-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Universidade do Minho: RepositoriUM

Convergence of asymptotic systems of non-autonomous
neural network models with infinite distributed delays

José J. Oliveira

CMAT and Departamento de Matematica e Aplicagoes, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal
e-mail: jjoliveira@math.uminho.pt

Abstract

In this paper we investigate the global convergence of solutions of non-autonomous Hopfield
neural network models with discrete time-varying delays, infinite distributed delays, and possi-
ble unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic
features between the non-autonomous systems and their asymptotic systems to ensure the bound-
edness and global convergence of the solutions of the studied models. Our results are new and
complement known results in the literature. The theoretical analysis is illustrated with some
examples and numerical simulations.
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1 Introduction

In the last decades, retarded functional differential equations have attracted the attention of an
increasing number of scientists due to their potential application in different sciences. Differential
equations with delays have served as models in population dynamics, ecology, epidemiology, disease
evolution, neural networks. Neural network models possess good potential applications in areas
such as pattern recognition, signal and image processing, and optimization (see [2, 17, 18], and the
references therein). Thus, in order to describe their dynamics, it is highly desirable to establish
criteria for boundedness, existence of invariant sets, global convergence, and asymptotic behavior of
solutions of neural network models in several settings (see [3, 4, 12, 13, 17, 19, 20, 21, 22, 23, 24] and
the references therein).

In a classic study of neural network dynamics, Hopfield [11] proposed, in 1984, the following
neural network model

2j(t) = —bi(xi(t)) + Y aijfi(x; () + L, t>0,i=1,....n, (1.1)
j=1

where n € N is the number of neurons, z;(t) is the state of the ith neuron at time ¢, b;(-) is the
charging function for the ¢th neuron, f;(-) are the activation functions, a;; denotes the strengths of
connectivity between neurons j and ¢, and I; is the input to the ith neuron.

In order to be more realistic, differential equations describing neural networks should incorporate
time delays to take into account the synaptic transmission time among neurons, or, in artificial
neural networks, the communication time among amplifiers. In 1989, Marcus and Westervelt [14]
introduced for the first time a discrete delay in the Hopfield model (1.1), and they observed that
the delay can destabilize the system. In fact, the delays can affect the dynamic behavior of neural
network models [1] and, for this reason, stability of delayed neural networks has been investigated
extensively ([2, 4, 5, 12, 15, 17, 18, 19, 20, 21, 22, 23, 24], and the references therein). Another
relevant fact to take into account is that the neuron charging time, the interconnection weights, and
the external inputs often change as time proceeds. Thus, the neural network models with temporal
structure of neural activities should be introduced and investigated (see [3, 4, 18]). In this paper, we
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consider non-autonomous Hopfield neural network models with unbounded discrete and distributed
delays.

In [6, 19, 20, 21, 23], the definition of asymptotic system (see Definition 2.1) of a non-autonomous
system was introduced and the authors remarked that, in general, dynamic behavior of an asymptotic
system is not available to characterize the dynamic behavior of the original system. For example, it
easy to verify that the following equation, presented in [21],

2+t
"(t) = —2(t) + ———23(t t>0 1.2
V() = o) + Gopet, 120 (12)
has an unbounded solution, z(t) =t + 1, however, the zero solution of the linear equation
' (t) = —z(t), t>0, (1.3)

is globally asymptotically stable and (1.3) is an asymptotic equation of (1.2). But, if we identify
situations where the dynamic behavior of a system is characterized by the dynamic of one of its
asymptotic systems, then it is extremely relevant to study the dynamic of asymptotic system because,
in these cases, it is possible to obtain behavior properties of the original system from known properties
of one of its asymptotic systems. In fact, an asymptotic system may be autonomous, periodic, almost
periodic or other special non-autonomous system, i.e. easier to study than the original system, and by
exploring the intrinsic features of the asymptotic system, we can obtain significant properties of the
original system. The purpose of this paper is to present some sufficient conditions for boundedness
and global convergence of solutions of non-autonomous Hopfield neural network systems and its
asymptotic systems with both bounded and unbounded coefficient functions.

Moreover, the models studied here have infinite delays and, when we are dealing with functional
differential equations with infinite delays, the choice of an admissible Banach phase space requires
special attention in order to have well-posedness of the initial value problem and standard results
on existence, uniqueness, and continuation of solutions (see [7, 9, 10]). We note that, many papers,
dealing with neural networks with unbounded delays, do not provide an explicit phase space.

After the introduction, the present paper is divided into four sections. In Section 2, the models
and its phase space are presented. In Section 3, we consider models with bounded coefficient functions
and a criterion for boundedness of solutions and a criterion for global convergence of the models are
derived. In Section 4, we consider neural network models with unbounded coefficient functions and
similar results are given. Finally, in last section, illustrative numerical simulations are presented to
show the effectiveness of the theoretical results.

2 Notations and model description

We denote by BC' = BC((—o0, 0]; R™) the space of bounded and continuous functions, ¢ : (—oo,0] —
R™, equipped with the norm ||¢|| = sup |¢(s)|, where | - | is the maximum norm in R”, ie. |z| =
s<0

max{|z;| :i=1,...,n} for x = (x1,...,2,) € R". For a € R", we also use a to denote the constant
function ¢(s) = a in BC. A vector ¢ = (¢1,...,¢,) € R™ is said to be positive if ¢; > 0 for all
i € {1,...,n} and in this case we write ¢ > 0. A function £ : [a,+00) = R, a € R, is said to
be eventually monotone if there exists t* > a such that £ is non-decreasing (or non-increasing) on
[t*,+00). For a real sequence (uy)nen, we write u, * +o0o to say that (up)nen iS an increasing

sequence such that lim w, = 4o0.
n——+oo
Given a continuous function f : [0,4+00) — R, we say that:

1. f is periodic if the exists w > 0 such that
ft+w) = f(t),  vt=o0

2. f is almost periodic if, for any € > 0 there exists w = w(e) > 0 such that every interval
[a,a + w] C [0, +00) contains at least one point of « such that

ft+a) = f)] <e,  Vt>0;



3. f is pseudo almost periodic if it can be expressed as

f=h+e

where f7 is an almost periodic function and ¢ : [0,4+00) — R is a bounded continuous function
such that
. I
t£+moo g/o lo(s)|ds = 0.

