41 research outputs found

    Multi-almost periodicity and invariant basins of general neural networks under almost periodic stimuli

    Full text link
    In this paper, we investigate convergence dynamics of 2N2^N almost periodic encoded patterns of general neural networks (GNNs) subjected to external almost periodic stimuli, including almost periodic delays. Invariant regions are established for the existence of 2N2^N almost periodic encoded patterns under two classes of activation functions. By employing the property of M\mathscr{M}-cone and inequality technique, attracting basins are estimated and some criteria are derived for the networks to converge exponentially toward 2N2^N almost periodic encoded patterns. The obtained results are new, they extend and generalize the corresponding results existing in previous literature.Comment: 28 pages, 4 figure

    Time delays and stimulus-dependent pattern formation in periodic environments in isolated neurons

    Get PDF
    The dynamical characteristics of a single isolated Hopfield-type neuron with dissipation and time-delayed self-interaction under periodic stimuli are studied. Sufficient conditions for the hetero-associative stable encoding of periodic external stimuli are obtained. Both discrete and continuously distributed delays are included

    Existence and stability of a periodic solution of a general difference equation with applications to neural networks with a delay in the leakage terms

    Full text link
    In this paper, a new global exponential stability criterion is obtained for a general multidimensional delay difference equation using induction arguments. In the cases that the difference equation is periodic, we prove the existence of a periodic solution by constructing a type of Poincar\'e map. The results are used to obtain stability criteria for a general discrete-time neural network model with a delay in the leakage terms. As particular cases, we obtain new stability criteria for neural network models recently studied in the literature, in particular for low-order and high-order Hopfield and Bidirectional Associative Memory(BAM).Comment: 20 pages, 3 figure

    Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.This Letter is concerned with the global asymptotic stability analysis problem for a class of uncertain stochastic Hopfield neural networks with discrete and distributed time-delays. By utilizing a Lyapunov–Krasovskii functional, using the well-known S-procedure and conducting stochastic analysis, we show that the addressed neural networks are robustly, globally, asymptotically stable if a convex optimization problem is feasible. Then, the stability criteria are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved by some standard numerical packages. The main results are also extended to the multiple time-delay case. Two numerical examples are given to demonstrate the usefulness of the proposed global stability condition.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays

    Get PDF
    In this paper we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.The paper was supported by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the "Fundacao para a Ciencia e a Tecnologia", through the Project PEstOE/MAT/UI0013/2014. The author thanks the referee for valuable comments.info:eu-repo/semantics/publishedVersio

    Modeling and control of complex dynamic systems: Applied mathematical aspects

    Get PDF
    The concept of complex dynamic systems arises in many varieties, including the areas of energy generation, storage and distribution, ecosystems, gene regulation and health delivery, safety and security systems, telecommunications, transportation networks, and the rapidly emerging research topics seeking to understand and analyse. Such systems are often concurrent and distributed, because they have to react to various kinds of events, signals, and conditions. They may be characterized by a system with uncertainties, time delays, stochastic perturbations, hybrid dynamics, distributed dynamics, chaotic dynamics, and a large number of algebraic loops. This special issue provides a platform for researchers to report their recent results on various mathematical methods and techniques for modelling and control of complex dynamic systems and identifying critical issues and challenges for future investigation in this field. This special issue amazingly attracted one-hundred-and eighteen submissions, and twenty-eight of them are selected through a rigorous review procedure
    corecore