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Time Delays and Stimulus-Dependent Pattern
Formation in Periodic Environments In
|Isolated Neurons

K. Gopalsamy and Sariyasa

Abstract—The dynamical characteristics of a single isolated  The purpose of this paper is to obtain sufficient conditions for
Hopfield-type neuron with dissipation and time-delayed self-inter-  the existence (or encoding) of a globally attractive (heteroasso-
action under periodic stimuli are studied. Sufficient conditions for iative recall) periodic solution (or a pattern) associated with a
the heteroassociative stable encoding of periodic external stimuli . S . .
are obtained. Both discrete and continuously distributed delays g_lver! periodic e_xternal s_tlmulus. The neuronal_ parameters, d'_s'
are included. sipation and gain can either be temporally uniform or be peri-
odic with the same period as that of the stimulus. In particular we
study the dynamics of a single artificial effective neuron model
in continuous time with time delays. The incorporation of delays
in the formulation is motivated by the following; delays are nat-
. INTRODUCTION urally present biological networks through synaptic transmis-

HERE IS evidence from the experimental and theoreticaion, finite conduction velocity and neural processing of input
studies [21], [8] that a mammal’s brain may be exploitinﬁtimu“- We refer to the articles of Gopalsamy and He [10], [11]
dynamic attractors for its encoding and subsequent associafiié the references therein for literature related to the stability of
recall rather than temporally static (equilibrium-type) attractofteural networks with time delays in temporally uniform envi-
as it has been proposed in most studies of artificial neuf@nments modeled by autonomous delay and integro-differen-
networks. Limit cycles, strange attractors and other dynamidil equations.
phenomena have been used by many authors to represent en-
coded temporal patterns as associative memories [7], [22], [4], Il. M ODEL SPECIFICATION

[17], [14]. Most of the existing literature on theoretical studies we formulate a model of a single artificial effective neuron
of artificial neural networks is predominantly concerned witlyith dissipation and a processing delay subjected to an external
autonomous systems containing temporally uniform netwotkmporally periodic stimulus. We want to obtain sufficient con-
parameters and external input stimuli. Literature dealing witlitions for the neuron to encode the stimulus in a temporally

time-varying stimuli or network parameters appears to Rferiodic pattern as the unique solution of a neuronic equation of
scarce; such studies are, however, important to understandtfeHopfield-type given by

dynamical characteristics of neuron behavior in time-varying da(t)
environments. _—

In this article, we study how a temporally varying, in partic- dt
ular a periodic environment, can influence the dynamics of a
single effective neuron of the Hopfield-type; in addition to thé which, is a fixed real number;(t) denotes the membrane
temporal variation of the input, we incorporate time delays ipotential of the neuron modeled-), &(-), f(-) denote contin-
the processing part of the neuron’s architecture. We considmus real valued functions defined ¢roo, o) and are peri-
discrete delays and delays distributed over a finite and infinitelic with periodw > 0 so that
interval. It will be found from the results of this article that while

Co . I a(t +w) =alt)

the neural dissipation dominates the gain, time-delays do not re-
strict the associative recall of the encoded patterns. It has been b(t +w) =b(t)
reported [5], [12], [6] that assemblies of cells in the visual cortex F@E+w)=f(1), teR. 2

oscillate synchronoysly In response to ex'ternal stimuli. Such 4The authors recognize the fact that it is unlikely for alt:¢f),
synchrony is a manifestation of the encoding process of tem% - : )
; R ?-), f() to have the same periad One of the possible cases
rally varying external stimuli. S . o
that such an assumption includes is the following; the param-
etersa(-) andb(-) are temporally uniform while the stimulus
input f(-) is periodic. Our analysis includes this case. Alterna-
Manuscript receivedMarch 16, 1999; revised February 29, 2000. tively, the stimulusf(-) can be temporally uniform while(-)
The authors are with the School of Informatics and Engineering, Thgy b() or both a(-) and b() can be periodiC' our analysis in-
Flinders University of South Australia, Adelaide 5001, Australia (e—mail:I d hi | | bl P d with
gopal@ist flinders.edu.au). ¢tludes this case also. A more general problem is concerned wit

Publisher Item Identifier S 1045-9227(02)05005-1. the case where(-), b(-) and f(-) have integrally independent

Index Terms—Global attractivity, Hopfield-type neural net-
works, periodic environments, time delays.
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periods. The authors intend to pursue this problem in a subséthis type does not preclude them from being temporally uni-
guent investigation; this general case needs different matheniatm. We remark that when the external input is time-varying,
ical tools and such a system will lead to quasiperiodic or almd$ie neuron is operating in a time-dependent environment. For
periodic neural responses. In this article we consider the ab@ample, when one is listening to a piece of music, the tem-
simpler case and establish that as a special case,)iéndb(-) poral tones of the music can give rise to varying conditions of the
are time invariant (constants) satisfying the required sufficiebtain. In an effort to investigate the effects of such varying con-
conditions while the stimulus is periodic, the neuron respondéions, we can let the dissipation and gain parameters time-de-
willinherit the period of the stimulus; the primary motivation fopendent. There is another plausible reason for assuming(that
this article has been the derivation of this result. The assumptiandb(-) in (1) are time-varying. Ottt al. [18] have shown the-
of periodicity ofa(-) andb(-) has been incorporated for generoretically that one can convert a chaotic attractor to one of pos-
ality of analysis only. It will follow from our analysis that the sible attracting time periodic motions by making time dependent
neuron response will inherit the period of any one:6f), b(-)  perturbations of system parameters. Our primary motivation for
or f(-) when at least one of them is periodic or when two or athakinga(-) andb(-) in (1) to be time dependent is one of gener-
of them are periodic with a common period. alization rather than specialization; all our results and analyzes
It is believed that a self-connection in a single neuron is uare valid ifa(-) andb(-) in (1) are temporally uniform.
likely to occur. While this is plausible, there are some circum- The nonnegative numbetin (1) denotes a neural processing
stances where self-interaction is possible as it is in the casenokynaptic transmission delay; several possible types of delays
single effective neuron (see, for instance, [20], [23]). We provideill be considered in this article. In (1}(-) denotes a quan-
some details in brief for the convenience of the reader. Considitative measure of the neuronal dissipation or a negative feed-
for instance the deterministic Hopfield model [15] back term;b(-) denotes the neuron gain arfd-) denotes the
external stimulus or input. We have assumed that the activation
or response of the neuron is given by the monotonic function
tanh(-). Using (2) and the continuity of, b, f, we definea,,
a*, by, U, f«, f* by the following:

3
du; ; .
z—;tl = _%7‘,—’_; Jij tanh(u;)+ oy, i=1,2,3. (3)
J#i

Suppose that the neurons 2 and 3 relax to a steady state ata much a. alt)
faster rate than neuron 1 in the sense fRatk Ry, R3 <« R; ]
and furthermore suppose tht < 1, Rz < 1; we can then be 0= 0Sien, |b()]
suppose that fx |£()
dus and
2 d_t2 ~0 = us a” a(t)
~ RQ [.]21 tanh(ul) =+ .]23 tanh(ug) + CYQ] b* = Oléltaﬁxw |b(t)| . (6)
d * t
3ﬂ%0:>u1), f N |f(®)
dt We shall assume thaf, > 0; it is elementary to see from (1)
~ Rg[ng tanh(ul) + J32 tanh(u2) + 063]. (4) that
By using the assumption th&t, and R3 are small, we have d+|§t(t)| < —a,|z(®)| +b* + f*, £>
tanh(U,Q) ~ Ry [J21 tanh(ul) + Jos tanh(u?,) + 042] and hence
tanh(us) ~ Ra[J31 tanh(wy) + Jao tanh(us) + azl. 5 dt|z(t b* *
(0] 2 Bl o tamb(us) + oy tamblee) ). (9) L <o {2 Lt} o0 @

The equations in (5) are linear ianh(u,) andtanh(us) and _ o
can be solved in terms ofinh(v, ); these values can be substiwhered*(-)/d¢ denotes the upper right derivative. It follows
tuted in the first equation of (3) so as to eliminate the presencefim (7) that

tanh(uz) andtanh(us) and this procedure will lead to an equa- b* 4+ f* v+ fr
tion for the dynamics of a single neuron with a self-connection a(to) < N a(t) < a, fort>to.  (8)
term.

We briefly address the question, why should one consid%lrmllarly we have from (1)

time dependence in the coefficients) andb(-) in (1)? We re- d ()| o ot (®)] = b — £

mark that there is na priori reason for time dependencexi) dat

andb(-); however effects of dynamical environments have been L { el |$(t)|} F>to (9)
investigated in areas other than neural networks, especially in * ’ 0

population dynamics where temporal variations of the envirogg 4 hence

ment have been incorporated in the parameters of systems like bt f
the Lotka—\Volterra equation by assuming that the system params(tq) > —
eters are time dependent, periodic or almost periodic. Ifaneuron

is operating under a periodic environment such as being excittdf interval

or inhibited by periodic inputs, it is not unreasonable to assume [ b+ fr o+ f*}

b*+f*

a‘k

= z(t) > — fort > to. (10)

a‘k

that the dissipation and gain are also periodic; an assumption a* | a,
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is invariant with respect to (1) in the sense that if the initial valuehich itself is satisfied if
x(s) = ¢(s), s € [to — T, to] belongs to the invariant interval,
then the corresponding solutiar(¢) belongs to the same in-

terval fort > ¢g. In the next section we obtain sufficient condi- i .
tions for the uniform stability of solutions of (1) in the following Note that these conditions are delay independent and show that

if the dissipatioru(-) dominates the gaibx-) then the coding of
sense (see [13]). the input stimulus is delay ind dent. Th thors’ prelimi
Definition 2.1: A solutionzo(¢) of (1) is said to be uniformly € input stimulus 1S delay independent. The authors prefimi-

stable if for every > 0 there exists & — §() > 0 such that nary results toward _these are promising and will be elaborated
in a subsequent article.

inf a(t b(t)| > 0.
;gﬂa()>§1€1ngl()l>

lo(s) —xo(s)] <& fors € [tg— 7, to] Proof: Letxz(¢) andy(t) denote any two solutions of (11)
= |z(t, to. ¢) — zo(t)| < e fort >t corresponding to the respective initial valyeands:). We obtain
T - rom
where z(t, to, ¢) denotes a solution of (1) satisfying dr(t
205, fo, ©) = 0(3), 5 € [fo 7. fo]. A0 —at)e(t) + b tanli(t ) + )
I1l. DISCRETEDELAYS AND ENCODING OF PERIODIC STIMULI dz—(:) = —a(t)y(t) + b(t) tanh[y(t — 7)] + f(t)