It is well-known that a periodic, an almost periodic, or a pseudo almost periodic function f is bounded
and we denote f :=sup|f(¢)| and f := inf | f(¢)].
t>0 - t>0

For an open set D C BC and f : [0, +00) x D — R™ a continuous function, consider the functional
differential equation (FDE) given in general setting by

a'(t) = f(t, ), t>0, (2.1)

where, as usual, z; denotes the function z; : (—oo,0] — R™ defined by z:(s) = z(t + s) for s < 0. By
a solution of (2.1) on an interval I C R, we mean a function x : (—oo,sup I) — R™ such that x; € D,
x(t) is continuous differentiable, and (2.1) holds for all ¢t € T (see [9]).

It is well-known that the Banach space BC' is not an admissible phase space for (2.1), in the sense
of [7], thus the standard existence, uniqueness, continuous dependence type results are not available.
Instead of BC', we consider the admissible Banach space

UC, = {(;5 € C((—o0,0];R™) : sup [6(s)] < 00, o(5) is uniformly continuous on (—oo,O]} ,
s<0 9(s) 9(s)
equipped with the norm ||¢||4 = sup |¢f3))|’ where g : (—00,0] — [1,00) is a function satisfying:
s<0 g\s

(gl) g is a non-increasing continuous function and g(0) = 1;

(g2) lim g(s +u)

= 1 uniformly on (—o0, 0];
u—0~ 9(5)

(83) g(s) = 400 as s » —o0.

See [9] for more details.

As BC C UCy, then BC is a subspace of UC,, and we denote by BCy the space BC with the
norm || -

As UCy is an admissible Banach space, we consider the FDE (2.1) in the phase space UCy, for a
convenient function g, and we assume that f has enough smooth properties to ensure the existence
and uniqueness of solution for the initial value problem (see [9]). The solution of (2.1) with initial
condition x;, = ¢, for tg > 0 and ¢ € UCy, is denoted by z(t,to,¢). Moreover, from [9] again, if f
takes closed bounded subsets of its domain into bounded sets of R™, then the solution x(t,tg, ) is
extensible to (—oo,a], with a > o, whenever it is bounded. It is relevant to emphasize that, from
[9], the solution (¢, to, ) is differentiable, once the differentiability of solutions plays an important
role in the proof of main results.

In this paper, we consider the generalized Hopfield neural network model with both discrete
time-varying and continuous distributed infinite delays given by

n P

£ = <biltai() + 33 (aupu)hm(w -

j=1p=1

+cijp(t) fijp (/Ooo Gijp(zi(t + s))dnijp(5)> ) +Li(t), t>0, (2.2)



1= 1, o, where bz : [O, +OO) X R — R, aijp,cijp,[i : [07—|—OO) — R, hijpafijpagijp 'R — R, and
Tijp © [0,00) = [0, 00) are continuous functions, and 7, : (—00,0] — R are non-decreasing bounded
functions, normalized so that 7,;,(0) — n;jp(—00) = 1, for all 4,5 € {1,...,n}, p € {1,...,P}. We
remark that the model (2.2) is general enough to include, as particular situations, the Hopfield
neural network models studied in [19, 21, 22, 23] (see systems (3.6), (3.10), and (3.15) below). In [5],
a function g : (—o00,0] — [1, +00) was defined by

(i) g(s) =1 on [—r1,0];
(li) g(_rn) =n,neN;
(iii) ¢ is continuous and piecewise linear (linear on intervals [—7,41, —75]),

where r,, /' +00 is a suitable sequence of positive numbers, in such a way that conditions (gl), (g2),
and (g3) hold, and

0
/ g(s)dnijp(s) < 400, 4,j=1,...,n, p=1,...,P.
—0o0

See more details in [5, Lemma 4.1]. Thus, we may consider the differential system (2.2) in the phase
space UCy. As we are dealing with neural network systems, we restrict our attention to initial
bounded conditions, i.e.,

T, =@, with @€ BC, (2.3)

for some tg > 0.
In the sequel, for (2.2) the following hypotheses will be considered:

(A1) for each i € {1,...,n}, there exists a function f; : [0, +00) — [0, 4+00) such that
bi (t, u) — bZ (t, U)

u—v

> Bi(t), Vt>0,Vu,veRu#uv;

(A2) For each 4,5 € {1,...,n} and p € {1,..., P}, hijp, fijp; Gijp : R — R are Lipschitz functions
with Lipschitz constants 7;jp, ftijp, and oyjp, respectively;

(A3) Foreachi,je {1,...,n} and pe {1,..., P}, t —7yp(t) = 00 as t = oc;
(A4) There exists d = (dy,...,dy,) > 0 such that, for each i € {1,...,n},

n P
limsup [ —diBi(t) + Y di(igplajp(t)] + ijpoipleijp()]) | < 0.

t——+oo j=1p=1
We note that the hypothesis set (A1)-(A4) does not imply the boundedness of solutions of (2.2),
as it is demonstrated by the next simple example.

Example 2.1. It is easy to verify that the delay scalar equation

t
2/ (t) = —tx(t) + sinz(t —1) + -+ 24 - 4+1, t>0, (2.4)

t
44 2sint 2 +sin 2
has an unbounded solution z(t) = ¢t + 1 and the hypotheses (A1)-(A4) hold. We remark that the
coefficient functions are unbounded.

