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Time Delays and Stimulus-Dependent Pattern
Formation in Periodic Environments in

Isolated Neurons
K. Gopalsamy and Sariyasa

Abstract—The dynamical characteristics of a single isolated
Hopfield-type neuron with dissipation and time-delayed self-inter-
action under periodic stimuli are studied. Sufficient conditions for
the heteroassociative stable encoding of periodic external stimuli
are obtained. Both discrete and continuously distributed delays
are included.

Index Terms—Global attractivity, Hopfield-type neural net-
works, periodic environments, time delays.

I. INTRODUCTION

T HERE IS evidence from the experimental and theoretical
studies [21], [8] that a mammal’s brain may be exploiting

dynamic attractors for its encoding and subsequent associative
recall rather than temporally static (equilibrium-type) attractors
as it has been proposed in most studies of artificial neural
networks. Limit cycles, strange attractors and other dynamical
phenomena have been used by many authors to represent en-
coded temporal patterns as associative memories [7], [22], [4],
[17], [14]. Most of the existing literature on theoretical studies
of artificial neural networks is predominantly concerned with
autonomous systems containing temporally uniform network
parameters and external input stimuli. Literature dealing with
time-varying stimuli or network parameters appears to be
scarce; such studies are, however, important to understand the
dynamical characteristics of neuron behavior in time-varying
environments.

In this article, we study how a temporally varying, in partic-
ular a periodic environment, can influence the dynamics of a
single effective neuron of the Hopfield-type; in addition to the
temporal variation of the input, we incorporate time delays in
the processing part of the neuron’s architecture. We consider
discrete delays and delays distributed over a finite and infinite
interval. It will be found from the results of this article that while
the neural dissipation dominates the gain, time-delays do not re-
strict the associative recall of the encoded patterns. It has been
reported [5], [12], [6] that assemblies of cells in the visual cortex
oscillate synchronously in response to external stimuli. Such a
synchrony is a manifestation of the encoding process of tempo-
rally varying external stimuli.
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The purpose of this paper is to obtain sufficient conditions for
the existence (or encoding) of a globally attractive (heteroasso-
ciative recall) periodic solution (or a pattern) associated with a
given periodic external stimulus. The neuronal parameters, dis-
sipation and gain can either be temporally uniform or be peri-
odic with the same period as that of the stimulus. In particular we
study the dynamics of a single artificial effective neuron model
in continuous time with time delays. The incorporation of delays
in the formulation is motivated by the following; delays are nat-
urally present biological networks through synaptic transmis-
sion, finite conduction velocity and neural processing of input
stimuli. We refer to the articles of Gopalsamy and He [10], [11]
and the references therein for literature related to the stability of
neural networks with time delays in temporally uniform envi-
ronments modeled by autonomous delay and integro-differen-
tial equations.

II. M ODEL SPECIFICATION

We formulate a model of a single artificial effective neuron
with dissipation and a processing delay subjected to an external
temporally periodic stimulus. We want to obtain sufficient con-
ditions for the neuron to encode the stimulus in a temporally
periodic pattern as the unique solution of a neuronic equation of
the Hopfield-type given by

(1)

in which is a fixed real number; denotes the membrane
potential of the neuron modeled; , , denote contin-
uous real valued functions defined on and are peri-
odic with period so that

(2)

The authors recognize the fact that it is unlikely for all of ,
, to have the same period. One of the possible cases

that such an assumption includes is the following; the param-
eters and are temporally uniform while the stimulus
input is periodic. Our analysis includes this case. Alterna-
tively, the stimulus can be temporally uniform while
or or both and can be periodic; our analysis in-
cludes this case also. A more general problem is concerned with
the case where , and have integrally independent
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periods. The authors intend to pursue this problem in a subse-
quent investigation; this general case needs different mathemat-
ical tools and such a system will lead to quasiperiodic or almost
periodic neural responses. In this article we consider the above
simpler case and establish that as a special case, ifand
are time invariant (constants) satisfying the required sufficient
conditions while the stimulus is periodic, the neuron response
will inherit the period of the stimulus; the primary motivation for
this article has been the derivation of this result. The assumption
of periodicity of and has been incorporated for gener-
ality of analysis only. It will follow from our analysis that the
neuron response will inherit the period of any one of ,
or when at least one of them is periodic or when two or all
of them are periodic with a common period.

