions of various types of nonlinear delayed neural networks have been obtained,
see [18–28] and the references cited.

After reading the references cited above, we notice that neural networks with multiple delays
τi j(t) cannot be converted into the vector-matrix form because of the existence of the multiple delays
τi j(t). What’s more, we notice that although the neural network with multiple delays τi j(t) have been
actually investigated by Lyapunov-Krasovskii functional method in the literature, to the best of our
knowledge, the sufficient conditions in the linear matrix inequality form have not been obtained. That
is to say, Lyapunov-Krasovskii functional method and linear matrix inequality method have not been
simultaneously used to study the neural network that cannot be converted into the vector-matrix form.
Therefore, we naturally wonder whether we can use two methods together to study the neural networks
with multiple delays.

The innovations of this paper are listed in the following.
1) By using Lyapunov-Krasovskii functional and linear matrix inequality, we establish two sets of

sufficient conditions in the linear matrix inequality form to ensure that two arbitrary solutions of the
neural network with multiple delays attracts each other exponentially. This is a key prerequisite to
prove the periodic solution of the neural network with multiple delays is existent, unique and globally
exponentially stable.

2) The established sufficient conditions can also ensure the exponential stability of the equilibrium
point of the neural network with multiple delays.

3) We confirm that Lyapunov-Krasovskii functional and linear matrix inequality can also be
applicable to the neural networks which cannot be written in the vector-matrix form. So Lyapunov-
Krasovskii functional and linear matrix inequality can be applicable to the neural networks that can or
cannot be written in the vector-matrix form.

4) We provide several examples to show that compared with the existing results derived by
differential inequality, matrix theory, Laypunov functional and Halanay inequality, the established
sufficient conditions are less conservative.
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2. Preliminaries

The nonlinear neural system with multiple time-varying delays studied in this paper can be
described as the following mathematical expression

ẋi(t) = −cixi(t) +
n∑

j=1

ai j f j(x j(t)) +
n∑

j=1

bi jg j(x j(t − τi j(t))) + ui(t), t ≥ 0, (2.1)

in which i = 1, · · · , n, ci > 0, the nonlinear activation functions fi(·), gi(·) and the multiple time-
varying delays τi j(t) satisfy that there exist some constants α−i , α

+
i , β

−
i , β

+
i , τ and τ̃ such that for all

z1, z2 ∈ R(z1 , z2), α−i ≤ α
+
i , β

−
i ≤ β

+
i and t ≥ 0,

α−i ≤
fi(z1) − fi(z2)

z1 − z2
≤ α+i , β

−
i ≤

gi(z1) − gi(z2)
z1 − z2

≤ β+i , (2.2)

0 ≤ τi j(t) ≤ τ, τ̇i j(t) ≤ τ̃ < 1. (2.3)

The initial conditions are xi(t) = ξi(t), t ∈ [−τ, 0], i = 1, · · · , n. Let ξ = {(ξ1(t), · · · , ξn(t))T : t ∈
[−τ, 0]} be C([−τ, 0],Rn)-valued function with

||ξ||2 = sup
−τ≤t≤0

∥ξ(t)∥2 < ∞,

in which C([−τ, 0],Rn) denotes the space of all continuous Rn-valued functions defined on [−τ, 0].
It is easy to see that the mathematical expression of system (2.1) cannot be transformed into a vector

system. By changing some functions in the mathematical expression, the following systems studied
in [4,18,19] are some special cases of system (2.1):

ẋi(t) = −cixi(t) +
n∑

j=1

ai j f j(x j(t)) +
n∑

j=1

bi jg j(x j(t − τ j(t))) + ui(t), (2.4)

ẋi(t) = −cixi(t) +
n∑

j=1

ai j f j(x j(t)) +
n∑

j=1

bi j f j(x j(t − τi j(t))) + ui, (2.5)

ẋi(t) = −cixi(t) +
n∑

j=1

ai j f j(x j(t)) +
n∑

j=1

bi j f j(x j(t − τi j(t))) + ui(t). (2.6)