As we shall see in Theorem 3.1, if all coefficient functions are bounded then all solutions of (2.2)
are bounded. Without assuming bounded coefficient functions in (2.2), we shall conclude, from
Theorem 4.1, that either all solutions are bounded or all solutions are unbounded. Consequently, we
can conclude that all solutions of (2.4) are unbounded.

In this paper, we study the relationship between the solutions of system (2.2) and the solutions
of its asymptotic systems. Here, we use the usual concept of asymptotic system in the literature
[19, 20, 21, 23].



Definition 2.1. The system

i (t) = =bi(t, (1)) + Z Z <a1]p hijp(@;(t — 7ijp(t)))+

j=1p=1

+Cijp(t) fijp </OOO ijp(@;(t + 8))dmjp(3)> ) +Ii(t), t>0, (25)

=1,...,n, is said to be an asymptotic system of system (2.2) if l;l-(t,u), ijp(t), Cijp(t), Tijp(t), and
I; (t) are continuous real functions such that b; satisfies (A1) for some non-negative function [3; and

lim (Bi(t) = Bi(t)) = lim (bi(t,u(t) = bi(t,u(t)) = lm (aijp(t) — dijp(t))

t——+o00 t—t—&-oo ) t——+o00
i (eup(t) = Eup() = 1 (7igp(t) = Fisp (1)) (2.6)
= lim (Li(1) - Li(1) =0,

for every bounded continuous function u : R — R.

From (2.6), it is obvious that hypothesis (A4) is equivalent to

t——+oo

n P
lim sup (ﬁz(t) + Z Z dfj Vijplijp ()] + Hijpoijp|Cijp(t ))) <0, 1,...,n. (2.7)
j=1p=1

Before we consider the global convergence of the models, we need to show that all solutions of
(2.2), with bounded initial condition, are defined on R.

Lemma 2.1. Assume (A1) and (A2) hold.
Then, each solution x(t) = x(t,to,p) (with tg >0 and ¢ € BC) of (2.2) is defined on R.

Proof. Let x(t) = (z1(t),...,x,(t)) be the maximal solution of the initial value problem (2.2)-(2.3)

and define z(t) = (z1(t), ..., zn(t)) := (|x1(t)], ..., |zn(t)]). For each i € {1,...,n}, we have
zi(t) = sign(z(t))z;(t)
n P
= sign(z;(t)) [bi (t,2i(t) + Z > <aijp(t)hijp(l’j (t —7ijp(t)))

— 00

seinlfin ([ " gl + D) )+ 10

by integration, we obtain

to

4l) £ alto) [ Sniew) (1) = i, 0) Y+ 0+ | ()l

du

(]

j=1p=1

t
‘)
to

aijp(u <hz‘jp($j(u — Tijp(w))) — hz‘jp@)) + aijp(u)hijp(0)

Cijp(u) (fijp (/O igp(@;(u + S))dmjp(é’)> - fijp(gijp(o))> + cijp() fijp(9ijp(0))

— 0o

2



and, from hypotheses (A1)-(A2), we conclude that

(1) swﬁ@mmwM+/3wM+/3mm

to to

Ujlpl

(wmmmmmwwmmwummmmmyu

< mm+ﬂﬁmo+ﬂw+nmawmm+awfmmm+/rmmww+awﬁamAwh

to

where A(0) = max |hijp(0)], F(0) = max|fijp(gijp(0))], 7 = maxijp, B = maxpuijp, T = maxoyy,
a(u) = max|aizp (w)], B(u) = masx by (u, )], (1) = max eszp ()], and T(u) = max |I;()|. Defining the
i,7,p 7 i,7,p i
continuous functions v, v : [tg, +00) — [0, 4+00) by
¢
v(t) = [l¢ll +/ b(w) + I(w) + nP(@(u)h(0) + &(u)F(0))du and v(t) = nP(a(t)y +c(t)io)
to

respectively, we get, for t > tg,

|mnsmw+/uwm%wu

to

and, by the generalized Gronwall’s inequality, see [8], we have
t
ool < vlt)+ [ wtupptuels o
to

and the conclusion follows from the Continuation Theorem (see [9]). O

3 Bounded coefficient functions

In this section, we address the boundedness and global convergence of solutions of (2.2) and of its
asymptotic systems, assuming that all coefficient functions are bounded, that is

(B) for each i,5 € {1,...,n} and p € {1,..., P}, the functions a;jp, ¢ijp, I; : [0,+00) — R and
bi(-,u) : [0,400) — R are continuously bounded for all u € R.

In the first theorem we establish sufficient conditions ensuring the boundedness of solutions.

Theorem 3.1. Assume (A1), (A2), (A4), and (B) hold.
Then all solutions of (2.2) with initial bounded condition are bounded.

Proof. As b;(t,0), a;jp(t), cijp(t), and I;(t) are bounded, there exists M > 0 such that

M > b; (t O ‘ + |I | + ZZ (|awp | |hljp( )l + |cijp(t)| fijp(gijp(o))|>7

j=1p=1

forallt >0and i€ {1,...,n}.
From (A4), there exist 7> 0 and ! < 0 such that

—Bi(t) + Z Z (%memp ()] + Nijpaijp|cijp(t)|) <l, Vvt=>T. (3.1)

lel

Let z(t, to, ) = z(t) = (x1(¢), ..., z,(t)) be a maximal solution of (2.2), for some ¢ty > 0 and ¢ € BC,
and define z(t) = (dy'x1(t)],...,d; xn(t)]). By contradiction, assume that z(t) is unbounded.