In this section, we establish sufficient conditions for the agyyh an application of the mean value theorem of differential
sociative encoding of a given external periodic stimulus in ”lf'alculus that

form of a periodic solution of the neuronic equation. We first
fconsider the uniform stability of solutions of equations of th?ﬁ[x(t) —y(t)] = —a(®)[z(t) — y(t)] + b(t) sech?[B(t — 7))
C;I’ﬂ(]t) Azt —7) =yt — 1), t>0 (14)
X
g = —e®)a(t) +b(t) tanhle(t — )l + f(1), >0 whered(t 1) lies betweer(t — r) andy(t — 7). By using the
(11) positivity of a(-), one can simplify (14) to the form
wherea(-), b(-), f(-) are continuous real-valued and bounded,
functions defined oft = (—oo, c©); 7 denotes a nonnegative lz(t) — y(t)|
constant. We assume that (11) is supplemented with an initi .
condition of the form < —aufe(t) —y(B)| + D x(t—r)—y(t-7)[. £>0. (19)

() = o(s) € R, se[-r 0, peCl-r 0] (12) We can rewrite (15) in the form

whereC[—r, 0] denotes the space of all continuous real valuegj; [o(t) — y(®)|c*t] < v e a(t—7)—y(t—7), t>0
functions defined ofi-7, 0] endowed with the supremum norm . Lo
. with the implication
defined by
1) — y(t)]e™!
forz € Cl-7, 0], |z = sup |a(t+ ). [(t) = w(®)le ,
el <15(0) -y + 87" [ fals =) - y(s - 1)
Note that ifz(-) is defined on—7, o), then we can associate o (5—7) 0
with such anr an element of2[—7, 0] denoted byr; where e ds s
xp = x(t + ), s € [-7, 0] for £ > 0. The next result provides < |2(0) — y(0)| + b*eam/ (1) — y(w)|e™* du
sufficient conditions for the uniform stability of all solutions of —7
(11) * A, T 0 a,
Theorem 3.1:Assume that the coefficients-), b(-) and the < [2(0) = y(0)] + b%c /_T () = y(u)le™ " du
delayr satisfy t
+ b*e“*T/ |z(uw) — y(uw)|e*™ du, t>0. (16)
a, > b* expla,T] > 0 (13) 0
We let
where
z(t) —y(t)|| = su z(s) —y(s 17
a, = inf a(t), b* = sup|b(¢)|. l=(2) @l sc[tji,t1| (#) )l (17
teR teR

and derive from (16) and (17) that
Then every solution of (11) and (12) is uniformly stable. V (16) (17

Before we proceed to the proof of the above result, some fe{t) — y(¢)|e®* < (1 + 57 7) ||z(0) — »(0)|
marks regarding the implication of (13) are provided. We note R .
that the requirement (13) is only a sufficient condition and it + b7 /0 lw(u) — y(u)|e®* du,  ¢t>0. (18)

appears that (13) is not a necessary condition. A very much im- licati ‘ I's lity i |
proved sufficient condition is the following: An application of Gronwall's inequality in (18) leads to

© b ds > 0 lz(t) — y(®)] < (1 + 0" re™7) [|2(0) — y(0)||
| (et = oy s > el (- B, t50. (19)
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Now by using (13) in (19), we obtain ThenF has a fixed poing € X such thatF'(z) = z.
Theorem 3.3:Assume that the neuron paramete(s), b(t)
Sc?tuﬁ 1 [a(s) =y and the external stimulu&t) are periodic irt with periodw so
7 arr that
< (14 77 [|z(0) — y(0) e~ (@ =¥ e =)
t>0 a(t + w) =a(t)
S L I O RO bt +w) =b(t)
- fE+w)=J®), teR
. ef(a*fb e )t7 t>0. (20)

_ Let 7 be a nonnegative real number such that ~. Suppose
Lete > 0 be arbitrary. Choose &= 6(¢) as follows: further that

5(e) = c {1+ 0 7e™ ) expl(a, — b T) 7]} (21) a, > b expla ] >0 (29)

The uniform stability of an arbitrary solution, sggt), follows (1 + b " M exp[—(a,—b"e ") (w—7)]=p <1.  (30)
from (20) and (21) on using the hypothesis (13). This completes

the proof. 0 Then (11) has a periodic solution of periedvhich is a global
Corollary 3.2: If instead of (13) one assumes that attractor. . o _
Proof: The global attractivity of a periodic solution of
a,>b">0 (22) (112), if it exists, follows from Theorem 3.1. Hence we will

prove only the existence of a periodic solution. két, ) and
y(t, v) denote the solutions of (11) corresponding to the initial
|z(t) — y(t)] — 0 ast — oo (23) valuesy and+, respectively, satisfying

then

wherez(t) andy(t) denote arbitrary solutions of (21) foragiven (0, ¢)(s) = ¢(s), (0, ¥)(s) = 9(s), ¥, ¥ € C[-, O].
f.