It is believed that a self-connection in a single neuron is un-
likely to occur. While this is plausible, there are some circum-
stances where self-interaction is possible as it is in the case of
single effective neuron (see, for instance, [20], [23]). We provide
some details in brief for the convenience of the reader. Consider
for instance the deterministic Hopfield model [15]

(3)

Suppose that the neurons 2 and 3 relax to a steady state at a much
faster rate than neuron 1 in the sense that ,
and furthermore suppose that , ; we can then
suppose that

(4)

By using the assumption that and are small, we have

(5)

The equations in (5) are linear in and and
can be solved in terms of ; these values can be substi-
tuted in the first equation of (3) so as to eliminate the presence of

and and this procedure will lead to an equa-
tion for the dynamics of a single neuron with a self-connection
term.

We briefly address the question, why should one consider
time dependence in the coefficients and in (1)? We re-
mark that there is noa priori reason for time dependence in
and ; however effects of dynamical environments have been
investigated in areas other than neural networks, especially in
population dynamics where temporal variations of the environ-
ment have been incorporated in the parameters of systems like
the Lotka–Volterra equation by assuming that the system param-
eters are time dependent, periodic or almost periodic. If a neuron
is operating under a periodic environment such as being excited
or inhibited by periodic inputs, it is not unreasonable to assume
that the dissipation and gain are also periodic; an assumption

of this type does not preclude them from being temporally uni-
form. We remark that when the external input is time-varying,
the neuron is operating in a time-dependent environment. For
example, when one is listening to a piece of music, the tem-
poral tones of the music can give rise to varying conditions of the
brain. In an effort to investigate the effects of such varying con-
ditions, we can let the dissipation and gain parameters time-de-
pendent. There is another plausible reason for assuming that
and in (1) are time-varying. Ottet al. [18] have shown the-
oretically that one can convert a chaotic attractor to one of pos-
sible attracting time periodic motions by making time dependent
perturbations of system parameters. Our primary motivation for
making and in (1) to be time dependent is one of gener-
alization rather than specialization; all our results and analyzes
are valid if and in (1) are temporally uniform.

The nonnegative numberin (1) denotes a neural processing
or synaptic transmission delay; several possible types of delays
will be considered in this article. In (1), denotes a quan-
titative measure of the neuronal dissipation or a negative feed-
back term; denotes the neuron gain and denotes the
external stimulus or input. We have assumed that the activation
or response of the neuron is given by the monotonic function

. Using (2) and the continuity of, , , we define ,
, , , , by the following:

and

(6)

We shall assume that ; it is elementary to see from (1)
that

and hence

(7)

where denotes the upper right derivative. It follows
from (7) that

for (8)

Similarly we have from (1)

(9)

and hence

for (10)

The interval
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is invariant with respect to (1) in the sense that if the initial value
, belongs to the invariant interval,

then the corresponding solution belongs to the same in-
terval for . In the next section we obtain sufficient condi-
tions for the uniform stability of solutions of (1) in the following
sense (see [13]).

Definition 2.1: A solution of (1) is said to be uniformly
stable if for every there exists a such that

for

for

where denotes a solution of (1) satisfying
, .

III. D ISCRETEDELAYS AND ENCODING OFPERIODIC STIMULI

In this section, we establish sufficient conditions for the as-
sociative encoding of a given external periodic stimulus in the
form of a periodic solution of the neuronic equation. We first
consider the uniform stability of solutions of equations of the
form

(11)
where , , are continuous real-valued and bounded
functions defined on ; denotes a nonnegative
constant. We assume that (11) is supplemented with an initial
condition of the form

(12)

where denotes the space of all continuous real valued
functions defined on endowed with the supremum norm
defined by

for

Note that if is defined on , then we can associate
with such an an element of denoted by where

, for . The next result provides
sufficient conditions for the uniform stability of all solutions of
(11).

Theorem 3.1:Assume that the coefficients , and the
delay satisfy

(13)

where

Then every solution of (11) and (12) is uniformly stable.
Before we proceed to the proof of the above result, some re-

marks regarding the implication of (13) are provided. We note
that the requirement (13) is only a sufficient condition and it
appears that (13) is not a necessary condition. A very much im-
proved sufficient condition is the following:

which itself is satisfied if

Note that these conditions are delay independent and show that
if the dissipation dominates the gain then the coding of
the input stimulus is delay independent. The authors’ prelimi-
nary results toward these are promising and will be elaborated
in a subsequent article.