From Lemma 2.1 z(t) is defined on R and consequently there exist ¢ € {1,...,n} and a positive
sequence (tg)gen such that T < ¢ 7 400, 0 < z(tg) / +00,

zi(te) = |2t ]l > |l2ell,  and  2i(tx) >0, VkeN, Vi <ty. (3.2)
For each k € N, we have

Zi(tk) = sign(i(te))d; 2 (te)

= sign(zi(t) (bxtk, £i(te) — bilts, o>) + sign(as(t)) ;! ( byt 0) + wk))

n

+sign(z;(tg))d; ! Z

Jj=

M*u

(aup te)hijp (25 (tk — Tijp(th))) — ijp(ti) hijp(0)+

-
=
Il

—

+Cijp(te) fijp < [ 000 igp(x;(te + 8))d77ijp(3)) - Cz‘jp(tk)fijp(gz‘jp(o))> +

n P
+sign(z ZZ (amp tk)hijp(0) + Cijp(tk)fijp(gijp(o)))»

and from (A1)-(A2) we obtain

n P

d; _
) < —Bilte)zte) +) ) d]_<|az‘jp(tk)%jpzj(tk — Tijp(tr)) + |Cz'jp(tk)Mz‘jpaijpllzj,tkH) +d; M

j=1p=1

N

n

P
< —Biltk)zilte) + Z J<|awp (ti)vijp + pr(tk)mwp”wp) 22, |l + d; ' M,

j=1p=1"

&

and (3.2) implies

P
d; _
zi(te) < | =Bite) + ZZ d] (|awp ti) | vigp + |Czyp(tk)ﬂupaup) zi(tk) + d; 'M, VkeN.
j=1p=

1 ?

From (3.1) and (3.2) we conclude that 2/(t) < lz(ty) + d; 'M — —o0, as k — -+oo, which is a
contradiction. O

Now, we state sufficient conditions ensuring the global attractivity of solutions of system (2.2)
and of its asymptotic systems (2.5).

Theorem 3.2. Assume (A1)-(A4) and (B) hold.
Then
tglfm|z()7xl(t)|:07 1:17"'7’”7
for all x(t) = (z1(t),...,2a(t)) and T(t) = (£1(¢),...,2Tn(t)) solutions of systems (2.2) and (2.5)
respectively, with bounded initial conditions.

Proof. Let z(t) and &(t) solutions of (2.2) and (2.5) respectively, with bounded initial conditions,
and define y(t) = (dy*|z1(t) — 21(1)], ..., d; e (t) — 2n(t)]).
From Lemma 2.1 and Theorem 3.1, we know that z(t) and %(t) are bounded on R. It follows that

y(t) is a non-negative bounded function on R and it is possible to define Yy := sup |y(¢)|, the limits
teR

u; ;= limsupy;(t), i=1,...,n,
t——+o0



and
u := max{u;} € [0, +00).

It remains to prove that u = 0.

Let i € {1,...,n} be such that u; = u. It is easy to prove that there is a positive sequence (t)ren
such that
ty S +oo,  wyi(ty) > u, and yi(ty) =0, as k— +oo, (3.3)
in fact:

Case 1. If y;(t) is eventually monotone, then . lir+n yi(t) = u and, for large ¢, y;(t) is a differentiable,
— 00
monotone and bounded real function. Hence there is a positive sequence (t;)ren such that
tr / 4oo and yl(tr) — 0, as k — +o0;

Case 2. If y;(t) is not eventually monotone, then there is a positive sequence (tx)ren such that
tr /400, yi(ty) = 0, and y;(tx) — u, as k — +o00. Thus (3.3) holds.

For the sake of contradiction, assume that u > 0.
Fix § > 0 and let T = T(§) > 0 be such that § < u, |y(t)| < us :=wu+ 4 for t > T and

-T 5 .
/ dmjp(s)<70, Vie{l,...,n},pe{l,...,P}.

Since t — 73;p(t) = 00 and 7,5, (t) — Tip(t) = 0 as t = oo, and y;(tx) — u as k — +o0, then there is
ko € N such that, for k > ko, ti, — Tijp(te) > T, tp > 2T, and y;(t) > u—s := u — 6 > 0. From the
hypotheses, we conclude that, for all k > ko,

yilte) = sign(zi(ty) — &i(te)d;  (i(te) — @(tr))

= sign(zi(te) — &i(te))d; " ( — (bt i (t)) — bt i (tr))) — (bs(tr 2i(t)) — bt @-(tk))))

n P

sign(ai(te) — &i(te) Y Y d; ! {(aijp(tk) = aijp(tr)) higp (25 (te — Tijp(tk)))

j=1p=1

+aijp(te) (hz'jp(ﬂfj(tk — Tijp(tr))) = hijp(x; (t — ﬂjp(tk))))
+aijp(te) (hijp(%‘j(tk — Tijp(tr))) = hijp (T (tr — ﬁjp(tk))))

+(cijp(te) = Cijp(te)) fijp (/OOO igp(@;(te + 8))dmy‘p(5))

+Cijp(tr) <fijp (/OOO Gigp (2 (e + 8))d7hjp(3)> = fijp (/0 igp( 25 (th + S))dﬁijp(8)> ﬂ

— 00

+sign(zi(tr) — &4 (te)) (L () — Li(te))dy

n P

—Bilt)yi(tr) + Y 4 [&ijp(tk)mJ'pyj(tk — Tijp(tk))

j=1p=1 1

IN
S

?

0

+|éijp(tk)|,uijpgijp/ vtk + S)dmjp(é’)] +ei1(tr), (3.4)



where

n P
en(t) = d; M bit,wi(t)) = bi(t, s (0)| + )Y d;! {Mup = ijp(t)] [hijp(; (t — Tijp(t)))] +

j=1p=1

Haijp () Vijpl 2 (t — Tijp(t)) — 25 (t — Tigp(t))] +

+leijp(t) — Cijp(t)]

oo ([ OOO soples(t-+ Ny (5)) || + 4100 - 1)

As t — b;(t,w) and z;(t) are bounded on [0, +00), for all w € R, and, from (A1), w — b;(t,w) is non-
decreasing for all ¢ > 0, then ¢ — b; (¢, z;(¢)) is a bounded function on [0, +00). As a;;,(t), cijp(t), I;(t),
and x;(t) are also bounded on [0, +o0) for all i, j, p, it follows from (2.2) that z’;() are bounded on
(04 00). Thus z;(t) are uniformly continuous and consequently, from (2.6),

t—lg-noo Eil(t) =0. (35)