Proof: Consider a Lyapunov function&l(z, )(#) of the Proceeding as in the proof of Theorem 3.1, we obtain

form sup |2(s, @) — y(s, ¥)|
t sCt—,t]
Vi, y)(t) = [2(5)—y(®)] + 5" / () =y()lds, £>0. < (g prrerye @t ETED Lyl £5 0 (31)
t—7 - ’
(24) R

A direct calculation of the upper right derivative V/dt in (24) Which implies that
along the solutions of (11) leads to ll(t, ) — y(t, B)]|

d+v * a7\ ,—(a,—b*e T )(t—7) _

S S -yl t>0 @5 =TT lo=tl, >0 (32)
which implies that We note by hypothesis that > 7 and we lett = w in (32) to

\ obtain
Vi, )(t) + (@ = b%) / [w(s) = y(s)l ds l#(w, @) = w(w, P <plle — | (33)
<V(z,y)(0), t>0. (26) lz(w, ) = y(w, z(w, )| =lz(w, ) — 2(2w, )|

From the boundedness of solutions (Section Il) of (11), the <plle = alw. oIl (34)

boundedness of the derivatives of solutions of (11) followsrom (34), we derive
implying the uniform continuity of solutions of (11) dfl, cc). 1
One can conclude from (26) thetis bounded and nonnegative||<p —z(w, P)|| £ —— |l¢ — z(w, )|

for ¢ > 0; also (26) implies that Tl .
l2(-) — y(-)] € L1(0, o0). 27) 1, lz(w, ¢) — 22w, p)||.  (35)

By a lemma due to Barbalat (see [9]), we can conclude that (3R} defineF: C[—r, 0] — R andP: C[—, 0] — C[—7, 0]
holds and the proof is complete. O as follows:

We now proceed to prove the existence of a periodic solution 1
of (11). In our proof of the existence of a periodic solution of F(p) = i, [l — z(w, @)l (36)
11) we use a fixed point theorem due to [3] and our formulation
(11) b 13} P(p) =z(w, ¢). (37)

of this result is extracted from [1, p. 248].
Caristi's Fixed Point TheoremLet X denote a complete As a consequence of (35)—(37)

metric space with a metrip. Let F: X ~— X be a single

valued map and let/: X — R be a bounded lower semicon- ||¢ — P(¢)|| < F(¢) — F(P(p)), ¢ € C[-,0]. (38)

tinuous function such that C .
iuous TUnCH ! It follows from (38) and Caristi’s fixed point theorem th&t

pw(x, F(x)) L U(x) - U(F(x)) forallz € X. (28) C[-,0] — C[—, 0] has a fixed point, sayp* such that
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P(p*) = ¢*. Consider now the solutions(¢, ¢*) andx(t + =p<1 (42)

w, ¢"); these wo solutions satisfy then (39) has a globally attracting periodic solution of petiod

2(0, ¢*) = ¢*, z(w, ¢*) = P(p*) = ¢* Proof: The details of proof are analogous to those of
_ _ Theorems 3.1 and 3.3; we shall be brief. Lét) = z(¢, ¢)
and hence by the uniqueness of solutions of (11) we have  anq () = (¢, v) be any two solutions of (39) with initial

2(t, o) = ot + w, ©*) forallt > 0 valuesy, v, respectively. We can then obtain from (39)

Hence the solution:(t, ¢*) is periodic with periodw. The — |z(t) — y(t)|e*
uniqueness and global attractivity of this periodic solution L7
follow from Theorem 3.1. O < |2(0) —w(O)] + A
T
IV. DISTRIBUTED DELAYS - e“*“{/ K(s)|z(u—s) —y(u—s)| ds} du
0
Time delays in the dynamics of neural networks need not nec- >0
essarily be discrete and temporally uniform as it has been pro-
posed in (11). It is quite plausible for the time delay in synaptic < |z(0) 0)| + b*/ K(s

(0)
transmission or processing to be continuously distributed over
a finite or infinite duration; the intensity of influence of the . {/ ¢ )| 5(v) — y(v)] dv} ds
delay-effects can vary over the length of the time delay and this

influence is usually modeled by a delay kernel. Accordingly we .
consider a modification of (11) given by < |2(0) = y(0)| +b / K(s
dz(t) 0
~ = —a(t)a(t) + b(t) : { / e T () — y(v)] dv} ds
T ’ T t
- tanh / K(s)x(t—s)dsp + f(t), t>0 (39) + b*/ K(s){/ @+ (5H0) 1 (1) — y(v)] dv} ds
0 0 0
T

together with an initial value for the membrane potential inthe < |4(0) — 4(0)| + b*T </ K(s)e™* ds) e — ||
form -

z(s) =¢(s), s€[-T,0, p€C[-T, 0] (40) <b*/ K(s)e™? ds) / eV (v) — y(v)| dv
whereT is a finite positive numbewr(-), b(-), f() are contin-
uous and bounded functions defin.ed Bn= (—oc, o). Thg 14 b*T/ K(s)e®* ds | ||lo — |
delay kernelK: [0, T] — [0, o) is assumed to be contin-
uous. We assume that the state space of (39) is the space of
real-valued functions defined dn-7, 0] which are continuous b*/ K(s)e*?®ds / e Clz(v) — y(v)| dv
and endowed with the supremum norm; in conventional nota-
tion this space i€’[-T, 0] where t > 0. (43)

C[-T, 0] = {¢: [-T, 0] — R| ¢ is continuou$ By using Gronwall’s inequality in (43)
and T

je(t) — y(#)]e®t < (1 T / K(s)et ds> lle — 4|
loll = sup |e(s)]. 0
sC[-T,0]

O K@ aa
The existence of a globally attracting periodic solution of (39) is

established in the following. We use the notation of the previoasd hence

section in the following.