Proof: Let and denote any two solutions of (11)
corresponding to the respective initial valuesand . We obtain
from

with an application of the mean value theorem of differential
calculus that

(14)

where lies between and . By using the
positivity of , one can simplify (14) to the form

(15)

We can rewrite (15) in the form

with the implication

(16)

We let

(17)

and derive from (16) and (17) that

(18)

An application of Gronwall’s inequality in (18) leads to

(19)
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Now by using (13) in (19), we obtain

(20)

Let be arbitrary. Choose a as follows:

(21)

The uniform stability of an arbitrary solution, say , follows
from (20) and (21) on using the hypothesis (13). This completes
the proof.

Corollary 3.2: If instead of (13) one assumes that

(22)

then

as (23)

where and denote arbitrary solutions of (21) for a given
.

Proof: Consider a Lyapunov functional of the
form

(24)
A direct calculation of the upper right derivative in (24)
along the solutions of (11) leads to

(25)

which implies that

(26)

From the boundedness of solutions (Section II) of (11), the
boundedness of the derivatives of solutions of (11) follows
implying the uniform continuity of solutions of (11) on .
One can conclude from (26) thatis bounded and nonnegative
for ; also (26) implies that

(27)

By a lemma due to Barbalat (see [9]), we can conclude that (23)
holds and the proof is complete.

We now proceed to prove the existence of a periodic solution
of (11). In our proof of the existence of a periodic solution of
(11) we use a fixed point theorem due to [3] and our formulation
of this result is extracted from [1, p. 248].

Caristi’s Fixed Point Theorem:Let denote a complete
metric space with a metric. Let : be a single
valued map and let : be a bounded lower semicon-
tinuous function such that

for all (28)

Then has a fixed point such that .
Theorem 3.3:Assume that the neuron parameters ,

and the external stimulus are periodic in with period so
that

Let be a nonnegative real number such that . Suppose
further that

(29)

(30)

Then (11) has a periodic solution of periodwhich is a global
attractor.

Proof: The global attractivity of a periodic solution of
(11), if it exists, follows from Theorem 3.1. Hence we will
prove only the existence of a periodic solution. Let and

denote the solutions of (11) corresponding to the initial
values and , respectively, satisfying

Proceeding as in the proof of Theorem 3.1, we obtain

(31)

which implies that

(32)

We note by hypothesis that and we let in (32) to
obtain

(33)

(34)

From (34), we derive

(35)

We define : and :
as follows:

(36)

(37)

As a consequence of (35)–(37)

(38)

It follows from (38) and Caristi’s fixed point theorem that:
has a fixed point, say such that
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. Consider now the solutions and
; these two solutions satisfy

and hence by the uniqueness of solutions of (11) we have

for all

Hence the solution is periodic with period . The
uniqueness and global attractivity of this periodic solution
follow from Theorem 3.1.

IV. DISTRIBUTED DELAYS

Time delays in the dynamics of neural networks need not nec-
essarily be discrete and temporally uniform as it has been pro-
posed in (11). It is quite plausible for the time delay in synaptic
transmission or processing to be continuously distributed over
a finite or infinite duration; the intensity of influence of the
delay-effects can vary over the length of the time delay and this
influence is usually modeled by a delay kernel. Accordingly we
consider a modification of (11) given by

(39)

together with an initial value for the membrane potential in the
form

(40)

where is a finite positive number; , , are contin-
uous and bounded functions defined on . The
delay kernel : is assumed to be contin-
uous. We assume that the state space of (39) is the space of
real-valued functions defined on which are continuous
and endowed with the supremum norm; in conventional nota-
tion this space is where

is continuous

and

The existence of a globally attracting periodic solution of (39) is
established in the following. We use the notation of the previous
section in the following.

Theorem 4.1:Suppose , , are continuous and pe-
riodic with period ; we assume that in (39) and

(41)

(42)

then (39) has a globally attracting periodic solution of period.
Proof: The details of proof are analogous to those of

Theorems 3.1 and 3.3; we shall be brief. Let
and be any two solutions of (39) with initial
values , , respectively. We can then obtain from (39)

(43)

By using Gronwall’s inequality in (43)

(44)

and hence

(45)

Now by using (41) in (45)

(46)
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By assumption and hence we have from (46)

(47)

The remaining details of proof are similar to those of
Theorem 3.3 and we omit these to avoid repetition. The
global attractivity of the periodic solution is a consequence of
(45).

In the next result we consider the case of delays distributed
over an infinite (unbounded) interval characterized by
a delay kernel : satisfying certain con-
ditions to be specified. In particular we consider an equation of
the form

(48)

together with an initial condition of the form

is bounded and continuous (49)

We assume as before that , , are periodic with period
. The delay kernel is assumed to satisfy the integra-

bility condition

(50)

We need two preliminary results in order to prove the existence
of periodic solutions of (48).