It follows from (3.4) that, for all k > ko,

n
yi(ty) < Bi(tr)yi(t) + ZZ [awp () Yigpys (te — Tijp(te))

0
+[Cijp(te) | 1ijpoijp /

— 00

y;(tk + s)dnijp(s)] + €1 (tr)

< _Bz (th)u_s +ZZ [lamp ti) vijpus
j=1p=1 d;
-T 0
+|é¢jp(tk)|uijp0ijp(/ Y (t + 8)dnijp(s) + / Y (te + S)dnijp(8)>:| + ea (tr)
oo -T
n P d:
< —Biltr)us +ZZ dj [Iamp(tk)|'7upu5 + [Cijp (tr) | 1ijpoisp (5'1'“5/ dnijp(s ))]
j=1p=1 v
+ein(tr)
= _Bl (tx)u—s +ZZ (|am7 (tr)lvigp + |pr(tk)ﬂzyp0wp)u25 + &a(tr).-

lel

Since y;(tx) — 0 as k — 400, then letting 6 — 0 and k — +o0 it follows from (2.7) and (3.5) that

0 < | lim sup |: Bz tk =+ Z Z <|az]p 123 |'71,jp |éijp(tk)|uijpgijp>:| u < 0,

k——+oo j=1p=1
which is a contradiction. Consequently, v = 0 and the proof is concluded. O

Obviously, system (2.2) can be regarded as an asymptotic system of itself, thus we have the
following corollary.

Corollary 3.3. Assume (A1)-(A4) and (B) hold.
If 2(t) = (x1(2),...,2,(t)) and z*(t) = (x5(¢),...,25(t)) are solutions of (2.2) with bounded
initial conditions, then

t£+m |z (t) —z;(t)|=0, i=1,...,n.



With the following examples, we show the effectiveness of presented results and a comparison
with some stability criteria in the literature is given.

Example 3.1. For systems (2.2) and (2.5) with the restrictions fi]p( x) = =2, hyj1 = hijo = hj,
Yij1 = Yig2 = Vi» Tig1 (£) = 0, Tija(t) = 745(t), bs(t,w) = Bi(t)u, and b;(t,u) = B (t)u, i.e., for the models

i(t) = —Bi(H)ai(t) + Z a1 (t)h;(x;(t)) + Zaiﬁ(t)hj(l‘j(t —7;(t) + Li(t), t=0, (3.6

and
2i(t) = —Bi(t)zi(t) + zn; aiji (t)h; Zn:am i@t — 1)+ L), t>0, (3.7)
where i _
im (Bi(t) — Bit)) = Jim (i (f) = @i (8) = Um (aija(t) - Gij2(t))
= lm (L(t) - (1) =0, (3.8)

the global convergence of the models was already studied in [19, 20, 21]. In [23], the slight general
situation b;(t,x) = B;(t)g;(x), with g; : R — R satisfying (A1), was considered. Clearly, (3.6) is a
special case of model (2.2) and its asymptotic system (3.7) is a special case of model (2.5), thus from
Theorem 3.2 we obtain the following result:

Corollary 3.4. Assume that h; : R = R are Lipschitz functions with Lipschitz constant vy;, the
functions 1;; : [0,400) — [0,+00) are continuous such that t — 7;;(t) — +oo0 as t — +oo, and
Bi,Bi : [0, +00) — [0, +00), aijl,dl-jl,aijg,dijg,fi,fi : [0, +00) — R are continuous bounded functions
such that (3.8) holds.

If there exists d = (dy,...,d,) > 0 such that, for each i € {1,...,n},

n

limsup | —d;fB;(t) + dey] a1 ()] + |aij2(t)]) | <O, (3.9)

t—+o00 =1

then
lim |x;(t) — ()| =0, i=1,...,n,

t—+oo
for all (t) = (z1(t),...,2n(t)) and T(t) = (£1(¢),...,2Tn(t)) solutions of systems (3.6) and (3.7)
respectively, with bounded initial conditions.

Remark 3.1. Note that Corollary 3.4 improves [19, Theorem 2.1] and [23, Theorem 2.1] because the
authors assume that system (3.6) has a periodic asymptotic system, i.e., (3.7) is a periodic system,
and they also assume the stronger condition

3d = (d17"'7d7l) > 07 377 >0: _dlﬁi +Zd]73 |a‘7/.71( )| + |0’112( )|) < =1, vt Z Oa 1€ {1,...771}7
Jj=1

instead of (3.9).
In [21], instead of condition (3.9), the hypothesis

(H) There exists d = (dy,...,d,) > 0 such that, for each i € {1,...,n}

n

: djvi(lajin ()] + lagie(t)])
lim sup Z 45,0

<1,

t——+o00 i=1
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with 1t1_>m Jgnf Bi(t) > 0, is assumed and, as it is illustrated in Section 5 with the model (5.1), the condi-

tions (3.9) and (H) are different. Consequently Theorem 3.2 gives a new global convergence criterion.