T
Theorem 4.1: Suppose(-), b(-), f(-) are continuous and pe- () —y®)| < |1+ b*T/ K(s)e®*ds | |l — 9|
riodic with periodw; we assume that > 7" in (39) and - 0

o —la—b* fT K(s)e®*° dslt
ay > b*/ K(s)e***ds >0 (41) ¢ 0 ) t>0. (45)
0

<1 + T /T K(s)e*? ds)
- exp [— <a* - b*T/O K(s)e®? ds) (w=T)

Now by using (41) in (45)

() = 5Ol < llg — vl <1 T / K(s)c™ ds)

Lt [ K a0 g (46
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By assumptionv > 7" and hence we have from (46) Proof: Supposec(t) is a periodic solution of period of

(48). Then
[[(w) — y(@)l

T
<llp - | (1 0T [ K ds>
0
RSO jOT K(8)e™® ds)(w—T)]

< plle =91l

/Ooo Ki(s)a(t — s) ds

o r(HDw
>/

=0

:Z/ Ki(u+ jw)z(t — v — jw) du, t>0.
j=0"0

Ki(s)x(t —s)ds
(47)

The remaining details of proof are similar to those of
Theorem 3.3 and we omit these to avoid repetition. The
global attractivity of the periodic solution is a consequence &y the periodicity ofz(-) and the uniform convergence in (51),
(45). L we have

In the next result we consider the case of delays distributed ___
over an infinite (unbounded) intervéh oo, 0) characterized by
a delay kernel;: [0, o) — [0, co) satisfying certain con- /0
ditions to be specified. In particular we consider an equation
the form

Ki(s)z(t —s)ds = / H(uw)z(t — u) du, t>0
’ (53)
f?ﬁplying thatz(t) is a solution of (52). Now if:(¢) is a periodic
solution of periodw of (52), then one can reverse the above
sequence of steps and show thét) is also a periodic solution
of (48). We omit these details. O
Lemma 4.3:If the delay kernelk;: [0, o) — [0, co) sat-

dx(t)
dt

= —a(t)z(t) + b(t) tanh < /0 T Ki(s)a(t - 5) ds)

+ f(%), t>0 (48)

isfies (50) and (51) then

together with an initial condition of the form

z(s) = ¢(s)
@: (=00, 0] — R, ¢ is bounded and continuous (49)

We assume as before tht), b(-), f(-) are periodic with period
w > 0. The delay kerneK is assumed to satisfy the integra-
bility condition

/ Ki(s)e*"ds < . (50)
0

We need two preliminary results in order to prove the existence
of periodic solutions of (48).

Lemma 4.2: Assume thati;: [0, co) — [0, o) is such
that the infinite series

b*w/ H(s)e*?ds < b*w/ Ki(v)e®? dv. (54)
0 0

Proof: The result follows from the uniform convergence

in (51) and

/H(s)e”’*sds:/ ZKl(S-l-jw)e"’*sds
0 0

=0

= Z/ Ki(s + jw)e*** ds
j=0"0

>  p(it+lw
-3 /Jw

=0

</ Ki(v)e®? dv.
0

K, (v)e“*('”_j‘“') dv

O
s Theorem 4.4: Assume that(-), b(-) and K (-) satisfy
> Ki(u+ jw)
5=0 o0
’ a, > b*/ Ky (v)e***dv >0 (55)
converges uniformly in: € [0, oo) and we let - 0
<1 + b*w/ H(s)e™? ds)
bt 0
Huw) =Y Ki(u+jw), € [0, 0o). 51 w
(u) ]Z::O 1(u+ jw) u € [0, 00) (51) exp [_ <a* B b*/ H(s)e? ds) w}
0
=p <1 (56)

Thenz(t) is a periodic solution of (48) if and only if(¢) is a
periodic solution of period> of

dx(t)
dt

t> 0. (52)

Then (52) has a periodic solution of period

Proof: Let z(t) = z(¢, ¢) andy(t) = y(t, ¥) be two

e 0 tanh(/wH(u)x(t—u) du)—i—f(t) solutions of (52) corresponding to the initial values
0

z(s) =

90(5)7 y(s) = r‘/)(s)v s € [_wv 0]
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Proceeding as in the proof of Theorem 4.1, one can obtain The boundedness of solutions of (48) implies that of their
derivatives on(0, oo) and hence the solutions of (48) are

lz(t) — y(®)| < |le — ¥ <1 + b*w/ H(s)e*? ds) uniformly continuous or{0, ~o). By Barbalat's lemma we can
ot [* ) 0 o conclude from (66) that
—(a,—b* H(s)e**® ds)t
¢ ’ o t>0. (57 2(t) —y(t) =0 ast — co. (67)
We let Now if %(¢) denotes a periodic solution and¢) denotes any
lz(t) —y(®)]| = sup |a(s) — y(s)| (58) arbitrary solution, then (67) implies the global attractivity of
sE[t—w,1] the periodic solution(t). The global attractivity of the periodic

and obtain from (55)—(58) that solution also implies its uniqueness. The proof is compléte.