Lemma 4.2:Assume that : is such
that the infinite series

converges uniformly in and we let

(51)

Then is a periodic solution of (48) if and only if is a
periodic solution of period of

(52)

Proof: Suppose is a periodic solution of period of
(48). Then

By the periodicity of and the uniform convergence in (51),
we have

(53)
implying that is a solution of (52). Now if is a periodic
solution of period of (52), then one can reverse the above
sequence of steps and show that is also a periodic solution
of (48). We omit these details.

Lemma 4.3: If the delay kernel : sat-
isfies (50) and (51) then

(54)

Proof: The result follows from the uniform convergence
in (51) and

Theorem 4.4:Assume that , and satisfy

(55)

(56)

Then (52) has a periodic solution of period.
Proof: Let and be two

solutions of (52) corresponding to the initial values
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Proceeding as in the proof of Theorem 4.1, one can obtain

(57)

We let

(58)

and obtain from (55)–(58) that

(59)

One can now proceed as in the proof of Theorem 4.1 and com-
plete the remaining details to establish the existence of a peri-
odic solution of (52). We omit further details.

Theorem 4.5:Assume that the hypotheses of Theorem 4.4
hold. Then (48) has a periodic solution which is globally
attractive.

Proof: Let and denote any two solutions of (48).
Then we have from (48) after an application of the mean value
theorem of differential calculus and simplification

(60)

Let us consider a Lyapunov functional de-
fined by

(61)

From (55) we have

(62)

and hence from which it will follow that

(63)

due to the boundedness of initial values and the solutions
of (48) on . Calculating the upper right derivative

of along the solutions of (48) and by using
(60)

(64)

leading to

(65)

It follows from (65) that

(66)

The boundedness of solutions of (48) implies that of their
derivatives on and hence the solutions of (48) are
uniformly continuous on . By Barbalat’s lemma we can
conclude from (66) that

as (67)

Now if denotes a periodic solution and denotes any
arbitrary solution, then (67) implies the global attractivity of
the periodic solution . The global attractivity of the periodic
solution also implies its uniqueness. The proof is complete.

V. PERIODICALLY VARYING DELAYS

In this section we consider the dynamics of

(68)
where , , are as before continuous real-valued func-
tions defined on and are periodic with a common pe-
riod . The time delay is defined on and is
assumed to be continuous and periodic with period sat-
isfying

as

(69)

The initial values associated with (68) are of the form

where denotes the space of continuous real-valued
functions defined on endowed with the supremum
norm. In this section we establish the existence of a globally
attractive periodic solution of (68). First we establish an
improved version of inequality due to [13].

Lemma 5.1:Let , and be positive numbers and let
be a nonnegative solution of

(70)

If , then there exists a positive real numbersuch that

(71)

Note: The inequality established by Halanay [13] for (70) when
is of the form

for some positive numbers and . We need detailed informa-
tion about the constant in our application.

Proof: By assumption and we define as follows:

(72)

Note that ; due to the continuity of , there
exists a positive number saysatisfying

(73)

Define by the following:

(74)
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From (70) and (74)

(75)

Let be defined by

(76)

and let denote an arbitrary number such that . First we
show that

for (77)

It is true from the definition of that

for

If (77) is not valid, then there exists a such that

for

(78)

But we have from (75) and (78)

which is not possible. Hence (77) holds. Since is arbitrary,
we have from (76)

as for (79)

From the definition of and , we derive that

(80)
and the proof is complete.

We note that if denotes a solution of (68) defined for
, then is also a solution of (68) defined for

due to the periodicity of , , and . Therefore in
order to prove the existence of a periodic solution of (68) it is
sufficient to prove the existence of a fixed point of a Poincare
map. Let denote a solution of (68) satisfying

We define the Poincare map: by
the following:

(81)

where denotes the value of of (68)
with an initial value from .

Theorem 5.2:Let , , and be continuous and
be periodic in with period ; suppose that

, ; let be differentiable satisfying

and

as

Let for . If

(82)

(83)

then (68) has a globally attractive periodic solution of period.
Proof: Let , denote two

solutions of (68) corresponding to the initial values
, , . We derive from

(68)

which implies

and leads to

(84)

We derive from (84) that

(85)

By a change of variable in the integral in (85) in the form
, we obtain

(86)



GOPALSAMY AND SARIYASA: TIME DELAYS AND STIMULUS DEPENDENT PATTERN FORMATION 559

By applying Gronwall’s inequality in (86)

(87)

Taking the supremum on both sides of (87) over the interval
, we obtain

(88)

By hypothesis and hence we have from (88)

(89)

where is defined in (83). One can now proceed as in The-
orem 4.1 to show the existence of a satisfying

from which it will follow that
(68) has a periodic solution of period. The global attractivity
of the periodic solution follows from Lemma 5.1. For instance
if is a periodic solution of (68) and is any arbitrary so-
lution of (68), then we have from

(90)

that

(91)

It follows from (82) that and hence we obtain by virtue
of Lemma 5.1

(92)
for some positive number. The global attractivity of together
with its uniform stability will follow from (92). This completes
the proof.