Example 3.2. Consider the following Hopfield neural network model

0
Gl-j(fs)xj (t + S)dS) + Ii(t), (310)

n n
zi(t) = =Bi(t)x(t) + Zaij(t)hj (z;(1) + Zcij(t)fj <Uj/
j=1 j=1 e
fort > 0and i =1,...,n, where 0; > 0, h;, f; : R — R are Lipschitz functions with Lipschitz
constants 7; and p; respectively, the delay kernel functions G;; : [0, +00) — [0, +00) are piecewise
continuous and integrable such that

+oo
0

and 3;, aij, ¢ij, I; : [0,400) — R are continuous functions such that

lim (Bi(t) = Ai(1)) = lim (ay(t) = ai;(t)) = lim (ci5(t) = é;(1))

t—+oo t——+oo t—+oo
= dim (5() ~ L() =0, (3.12)
for some almost periodic continuous functions Bi, Gij, Cij, I [0,400) = R, 4,5 =1,...,n. Thus the

following system is an asymptotic system of (3.10)
~ n n 0 ~
2j(t) = —Bi(t)zi(t) + Y dsi(thy(2; (1) + Y ei(t) (aj / Gij(—8)a;(t + s)ds> + I;(t). (3.13)
j=1 j=1 —o0

System (3.10) arises as another special case of model (2.2), when we consider P = 1, b;(t,u) =

Bi(t)u, aiji(t) = ai;j(t), hiji(u) = hj(u), Tij1(t) =0, ciji(t) = ci(t), fiji(u) = fij(u), gij1(u) = ou for
allt>0,u€R, i,j=1,...,n, and the functions 7;;; are defined by

nij1(s) = / Gij(—uw)du, s€ (—00,0], i,j=1,...,n.
In [22], the following result for the existence of an almost periodic solution of (3.13) was estab-
lished.
Theorem 3.5. [22] Assume that, for each i,5=1,...,n,

(i) the functions B, Qij, Cij, I [0,400) — R are continuous almost periodic such that

Bi = tlgg Bi(t) > 0;

(ii) the functions hj, fj : R = R are Lipschitz functions with Lipschitz constants ; and p; respec-
tively;

(iii) the delay kernel function G;; : [0,+00) — [0,400) is piecewise continuous and integrable such
that (3.11) holds.

If there exists d = (dy,...,d,) > 0 such that, for each i € {1,...,n},

(Bidi) ™" > di (v + piosés) | <1, (3.14)
j=1

where a;; = sup |a;;(t)| and ¢;; = sup|¢;;(t)|, then the system (3.13) has an almost periodic solution.
>0 >0

11



As an almost periodic function is bounded and condition (3.14) implies

n

lim sup —diﬁi(t)—i-z:dj (7j|aij(t)|—|—uj0j|cij(t)|) <0, Vi=1,...,n,
t—+o00 J=1

from Theorems 3.2 and 3.5, we conclude the following stability criterion.

Corollary 3.6. Assume that conditions (i)-(iii) in Theorem 3.5 and (3.14) hold.
If Bi, aij, cij, I; : [0, +00) — R, are continuous functions such that (3.12) holds, then every solution
x(t) of (3.10), with bounded initial condition, satisfies
lim |z(¢) — Z(t)| =0,

t——+o0
where &(t) is the almost periodic solution of (3.13).

Remark 3.2. Since the Hopfield neural network model (3.10) is not an almost periodic system, the
stability result in [22] can not be applied to prove that all solutions converge to an almost periodic
function. In Section 5, we present numerical simulations of the model (5.3) to illustrate the effective-
ness of Corollary 3.6.

Example 3.3. At last, we consider the following neural network model
2i(t) = =bi(@i() + Y aigr(Ohja(w;(6) + Y aijo(t)hya(a;(t — 755(1)))
j=1 j=1

+zn:cij(t) ‘/_0 Gij(—s)gj(xj(t-l- S))dS + Il(t), t 2 0, 7= ]., ey (315)

Jj=1

where b; : R — R are continuous functions, h;1, hj2,g; : R — R are Lipschitz functions with Lipschitz
constants 1, v;2, and o; respectively, a;;1, aij2,cij, I; : [0,+00) = R, 735 : [0, +00) — [0,+00) are
continuous pseudo almost periodic functions, and the delay kernel functions G; : [0, +00) — [0, +00)
are piecewise continuous and integrable such that (3.11) and

+oo
0

hold. As in the above examples, it is easy to see that (3.15) is also a special case of model (2.2).
We remark that a system, which has an asymptotic pseudo almost periodic system, is itself a
pseudo almost periodic system. For model (3.15), Corollary 3.3 allows us to improve a stability
criterion in [24].
In [24], the following result for the existence of a pseudo almost periodic solution of (3.15) was
established.

Theorem 3.7. [2/] Assume that, for each i,5=1,...,n,

(i) the functions aij1, aije, cij, I : [0,+00) = R, 745 : [0,400) — [0, +00) are pseudo almost periodic
continuous;

(ii) the function b; : R — R is continuous and there exists B; > 0 such that

bi(u) — bi(v)

u—v

257,‘7 VU,’UER,U#’U;

(iii) the functions hji,hj2,9; : R — R are Lipschitz functions with Lipschitz constants vj1,7;2,0;
respectively;

12



(iv) the delay kernel function G;; : [0,+00) — [0,+00) is piecewise continuous and integrable such
that (3.11) and (3.16) hold.

If

—Bi+ Y (1@t + vjeliga + 0565) <0, Vi=1,...,m, (3.17)
j=1

where €;; = sup |c;;(t)| and @;;p = sup|ai;p(t)] for p = 1,2, then the system (3.15) has at least one
pseudo almoétzoperiodic solution. =
As a pseudo almost periodic function is bounded and condition (3.17) implies
n
limsup | —B; + > (vj1laijn (8)] + vizlaie(B)] + ojlei; () | <0, Vi=1,....n,

t——+oo j=1

from Theorem 3.7 and Corollary 3.3, we obtain the following stability result.

Corollary 3.8. Assume that conditions (i)-(iv) in Theorem 3.7 and (3.17) hold.
Then the system (3.15) has a unique pseudo almost periodic solution x*(t) such that

lim |z(t) — 2" ()] =0,

t—+oo
for all x(t) solution with bounded initial condition.

Remark 3.3. In [24], the global asymptotic stability of the pseudo almost periodic solution x*(t) of
system (3.15) was proved assuming the following additional conditions:

1. the delays functions 7;;(t) are differentiable such that, for some 7 > 0,

() ST <1, Vt>0,Yi,j=1,...,n;

2. for each i € {1,...,n},

- Vel |
—B; + Z (’yjlaiﬂ + 7{27 ;2 + O'jcij> < 0.