|z(w) — y(w)|| < pille — ¥ (59) V. PERIODICALLY VARYING DELAYS

One can now proceed as in the proof of Theorem 4.1 and com!n this section we consider the dynamics of

plete the remaining details to establish the existence of a ped=(¢)

odic solution of (52). We omit further details. O o = —at)e(t) +b(t) tanhlz(t — ()] + f(), >0
Theorem 4.5:Assume that the hypotheses of Theorem 4.4 _ (68)

hold. Then (48) has a periodic solution which is globallyherea(-), b(-), f(-) are as before continuous real-valued func-

attractive. tions defined orf—n~c, o) and are periodic with a common pe-

Proof: Letz(¢) andy(t) denote any two solutions of (48).fiod w > 0. The time delayr() is defined on—oc, oc) and is
Then we have from (48) after an application of the mean val@sumed to be continuous and periodic with pedog 0 sat-

theorem of differential calculus and simplification isfying

d* o0 () >0, t—7(t) >0, t —7(t) — 00 ast —

dt 20 vl < —ale(®) —y(O)] + b*/o 0 <7, =inf 7(t) < 7 = sup7(t) < . (69)
K (s)|a(t—s) —y(t—s)|ds, > 0. (60) e 1R

) _ The initial values associated with (68) are of the form
Let us consider a Lyapunov functiondlz) = V(x, )(t) de-

fined by z(s)=p(s), se[-770], p€ C[-7", 0]
Y whereC[—7*, 0] denotes the space of continuous real-valued
V({t) = |z(t) —y@)] + b /0 Ky(s) functions defined or[—7*, 0] endowed with the supremum
t norm. In this section we establish the existence of a globally

< / |z (w) —y(u)|du> ds, t>0. (61) attractive periodic solution of (68). First we establish an
t=s improved version of inequality due to [13].
From (55) we have Lemmab5.1: Let, 5 andr™* be positive numbers and let-)

00 o be a nonnegative solution of
b*/ Ki(vwdv < b*/ Ki(v)e™V dv < a, (62)
0 0

du(t)
—= < —ou(t)+ 3 su u(s) |, t>tg. (70
and hencef,” K (v)vdv < oo from which it will follow that dt ©)+1 <5€[t—£)*,t} ( )> o (70)

e If « > 3, then there exists a positive real numpesuch that
V(0)< | sup |z(s)—y(s)|J[1+ b*/ sK(s)ds
0

s5>—00

<o 63) u(t)é( sup Ju(s)) IO s g (71)

sE€E[tg—7*,t0
due to the boundedness of initial values and the solutio% . : : :
. . o te: Th lity established by Hal 13] for (70) wh
of (48) on (—oo, oo). Calculating the upper right denvatlvea >e/3 iseolfntiqeu%:%esa ished by Halanay [13] for (70) when
(d*V(t))/dt of V(t) along the solutions of (48) and by using

(60) u(t) < Cet=0) ¢ s ¢y
dtV(t) Y A for some positive numbexs andy. We need detailed informa-
dt <= <a* —0 /0 Ki(s) ds) () = u(®)] tion about the constart in our application.
t>0 (64) Proof: By assumptionx > 3 and we defingy as follows:
leading to g =—a+A+pX,  XeR. (72)
[ t Note thatg(0) = —« + 8 < 0; due to the continuity o, there
V({t)+ |a.—D Ki(s)ds |z(s) — y(s)| ds exists a positive number saysatisfying
0 0
< V(0) <oo. (65) 9(p) = —a+ p+ B’ < 0. (73)
It follows from (65) that Define % by the following:

lz(-) — y(-)| € L1(0, o). (66) a(t) = w(t)e ) t > to. (74)
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From (70) and (74) wherez(w, ¢)(s) denotes the value af(w) = z(w, ¢) of (68)
d du with an initial valuey from C[—77*, 0].
== eHt=t) () ettt Theorem 5.2:Leta(-), b(-), f(-) and7(-) be continuous and
be periodic int € R with periodw > 0; suppose that(¢) >
< (—a + pu(t)ert—t) 4 /3Cu(t—to)< sup u(3)> a, > 0,t € R; let7(-) be differentiable satisfying
selt=r"t] 0<7(t) < 7" < o0, teRandw > 7*
< (—a + p)a(t) + Be™ < sup d(s)) d;—(tt) <a<l, teR
sE[t—7*,1]
>0 (75) t—7(t) >0, t—7(t) » o0 ast — oo.
) Let |b(t)| < b*fort € R. If
Let M be defined by etib)l < ?r ©
b*Ca*T
M= sup u(s) (76) e > T o 2 (82)
sE[tg—7*,t0]
and let§ denote an arbitrary number such téat 1. First we <1 I bret” T*) exp {_ <a* _ breT >(w B T*)}
show that -« -«
=p<l1 (83)
ult) < Mé fort >ty —7". (77) then (68) has a globally attractive periodic solution of petiod
It is true from the definition of\/ that Proof: Let z(t) = (t, ¢), y{t) = (t, ¥) denote two
solutions of (68) corresponding to the initial valuegs) =
W(t) < Mé fort € [to — 77, to]. (0, ©)(s), y(s) = y(0, ¥)(s), s € [-7*, 0]. We derive from
68
If (77) is not valid, then there existsta > ¢ such that (68)
d
e M forte bty ooy — azs BBl S [z() — y(B)] = —a(B)[z(t) — y(D)]
ut) < € lto =770, alh) = Mé, e +b(t)[tanh((t — 7(£))) — tanh(y(t — 7(£)))]
(78)  which implies
But we have from (75) and (78 d+
° rom (72 and (9 C ) — (1) < —anla(t) (1)
0< = +0Ja(t = (1) — y(t — 7))
dt |,
and leads to
< (—a+ p)ia(ty) + Be i d* o
st +pe <Se[t?E£i,m“(3)> O o) — o)
<Mé§[—a+ p+ Bt ] < ezt — () —y(t— ()], t>0. (84)
<0 We derive from (84) that

which is not possible. Hence (77) holds. Siice 1 is arbitrary, lz(t) — y(®)|e™ < |2(0) — y(0)] + b* /t
we have from (76) - 0
e x(s — 7(8)) — y(s — 7(s))| ds, t>0. (85)