3. Main results

Let x(t, ξ) and y(t, ψ) be the solutions of system (2.1) with arbitrary initial conditions ξ and ψ,
respectively. For simplicity and convenience, two arbitrary solutions x(t, ξ) and y(t, ψ) denote by x(t)
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and y(t), respectively. In addition, Σ < 0 denotes matrix Σ is symmetric negative definite, ∗ means the
symmetric terms of symmetric matrix Σ. Define

A = (ai j)n×n,C = diag{c1, · · · , cn}, P = diag{p1, · · · , pn},

K1 = diag{k11, · · · , k1n},K2 = diag{k21, · · · , k2n},

B1 = diag{
n∑

j=1

|b1 j|, · · · ,

n∑
j=1

|bn j|}, B2 = diag{
n∑

j=1

p j|b j1|, · · · ,

n∑
j=1

p j|b jn|},

B3 = diag{
n∑

j=1

|b j1|, · · · ,

n∑
j=1

|b jn|},

α̃ = diag{α−1α
+
1 , · · · , α

−
nα
+
n }, ᾱ = diag{α−1 + α

+
1 , · · · , α

−
n + α

+
n },

β̃ = diag{β−1β
+
1 , · · · , β

−
nβ
+
n }, β̄ = diag{β−1 + β

+
1 , · · · , β

−
n + β

+
n }.

We first show that two arbitrary solutions x(t) and y(t) of system (2.1) attract each other
exponentially.

Theorem 1. Suppose that there exist some positive constants p1, · · · , pn, ki1, · · · , kin (i = 1, 2) such
that

Σ =


−2PC + PB1 − 2K1α̃ − 2K2β̃ PA + K1ᾱ K2β̄

∗ −2K1 0
∗ ∗ −2K2 + (1 − τ̃)−1B2

 < 0.

Then, there exist two positive constants λ and M > 1 such that

∥x(t) − y(t)∥2 ≤ Me−λt∥ξ − ψ∥2, t ≥ 0. (3.1)

Proof. It follows from Σ < 0 that there exists a constant λ > 0 such that

Σ̄ =


λP − 2PC + PB1 − 2K1α̃ − 2K2β̃ PA + K1ᾱ K2β̄

∗ −2K1 0
∗ ∗ −2K2 + (1 − τ̃)−1eλτB2

 < 0. (3.2)

We construct the following Lyapunov-Krasovskii functional

V(t) = eλt
n∑

i=1

pi[xi(t) − yi(t)]2 + (1 − τ̃)−1
n∑

i=1

n∑
j=1

∫ t

t−τi j(t)
eλ(s+τ) pi|bi j|[g j(x j(s))

−g j(y j(s))]2ds, (3.3)

and derive
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V̇(t) = λeλt
n∑

i=1

pi[xi(t) − yi(t)]2 + eλt
n∑

i=1

2pi[xi(t) − yi(t)][ẋi(t) − ẏi(t)]

+(1 − τ̃)−1
n∑

i=1

n∑
j=1

(
eλ(t+τ) pi|bi j|[g j(x j(t)) − g j(y j(t))]2

−(1 − τ̇i j(t))eλ(t−τi j(t)+τ) pi|bi j|[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2
)

= λeλt
n∑

i=1

pi[xi(t) − yi(t)]2 + 2eλt
n∑

i=1

pi[xi(t) − yi(t)]
(
− ci[xi(t) − yi(t)]

+

n∑
j=1

ai j[ f j(x j(t)) − f j(y j(t))] +
n∑

j=1

bi j[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]
)

+(1 − τ̃)−1
n∑

i=1

n∑
j=1

(
eλ(t+τ) pi|bi j|[g j(x j(t)) − g j(y j(t))]2

−(1 − τ̇i j(t))eλ(t−τi j(t)+τ) pi|bi j|[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2
)