Jj=1

With the model (5.5) in Section 5, we illustrate the effectiveness of Corollary 3.8.

4 Unbounded coefficient functions

In this section, we shall address the boundedness and global convergence of solution of system (2.2)
and of its asymptotic systems (2.5) without assuming bounded coefficient functions.

Theorem 4.1. Assume (A1), (A2), and (A4) hold and 7, (t) = 7ijp(t) for all t > 0.
If (2.2) has a bounded solution, then all solutions of (2.2) and (2.5), with initial bounded condi-
tions, are bounded.

Proof. First, we show that all solutions of (2.5) are bounded. Let x(t) a bounded solution of (2.2)
and Z(t) a solution of (2.5) with initial bounded condition. From Lemma 2.1, z(¢) and &(t) are

13



defined on R and, defining y(t) = (dy a1 (t) — &1 ()], ..., dtwn(t) — 2,(t)]), we have, for ¢ > 0 and
1ef{l,..., n},

= sign(z(t) — &;(t))d;  (}(1) — #5(1))

<
ST
—~
~
=

— sign(ai(t) — #:(0)d; ( (bt 2a(0) — ity a(0)) — (Bult i (6)) — B, @-(t))))
n P
+sign (@ () — (1) Y > d;! [(az‘jp(f) = ijip(t)) hijp(; (t — Tijp(t)))

j=1p=1

+aijp(t) (hijp(l‘j(t = Tijp(t))) — hijp(2;(t — Tijp(t))))

+(cijp(t) = Eijp(t)) fijp (/OOO ijp(@;(t + 8))dmjp(5))

+Cijp(t) <fz'jp </000 Gigp(;(t + S))dnijp(s)) — fijp </000 9igp(;(t + 5))d77ijp(5)) ﬂ

sign(a(t) — &:(8)) (Li(t) — Li(1))d; !

and, from the hypotheses, we obtain

n P

vt < =BiOwB+> ) % [|&z’jp(t)|%jpyj (t = 7ijp(t)) + |Cijp () 1igpoisplyel

Jj=1p=1

+d;1|bi(taxi( )) = bilt,zi(t))] + Z Zd |:|G‘Z]p = Gijp ()| hijp (5 (t — 75p(2)))]

j=1p=1
0 7 1
Hesn(®) = O i ( [ sntaste s ansy () || +150) - ola;
n P d:
= _61 yi(t) + Z Z dJ [|aup Wigpys (t = Tijp(t)) + [€ijp () | 1ijpoijpllyell | + €i2(t)
j=1p=1 v
n P d:
< —Biltwilt) + Z Z dJ [|aup Wigp + |Cijp(t )|Mz‘jp‘7ijp] [yell + £i2(t), (4.1)
j=1p=1 v
where
R n P
ein(t) = d; ' [bi(t,mi(t)) — bilt, (1)) + Z Zdi_l [|aijp(t) = Qijp(t)| [hijp(; (t = Tijp(1)))]
j=1p=1
0 7 1
i) = o) [ fin ([ ainlaste+ ans )| | 1500 = o™
0
The solution z(t) is bounded continuous, h;jp, fijp, gijp are continuous, / dnijp(s) =1, and (2.6)
— o0

holds, then lim e;2(¢) = 0.
t——+oo
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Suppose that y(t) is not a bounded function. Consequently there exist i € {1,...,n} and a
positive real sequence (tx)ken such that tg 7 +oo, 0 < y;(tg) 7 +oo,

vi(te) = llye || = llwell,  and  i(tx) >0, VkeN, Vt <t. (4.2)

From (4.1) and (4.2), we have

Ei t
Y (ty) < 51 (te) + ZZ <|aup (ti)vijp + pr(tk)mwpgwp> + yQ((t:)) yi(tk), VkEN,
j=1p= 1 v
i2(t
with lim & 2((t >) = 0. Hypotheses (A4) and (2.6) imply (2.7) and y.(t;) < 0, for large k, which is a
Yillk

contradiction. Thus y(t) is bounded and we conclude that Z(t) is also bounded.
As we remark above, the system (2.2) can be regarded as an asymptotic system of itself, thus all
solutions of (2.2) are also bounded. O

By Example 2.1, we know that there exist models satisfying (A1)-(A4) for which all solutions are
unbounded. The following simple example shows that there exist models, with unbounded coefficient
functions, satisfying (A1)-(A4) such that all solutions are bounded.

Example 4.1. It is easy to verify that the scalar equation

, t+4 3
t) = ———ux(t t— — t+ 2, t> 4.
V)= g+ (1= T ) +erz 020 (43)
has a bounded solution z(t) = cost+2. As the hypotheses (A1)-(A4) hold, then, from Theorem 4.1,
all solutions of (4.3) are bounded. We remark that, for each u # 0, the function ¢ — b(t,u) = 2-%;15:&“
is unbounded and the input function I(t) =t + 2 is also unbounded.

The following theorem is proved using the same arguments in the proof of Theorem 3.2 and
details are omitted. In fact, Lemma 2.1 and Theorem 4.1 imply that all solutions of (2.2) and
(2.5), with bounded initial conditions, are defined and bounded on R. Moreover, as we assume that
Tijp(t) = Tijp(t), in this situation we do not need to show that the solutions of (2.2) are uniformly
continuous.

Theorem 4.2. Assume (A1)-(A4) hold and 7;;,(t) = 7i;p(t) for allt > 0.
If (2.2) has a bounded solution, then

tilgl |z;(t) — Z;(t)] =0, i=1,...,n,

for all x(t) = (x1(t),...,z,(t)) and &(t) = (£1(t),...,Tn(t)) solutions of systems (2.2) and (2.5)
respectively, with bounded initial conditions.

As the system (2.2) can be regarded as an asymptotic system of itself, the following corollary
holds.