By a change of variable in the integral in (85) in the fosm
From the definition ofA/ and#, we derive that 7(s) = u, we obtain

]

s€[to—7*,t0 < |$(0) i *
< y(0)| +b
(80) —(0)

wt) < M6 <M asé—1+ fort> . (79)

t—7(t)

and the proof is complete. O X du

We note that ifz(¢) denotes a solution of (68) defined for e ) |2 (u) — y(u)] T
t > 0, thenz(t + w) is also a solution of (68) defined for> 0 Jreas 0
due to the periodicity ofi(-), b(-), f(-) andr(-). Therefore in < |z(0) — »(0)] + c / ™ a(u) — y(u)| du
order to prove the existence of a periodic solution of (68) it is . l—a J;
sufficient to prove the existence of a fixed point of a Poincare n bre®T /' ¢ () — y(w)| du
map. Letz(t) = (¢, ¢) denote a solution of (68) satisfying 1—a Jy Y

z(s) = ¢(s), s €[=1",0], ¢ € C=77, 0]. < <1 + ble *a T*) |lz(0) — y(0)]|

We define the Poincare map: C[—7*, 0] — C[-7*, 0] by proasmt
the following: + - /0 ™) — y(u)| du, t>0.

P(‘P)(S) = x(w, 90)(5)7 s € [_7_*7 0] (81) (86)
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By applying Gronwall’s inequality in (86) £(t) =2sin <@) 308 <@) ' (96)
b*ea*‘r* .
l(t) —y®) < (1+ T " [|2(0) — y(O)| These parameters are periodic functions of pegiog 7. The
BT sufficient conditions for the existence of periodic solution of
cexp|— | ax — ¢ t, t>0. (87) period 7 are satisfied, in fact we have with = 1, b* = e S,
l-«a T=5w=7

Taking the supremum on both sides of (87) over the interval

* QT
[t — 7*, ], we obtain @ > b7e™7 >0

llz(t) =yl and
< b*eoT" b*eoT" ) o e
<11+ —o 5P|\~ 7, (t—77) (1 + b re® ") exp[—(ax — b7 e ) (w — 7)]
[lz(0) —y(O)[,  t>0. (88) =0.8019978599 < 1.
By hypothesisv > 7+ and hence we have from (88) Numerical simulations of (93) are generated from the dis-

2(w) = y(@)|| < pll2(0) = 5(O) (89) crete-time analogs of (93) in the form

wherep is defined in (83). One can now proceed as in Th%-((n +1)h) = 1 b(nh)h
orem 4.1 to show the existence ofa € C[—7*, 0] satisfying 1+ a(nh)h 1+ a(nh)h
z(w) = z(w, *)(s) = ¢*(s) from which it will follow that T f(nh)h
(68) has a periodic solution of peried The global attractivity 'tanh{97 (”h - [ﬂ h)} + T a(mh)h’
of the periodic solution follows from Lemma 5.1. For instance
if 4(¢) is a periodic solution of (68) and(¢) is any arbitrary so-
lution of (68), then we have from

x(nh) +

nez (97)

where[t] denotes the greatest integer contained amd/. de-
notes a positive real number such that (0, 1]. In the discrete

% |[2(t) — 4(D)] < —anz(t) — 4(t)] form, (94)—(96) become

+0*|x(t — 7(t)) — gt — ()|, t>0 (90) a(nh) =2 + sin <27r7nh> (98)
that 2mnh
g+ , , MMO:GGGE< - ) (99)
= 17O = 9] < —afa(t) —4(1)]

f@m):2$n<§$ﬁ>—3am<2?m>. (100)

In Fig. 1 we demonstrate the periodic solution of (97) with
It follows from (82) thata,. > ¢* and hence we obtain by virtue . _ 5 5 — g2 and initial valuep(s) = 2, s € [-5, 0].
of Lemma 5.1 Fig. 2 shows the solutions of (97) corresponding to two initial
valuesyp; (s) = —e~ %1% andys(s) = —0.1s, s € [-5, 0]. As
lz(t) —9(t)| < < sup |x(s) — ?)(3)|> e, ¢t>0  inFig. 1, we user = 5andh = 0.2.
sel=r.0] (92) As another example, we choose the parameténs) and
b

for some positive number. The global attractivity of; together F(”h.) tc: be constarl]”nt anfi(nh) asin (100) with the delay = 2.
with its uniform stability will follow from (92). This completes ' ©" INStance, we have

—i—b*( sup  |z(s) — g(s)|> ) t>0. (91

SE[t—T*,1]

the proof. O
a(nh) =0.25 (101)
VI. NUMERICAL SIMULATIONS b(nh) =0.10 (102)
We consider (11) with the delay = 5 f(nh) =2sin <27mh> — 3cos <27mh> . (103)
7 7
dx(t)

— = —qa{t)x(t) + b(t) tanh[z(t — 5)] + f(¢), t > 0.
dt (Ba(t) +b(7) o 1) (93) In Fig. 3, we plot the solution of (97) subjected to these param-

eters and initial valuex(s) = s + 2, s € [-2, 0]. Here we take
7 =2andh = 0.2.
We now consider (11) with a delay kernel as in (48)

27t
a(t) =2+sin | — (94) oo
<;) %%Q:_d@d@+mnmm</m@n@—@m)
b(t) =¢ %cos il (95) ’
- +f(), t>0 (104)

The neuron parametegt) andb(t) and the external stimulus
f(¢) are, respectively, given by
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Fig. 1. Encoded pattern of period 7 (solid line) and the input stimyi{é$ of period 7 (dashed line).