≤ λeλt
n∑

i=1

pi[xi(t) − yi(t)]2 + eλt
n∑

i=1

(
− 2ci pi[xi(t) − yi(t)]2

+

n∑
j=1

2ai j pi[xi(t) − yi(t)][ f j(x j(t)) − f j(y j(t))] +
n∑

j=1

|bi j|pi[xi(t) − yi(t)]2

+

n∑
j=1

|bi j|pi[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2
)

+

n∑
i=1

n∑
j=1

(
eλ(t+τ)(1 − τ̃)−1 pi|bi j|[g j(x j(t)) − g j(y j(t))]2

−eλt pi|bi j|[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2
)

= eλt
n∑

i=1

(
[λpi − 2ci pi +

n∑
j=1

|bi j|pi][xi(t) − yi(t)]2

+

n∑
j=1

2ai j pi[xi(t) − yi(t)][ f j(x j(t)) − f j(y j(t))]
)

+

n∑
i=1

n∑
j=1

eλ(t+τ)(1 − τ̃)−1 p j|b ji|[gi(xi(t)) − gi(yi(t))]2

= eλt
{
[x(t) − y(t)]T

(
λP − 2PC + PB1

)
[x(t) − y(t)]

+2[x(t) − y(t)]T PA[ f (x(t)) − f (y(t))]

+eλτ(1 − τ̃)−1[g(x(t)) − g(y(t))]T B2[g(x(t)) − g(y(t))]
}
, (3.4)
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in which
x(t) − y(t) = (x1(t) − y1(t), · · · , xn(t) − yn(t))T ,

f (x(t)) − f (y(t)) = ( f1(x1(t)) − f1(y1(t)), · · · , fn(xn(t)) − fn(yn(t)))T ,

g(x(t)) − g(y(t)) = (g1(x1(t)) − g1(y1(t)), · · · , gn(xn(t)) − gn(yn(t)))T .

In addition, it is easy to deduce the following inequalities from (2.2):

0 ≤ −2
n∑

i=1

k1i[( fi(xi(t)) − fi(yi(t))) − α+i (xi(t) − yi(t))][( fi(xi(t)) − fi(yi(t)))

−α−i (xi(t) − yi(t))]

= −2
n∑

i=1

k1i( fi(xi(t)) − fi(yi(t)))2 − 2
n∑

i=1

k1iα
+
i α
−
i (xi(t) − yi(t))2

+2(α+i + α
−
i )

n∑
i=1

k1i( fi(xi(t)) − fi(yi(t)))(xi(t) − yi(t))

= −2[ f (x(t)) − f (y(t))]T K1[ f (x(t)) − f (y(t))] − 2[x(t) − y(t)]T K1α̃[x(t) − y(t)]
+2[ f (x(t)) − f (y(t))]T K1ᾱ[x(t) − y(t)], (3.5)

and

0 ≤ −2
n∑

i=1

k2i[(gi(xi(t)) − gi(yi(t))) − β+i (xi(t) − yi(t))][(gi(xi(t)) − gi(yi(t)))

−β−i (xi(t) − yi(t))]
= −2[g(x(t)) − g(y(t))]T K2[g(x(t)) − g(y(t))] − 2[x(t) − y(t)]T K2β̃[x(t) − y(t)]
+2[g(x(t)) − g(y(t))]T K2β̄[x(t) − y(t)]. (3.6)

Let γ(t) = ([x(t)−y(t)]T , [ f (x(t))− f (y(t))]T , [g(x(t))−g(y(t))]T )T , βi = max{|β−i |, |β
+
i |}, i = 1, 2, · · · , n.