Corollary 4.3. Assume (A1)-(A4) hold.
If 2*(t) is a bounded solution of (2.2), then

lim |z;(t) —2;(t)|=0, i=1,...,n,

t——+o0

for any solution, x(t) = (z1(t),...,2(t)), of (2.2) with bounded initial condition.
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5 Numerical simulations

Example 5.1. First, we consider the one-dimensional equation (4.3) again. As we remark above,
the function z*(t) = cost + 2 is a periodic solution and now, from Corollary 4.3, we can conclude
that all solutions z(t) converge to z*(t) as t — +o0o. We note that the coefficient functions are not
periodic functions.

We used the Matlab software, [16], to plot a numerical simulation of the behavior of the solution
x(t) of model (4.3) with initial condition ¢(s) =1, s < 0 (see Figure 1(a)).

35 T T T T 2

251

solution x
~
solution (erz)

15

05 L L L L -1 L L L
0 50 100 150 200 250 0 5 10 15 20

time t time t
(a) Solution z(t) of (4.3) with initial condition ¢(s) = (b) Solution (z1(t),z2(t)) of system (5.1) with initial
1, s<0. condition ¢(s) = (sins,2), s < 0.

Figure 1: Behavior of the solutions of systems (4.3) and (5.1).

Example 5.2. Consider the following system

2i(t) = —(2+ e w1 (t) + (coset)zy(t — 1) + (sine’)za(t —2) +e7*

(5.1)
xh(t) = —3wa(t) + (cose’)xy(t — 1) + 2(sine’)xa(t —2) + €7*
It is straightforward to check that the system
) (t) = =221 (t) + (coset)x1(t — 1) + (sinet)xa(t — 2)
(5.2)

xh(t) = —3xz2(t) + (cosel)zy(t — 1) + 2(sinet)xo(t — 2)

is an asymptotic system of (5.1). It is easy to see that the hypotheses (A1), (A2), and (A4)

hold with d = (1,1) and from Theorem 3.2 we conclude that any two solutions, z(t) solution of

(5.1) and &(t) solution of (5.2), satisfy \ ligl |z(t) — Z(t)| = 0. Consequently, the equilibrium point,
— 100

(z1(t),z2(t)) = (0,0), of (5.2) attracts every solution of system (5.1) (look at the numerical simula-

tion in Figure 1(b)), but system (5.1) has not equilibrium points.

Remark 5.1. We note that hypothesis (H) does not hold for system (5.2). In fact, if (H) holds
then there exists d = (dy,ds) > 0 such that

djlaj1(t)] .. <d1|coset| da| cos et 1 ds
limsu L2 — limsu + = -4+ =<1,
taJroopj:1 dyc;(t) ta+oop 2d, 3d,y 2 3dy
and )
dilajor(t)] .. <d1|sinet| 2ds| sin et dp 2
limsu L9227 = limsu + =—+-<1,
t—>+oop = dacj(t) t—>+oop 2dy 3d; 2dy 3

16



since n = 2, 7; = 1, and a;;2(¢t) = 0. Thus we have %dl < dy < %dl which is a contradiction.
Consequently, [21, Theorem 3.2] cannot be applied to get the same conclusion. Moreover, we remark
that system (5.1) has not a periodic asymptotic system, thus the main results in [19, 20, 23] also
cannot be applied. This example illustrates that our Theorem 3.2 presents a new stability criterion.

Example 5.3. The following neural network model

z)(t) = — (3 + H11> x1(t) + (cost)w1(t) + (sin(mt) + e~ t) tanh(xo(t — 1)) + H%

ah(t) = —4ao(t) + cos(2t)xa(t) + ; ! tanh(zy(t — 1)) + cos(vV/5t + e~ %) tanh(zo(t — 1)) + sin(nt)

+1
is not an almost periodic system but, from Corollary 3.6, we conclude that the almost periodic
solution of its asymptotic system

2 (t) = =3x1(t) + (cost)xy(t) + sin(nt) tanh(za(t — 1))

(5.4)
zh(t) = —4xa(t) + cos(2t)x2(t) + cos (V/Bt) tanh(za(t — 1)) + sin(rt)
attracts globally all solutions of (5.3) (see the numerical simulation in Figure 2(a)).
Example 5.4. At last, we consider the neural network model
int
) (t) = =31 (t) + (COS(TFt) 4 et cos® t) tanh(zq (¢ — 2|sint|)) + %l‘g(t — 1) + cost
(5.5)

xh(t) = —dao(t) + (cost 4 g~ t*sin’® t) tanh(zy (¢t — 2|sint|)) + sin (v/5¢) 22(t — 1) + eIl

with pseudo almost periodic coefficients. From Corollary 3.8, we conclude that there exists a pseudo
almost periodic solution which attracts all solutions (see the numerical simulation in Figure 2(b)).
We remark that condition 1. in Remark 3.3 does not hold, thus the stability result in [24] can not
be used, in model (5.5), to get the same conclusion.

15
15 4 {

solution (xl,xz)

solution (xl xz)
I
o
@ )
%

-05 ' . ! . ' -2 . . . . . .
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70
time t time t
(a) Solution (z1(t),z2(t)) of system (5.3) with initial (b) Solution (x1(t),z2(t)) of system (5.5) with initial
condition ¢(s) = (sins, 2), s < 0. condition ¢(s) = (—2,1+ coss), s < 0.

Figure 2: Behavior of the solutions of systems (5.3) and (5.5).

6 Conclusion

We have presented criteria for the global convergence of solutions of non-autonomous Hopfield neural
network models, theorems 3.2 and 4.2. These theorems are quite general because in neural network
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models (2.2) and (2.5) it is possible to have time-varying delays, unbounded distributed delays, and
it is not necessary to assume that the coefficients and delays are constants, periodic, almost periodic
or pseudo almost periodic functions. Moreover, in Theorem 4.2 it is not necessary to assume that
the coefficient functions are bounded.
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