5 T T T T T

delay T = 5

-5 o] 5 10 15 20 25

Fig. 2. Two encoded patterns of period 7 corresponding to two initial vghyés) (solid line) andp2(s) (circle) merge. The input stimulu&(t) of period 7 is
shown (dashed line).

in which a(-), &(-), f(-) are periodic with periodv > 0. The equation (107) can be converted into a system of ordinary
The delay kernek, (-) is assumed to satisfy the integrabilitydifferential equations by introducing an auxiliary variablde-

condition fined by
/0 T K (s)e ds < 0. (105)  wu(t) = /0 T et — s) ds = / " a5y ds. (108)
We assume the delay kernil, are of the form It is found from (107) and (108) t;;t andw are governed by
Ki() = a0 @os) P _atya(t) + b(e) b fu] + 70 -
Using this kernel, equation (104) can be written in the form dZit) = z(t) — au(t)
da(t) _ —a(t)2(t) + b(E) tanh(/oo (b — 5) ds) This system is then solved numerically by means of
dt 0 Runge—Kutta scheme. Assuming the neuron parameters

+ f(t), t> 0. (107) asin(94)—(96) and the delay kernel as in (106) with- 2, it is
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Fig. 3.
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-delay T = 2

-2 0 2 4 6

Encoded pattern of period 7 (solid line) along with the input stimfi(@$ of period 7 (dashed line).

18 20

J T F .

-5 1
(4] 5

25

Fig. 4. Two encoded patterngt) of period 7 corresponding to two initial value$0) = 2 (solid line) andx(0) = —1 (circle) along with the input stimulus
f(t) of period 7 (dashed line).

found that the integrability condition in (105) and the assumppon substituting the delay kernéf; given in (106), (110)
tions of Theorem 4.4 are satisfied. Two periodic solutions decomes

periodw = 7 of (107) corresponding ta = 2 and two initial

valuesz(0) = 2 andx(0) = —1 is illustrated in Fig. 4.
In the following we consider another form of (104) given by

dx(t)

dt

wherea(-), b(-), f(-) are periodic with period > 0 and the

+f(1), t>0

delay kernelK (-) satisfies the integrability condition

/ sKi(s)e™%ds < 0.
0

— —a()a(t) + b(e) tanh< /0 Ky (s)a(t — 8) ds)

(110)

(111)

dx(t)

We let

— _a(t)e(t) + b(t) tanh < /0 " et — s) ds)

t>0.

+ /), (112)
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Fig. 5. Two encoded patterngt) of period 7 corresponding to two initial value$0) = 2 (solid line) andz(0) = —2 (circle) along with the input stimulus
f(¢) of period 7 (dashed line).

t . . .
_ / e_a(t_s)a:(s) ds whose existence is guaranteed by our hypothesis that
-0 a(t) > a, > 0. (116)
and obtain the following system of differential equations: Thus the dissipativity assumption i) guarantees the exis-

d t . . . . . _
z(t) — —a(t)z(t) + b(t) tanh[u(t)] + F(2) tence of a perlod|c_ so_luuon given by (115) precludlng any reso
dt nance type behavior in the absence of self-connection. Nonres-

du(t) — o(t) — ault) . (113) onance is due to the _d|SS|pat|ve nature of the system (114). If
dt #(t) is any other solution of (114) then we have

du(t d
A = () - vt G0 = 0] = b — 2], t>0. @)

We again assume the neuron parameters as in (94)—(96) andtlenot difficult to see that (117) leads to

delay kernel as in (106) withy = 2, it is found that the integra- t

bility condition in (111) and the assumptions of Theorem4.4are  |v(t) — 2(t)| < [v(0) — 2(0)| exp [— / a(u) du}

satisfied. Fig. 5 displays two periodic solutions of perioe: 7 0

of (112) corresponding te = 2 and two initial values:(0) = 2 < [(0) — 2(0)] exp[—a,]

andz(0) = —2. —0 ast — oo

implying that the periodic solution is asymptotically stable.
The dynamics of neural networks subjected to time varying
We note that if the recurrent stimulus in (1) is negligible ogxternal stimuli have been considered by Rescighal. [19],

absent and if the dissipation raté¢) has exactly the same pe-Konig and Schillen [16], Bondarenko [2]. In this article we have

riod as that of the input stimulus, our (1) reduces to the simplebtained sufficient conditions for encoding of an external pe-

VII. CONCLUDING REMARKS

equation riodic stimulus by a single neuron-like processor having pro-
cessing delays of various types. The dynamics of neural net-
du(t) . A :
e —a(t)v(t) + f(t), t>0 (114) works with two or more neurons with inhibitory and excitatory

connections with transmission delays and external periodic and
almost-periodic stimuli will be considered in the forthcoming
a(t+w) =alt), ft+w)=f(t), t> 0. articles.

where

The linear equation (114) can be solved to obtain a periodic
solution given by
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