Then, from (3.2)–(3.6), we deduce

eλt min
1≤i≤n
{pi}∥x(t) − y(t)∥2

≤ V(t) ≤ V(0) +
∫ t

0
V̇(s)ds ≤ V(0) +

∫ t

0
eλsγT (s)Σ̄γ(s)ds ≤ V(0)

≤ max
1≤i≤n
{pi}∥x(0) − y(0)∥2 + (1 − τ̃)−1

n∑
i=1

n∑
j=1

∫ 0

−τ

eλ(s+τ) pi|bi j|[g j(x j(s)) − g j(y j(s))]2ds

≤

(
max
1≤i≤n
{pi} + (1 − τ̃)−1eλττmax

1≤i≤n
{

n∑
j=1

p j|b ji|β
2
i }

)
∥ξ − ψ∥2.

So (3.1) holds and the proof is finished.

Remark 1. Although Theorem 1 gives the sufficient conditions in the linear matrix inequality form,
MATLAB executables that solve the matrices P, K1, and K2 are difficultly written because the matrix
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B2 contains all elements of the undetermined matrix P. Therefore, it is more expected to obtain some
easily verified sufficient conditions.

Theorem 2. Inequality (3.1) holds provided that there exist some positive constants
p1, · · · , pn, ki1, · · · , kin (i = 1, 2) such that

Σ =


−2PC + P2B1 − 2K1α̃ − 2K2β̃ PA + K1ᾱ K2β̄

∗ −2K1 0
∗ ∗ −2K2 + (1 − τ̃)−1B3

 < 0. (3.7)

Proof. It follows from Σ < 0 that there exists a constant λ > 0 such that

Σ̄ =


λP − 2PC + P2B1 − 2K1α̃ − 2K2β̃ PA + K1ᾱ K2β̄

∗ −2K1 0
∗ ∗ −2K2 + (1 − τ̃)−1eλτB3

 < 0.

We construct the following Lyapunov-Krasovskii functional

V(t) = eλt
n∑

i=1

pi[xi(t) − yi(t)]2 + (1 − τ̃)−1
n∑

i=1

n∑
j=1

∫ t

t−τi j(t)
eλ(s+τ)|bi j|[g j(x j(s))

−g j(y j(s))]2ds,

and derive

V̇(t) ≤ λeλt
n∑

i=1

pi[xi(t) − yi(t)]2 + eλt
n∑

i=1

(
− 2ci pi[xi(t) − yi(t)]2

+

n∑
j=1

2ai j pi[xi(t) − yi(t)][ f j(x j(t)) − f j(y j(t))] +
n∑

j=1

|bi j|p2
i [xi(t) − yi(t)]2

+

n∑
j=1

|bi j|[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2
)

+

n∑
i=1

n∑
j=1

(
eλ(t+τ)(1 − τ̃)−1|bi j|[g j(x j(t)) − g j(y j(t))]2

−eλt|bi j|[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2
)

= eλt
{
[x(t) − y(t)]T

(
λP − 2PC + P2B1

)
[x(t) − y(t)]

+2[x(t) − y(t)]T PA[ f (x(t)) − f (y(t))]

+eλτ(1 − τ̃)−1[g(x(t)) − g(y(t))]T B3[g(x(t)) − g(y(t))]
}
.

The rest proof is similar to that of Theorem 1 and is omitted.

If pi = p (i = 1, · · · , n) in Theorem 1, then we obtain the following easily verified condition.
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Theorem 3. Inequality (3.1) holds provided that there exist some positive constants
p, ki1, · · · , kin(i = 1, 2) such that

Σ =


−2pC + pB1 − 2K1α̃ − 2K2β̃ pA + K1ᾱ K2β̄

∗ −2K1 0
∗ ∗ −2K2 + (1 − τ̃)−1 pB3

 < 0. (3.8)

It is obvious that the matrices P, K1, and K2 in (3.7) and (3.8) can be easily determined by MATLAB
LMI Control Toolbox. The focus of this paper is to establish (3.7) or (3.8) to ensure (3.1) holds. Based
on (3.1), we can define a Poincaré mapping and use the contraction mapping principle to show the
periodic solution of system (2.1) is existent, unique and globally exponentially stable. The proof is
common and similar to that of [19], so it is omitted.

Theorem 4. Let ui(t) and τi j(t)(i, j = 1, · · · , n) be ω-periodic functions. Then, under the conditions
of Theorem 2 (or Theorem 3) , there exists a unique and globally exponentially stable ω-periodic
solution of system (2.1).

Remark 2. Let ui(t) = ui(i = 1, · · · , n) in (2.1). Then, under the conditions of Theorem 2 (or
Theorem 3) , there exists a unique and globally exponentially stable equilibrium point of system (2.1).

For system (2.5) and system (2.6), we can easily derive the following result.

Theorem 5. Let ui(t) and τi j(t)(i, j = 1, · · · , n) be ω-periodic functions. Then, system (2.6) has a
unique and globally exponentially stable periodic solution provided that one of the following conditions
is true:

(i) There exist some positive constants p1, · · · , pn, ki1, · · · , kin (i = 1, 2) such that

Σ =


−2PC + P2B1 − 2(K1 + K2)α̃ PA + K1ᾱ K2ᾱ

∗ −2K1 0
∗ ∗ −2K2 + (1 − τ̃)−1B3

 < 0.

(ii) There exist some positive constants p, ki1, · · · , kin(i = 1, 2) such that

Σ =


−2pC + pB1 − 2(K1 + K2)α̃ pA + K1ᾱ K2ᾱ

∗ −2K1 0
∗ ∗ −2K2 + (1 − τ̃)−1 pB3

 < 0.

In particular, system (2.5) has a unique and globally exponentially stable equilibrium point if one
of the above conditions is true.

Remark 3. In [18], the author has used the theory of fixed point and differential inequality technique
to prove there exists exactly one ω-periodic solution of system (2.4) if α = ξ||A||2+η||B||2

c0
< 1, where

ξ = max1≤i≤n{supxi,0
fi(xi)

xi
}, η = max1≤i≤n{supxi,0

gi(xi)
xi
}, c0 = min1≤i≤n{ci}, ||A||2 denotes the square root of

the largest eigenvalue of AT A. For system (2.4) in Example 1, we demonstrate Theorem 4 is effective
and calculate α = 5.014

5 > 1 which implies that the result in [18] is not applicable.
Remark 4. In [4], the authors have used Brouwer’s fixed point theorem, matrix theory and

inequality analysis to prove system (2.5) has exactly one equilibrium which is globally exponentially
stable if ρ(K) < 1, where ρ(K) denotes spectral radius of matrix K = (ki j)n×n, ki j = c−1

i (|ai j| +

|bi j|)p j, p j = max{|α−j |, |α
+
j |} in this paper. For system (2.5) in Example 2, we demonstrate Theorem 5

is effective and calculate ρ(K) = 1 which implies that the result in [4] is not applicable.
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Remark 5. In [19], the authors have used Laypunov functional and Halanay inequality to prove
system (2.6) is globally exponentially periodic provided that di − Li

∑n
j=1(|a ji| + |b ji|) > 0 or di −∑n

j=1(|ai j| + |bi j|)L j > 0, i = 1, · · · , n, where di = ci and L j = max{|α−j |, |α
+
j |} in this paper. For system

(2.6) in Example 3, we demonstrate Theorem 5 is effective and calculate di − Li
∑4

j=1(|a ji| + |b ji|) =
di −
∑4

j=1(|ai j| + |bi j|)L j = 0, i = 1, · · · , n, which implies that the results in [19] are not applicable.

4. Several examples

Example 1. Consider system (2.4) with the following parameters and functions:

A = (ai j)4×4 =


1 −1 −1 1
−1 1 −1 −1
1 1 −1 1
−1 −1 −1 −1

 , B = (bi j)4×4 =


−1 1 −1 1
−1 −1 1 −1
1 −1 −1 −1
−1 −1 −1 1

 ,

C = diag{6, 6, 5, 5}, fi(x) = 0.5tanh(xi), gi(xi) = 0.8tanh(xi), ui = sint, τi(t) = 0.2sint+0.2, i = 1, 2, 3, 4.

We calculate that B1 = B3 = 4I, α̃ = β̃ = 0, ᾱ = I, β̄ = 0.8I, τ̃ = 0.2, where I denotes identity
matrix.

By using MATLAB LMI Control Toolbox, we obtain P = diag{4.8363, 4.8363, 7.6076, 7.6076},
K1 = diag{17.0542, 17.0542, 20.6096, 20.6096},K2 = 22.1420I and P = 0.1564I,K1 =

diag{0.4524, 0.4509, 0.4781, 0.4770},K2 = diag{0.7300, 0.7301, 0.7325, 0.7326} which satisfy the
conditions of Theorem 2 and Theorem 3, respectively. So our theoretical results are effective. Figure 1
shows the solution trajectories of system (2.4) move periodically. Figure 2 shows the average PSD of
xi(t) and ui(t) = sint are relatively close, which implies the periodic solution x(t) stores effectively the
acoustic characteristics of u(t).

On the other hand, we calculate ξ = 1, η = 0.8, ||A||2 =
√

8, ||B||2 =
√

7.4641, c0 = min1≤i≤4{ci} = 5
and

α =
ξ||A||2 + η||B||2

c0
=

5.014
5

> 1

defined in Remark 3. Therefore, the result proposed in [18] is not applicable to system (2.4) in this
example.
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Figure 1. The solution trajectories of system (2.4) with initial value (1, 0.5,−1,−0.5)T .

Figure 2. The average PSD of xi(t) and ui(t) = sint in Example 1.

Example 2. Consider system (2.5) with C = diag{5, 5, 5, 5}, fi(xi) = 0.5tanh(xi), ui = 1, τii(t) =
0.2sint+0.2, τi j(t) = 0.2cost+0.2, i , j, i, j = 1, 2, 3, 4, the matrices A and B are the same as Example 1.

We calculate that B1 = B3 = 4I, α̃ = 0, ᾱ = 0.5I, τ̃ = 0.2. By using MATLAB
LMI Control Toolbox, we obtain P = diag{6.2027, 6.2027, 7.2511, 7.2511},K1 =

diag{22.3647, 22.3647, 24.8109, 24.8109},K2 = 25.3107I and P = 2.4441I,K1 =

diag{9.6738, 9.6738, 10.5625, 10.5625},K2 = 14.5619I which satisfy the condition (i) and the
condition (ii) of Theorem 5, respectively. Figure 3 shows the solution trajectories of system (2.5) tend
to a point.

On the other hand, we calculate that pi = 0.5, i = 1, 2, 3, 4, and ρ(K) = 1 defined in Remark 4.
Therefore, the result proposed in [4] is not applicable to system (2.5) in this example.
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Figure 3. The solution trajectories of system (2.5) with initial value (−0.5, 0, 0.5, 0.2)T .

Example 3. Consider system (2.6) with C = diag{4, 4, 4, 4}, ui = sint, the matrices A and B are the
same as Example 1 and other functions are defined in Example 2.

We calculate that B1 = B3 = 4I, α̃ = 0, ᾱ = 0.5I, τ̃ = 0.2. By using MATLAB
LMI Control Toolbox, we obtain P = diag{7.5477, 7.5477, 9.3961, 9.3961},K1 =

diag{21.5649, 21.5649, 24.6456, 24.6456},K2 = 24.7554I and P = 0.1679I,K1 =

diag{0.5707, 0.5707, 0.6318, 0.6318},K2 = 0.9065I which satisfy the condition (i) and the condition
(ii) of Theorem 5, respectively. Figure 4 shows the solution trajectories of system (2.6) move
periodically.

On the other hand, we calculate that di = 4, Li = 0.5, di−Li
∑4

j=1(|a ji|+|b ji|) = di−
∑4

j=1(|ai j|+|bi j|)L j =

0, i = 1, 2, 3, 4, defined in Remark 5. Therefore, the results proposed in [19] are not applicable to
system (2.6) in this example.

Figure 4. The solution trajectories of system (2.6) with initial value (−0.2, 0.2, 0.4, 0.6)T .
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5. Conclusions

This paper has investigated the global exponential periodicity of nonlinear neural networks with
multiple time-varying delays. This type of neural system cannot be transformed into the vector-matrix
form because the multiple time-varying delays can not be expressed by the vector form. We note that in
many existing references, although the neural networks with multiple delays τi j(t) have been actually
investigated by Lyapunov-Krasovskii functional method, the linear matrix inequality approach has not
been used for this type of neural system that cannot be written in vector-matrix form. So we want to
know whether we can use two methods together to study the neural networks with multiple delays.
Two sets of sufficient conditions in the linear matrix inequality form are established to ensure two
arbitrary solutions of nonlinear neural networks with multiple time-varying delays attract each other
exponentially which can lead us to prove the periodic solution of the neural networks with multiple
delays is existent, unique and globally exponentially stable by the contraction mapping principle. So
the focus of this paper is to establish (3.7) or (3.8) which ensure (3.1) holds. Three examples are given
to demonstrate our results are effective. In these examples, we compare our results with the existing
results derived by differential inequality, matrix theory, Laypunov functional and Halanay inequality.
Three existing results are not applicable to the systems in the three examples, respectively.
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22. A. M. Alimi, C. Aouiti, F. Chérif, F. Dridi, M. S. M’hamdi, Dynamics and oscillations of
generalized high-order Hopfield neural networks with mixed delays, Neurocomputing, 321 (2018),
274–295. https://doi.org/10.1016/j.neucom.2018.01.061

23. S. Gao, R. Shen, T. R. Chen, Periodic solutions for discrete-time Cohen-Grossberg neural networks
with delays, Phys. Lett. A, 383 (2019), 414–420. https://doi.org/10.1016/j.physleta.2018.11.016

24. F. C. Kong, Q. X. Zhu, K. Wang, J. J. Nieto, Stability analysis of almost periodic solutions of
discontinuous BAM neural networks with hybrid time-varying delays and D operator, J. Franklin
Inst., 356 (2019), 11605–11637. https://doi.org/10.1016/j.jfranklin.2019.09.030

25. M. Abdelaziz, F. Cherif, Piecewise asymptotic almost periodic solutions for impulsive
fuzzy Cohen-Grossberg neural networks, Chaos Soliton. Fract., 132 (2020), 109575.
https://doi.org/10.1016/j.chaos.2019.109575

26. F. C. Kong, Y. Ren, R. Sakthivel, Delay-dependent criteria for periodicity and exponential stability
of inertial neural networks with time-varying delays, Neurocomputing, 419 (2021), 261–272.
https://doi.org/10.1016/j.neucom.2020.08.046

27. Z. W. Cai, L. H. Huang, Z. Y. Wang X. M. Pan, S. K. Liu, Periodicity and multi-
periodicity generated by impulses control in delayed Cohen-Grossberg-type neural
networks with discontinuous activations, Neural Networks, 143 (2021), 230–245.
https://doi.org/10.1016/j.neunet.2021.06.013

28. H. Li, Y. G. Kao, I. Stamov, C. T. Shao, Global asymptotic stability and S-asymptotic ω-periodicity
of impulsive non-autonomous fractional-order neural networks, Appl. Math. Comput., 410 (2021),
126459. https://doi.org/10.1016/j.amc.2021.126459

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 5, 12472–12485.

http://dx.doi.org/https://doi.org/10.1016/j.physleta.2004.12.001
http://dx.doi.org/https://doi.org/10.1016/j.amc.2007.04.114
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.04.038
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.07.054
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2018.01.061
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2018.11.016 
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2019.09.030 
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2019.109575 
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.08.046 
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.06.013 
http://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126459 
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Several examples
	Conclusions