VI. NUMERICAL SIMULATIONS

We consider (11) with the delay

(93)
The neuron parameters and and the external stimulus

are, respectively, given by

(94)

(95)

(96)

These parameters are periodic functions of period . The
sufficient conditions for the existence of periodic solution of
period 7 are satisfied, in fact we have with , ,

,

and

Numerical simulations of (93) are generated from the dis-
crete-time analogs of (93) in the form

(97)

where denotes the greatest integer contained inand de-
notes a positive real number such that . In the discrete
form, (94)–(96) become

(98)

(99)

(100)

In Fig. 1 we demonstrate the periodic solution of (97) with
, and initial value , .

Fig. 2 shows the solutions of (97) corresponding to two initial
values and , . As
in Fig. 1, we use and .

As another example, we choose the parameters and
to be constant and as in (100) with the delay .

For instance, we have

(101)

(102)

(103)

In Fig. 3, we plot the solution of (97) subjected to these param-
eters and initial value , . Here we take

and .
We now consider (11) with a delay kernel as in (48)

(104)
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Fig. 1. Encoded pattern of period 7 (solid line) and the input stimulusf(t) of period 7 (dashed line).

Fig. 2. Two encoded patterns of period 7 corresponding to two initial values' (s) (solid line) and' (s) (circle) merge. The input stimulusf(t) of period 7 is
shown (dashed line).

in which , , are periodic with period .
The delay kernel is assumed to satisfy the integrability
condition

(105)

We assume the delay kernel are of the form

(106)

Using this kernel, equation (104) can be written in the form

(107)

The equation (107) can be converted into a system of ordinary
differential equations by introducing an auxiliary variablede-
fined by

(108)

It is found from (107) and (108) thatand are governed by

(109)

This system is then solved numerically by means of
Runge–Kutta scheme. Assuming the neuron parameters
as in (94)–(96) and the delay kernel as in (106) with , it is
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Fig. 3. Encoded pattern of period 7 (solid line) along with the input stimulusf(t) of period 7 (dashed line).

Fig. 4. Two encoded patternsx(t) of period 7 corresponding to two initial valuesx(0) = 2 (solid line) andx(0) = �1 (circle) along with the input stimulus
f(t) of period 7 (dashed line).

found that the integrability condition in (105) and the assump-
tions of Theorem 4.4 are satisfied. Two periodic solutions of
period of (107) corresponding to and two initial
values and is illustrated in Fig. 4.

In the following we consider another form of (104) given by

(110)

where , , are periodic with period and the
delay kernel satisfies the integrability condition

(111)

Upon substituting the delay kernel given in (106), (110)
becomes

(112)

We let
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Fig. 5. Two encoded patternsx(t) of period 7 corresponding to two initial valuesx(0) = 2 (solid line) andx(0) = �2 (circle) along with the input stimulus
f(t) of period 7 (dashed line).

and obtain the following system of differential equations:

(113)

We again assume the neuron parameters as in (94)–(96) and the
delay kernel as in (106) with , it is found that the integra-
bility condition in (111) and the assumptions of Theorem 4.4 are
satisfied. Fig. 5 displays two periodic solutions of period
of (112) corresponding to and two initial values
and .

VII. CONCLUDING REMARKS

We note that if the recurrent stimulus in (1) is negligible or
absent and if the dissipation rate has exactly the same pe-
riod as that of the input stimulus, our (1) reduces to the simpler
equation

(114)

where

The linear equation (114) can be solved to obtain a periodic
solution given by

(115)

whose existence is guaranteed by our hypothesis that

(116)

Thus the dissipativity assumption on guarantees the exis-
tence of a periodic solution given by (115) precluding any reso-
nance type behavior in the absence of self-connection. Nonres-
onance is due to the dissipative nature of the system (114). If

is any other solution of (114) then we have

(117)

It is not difficult to see that (117) leads to

as

implying that the periodic solution is asymptotically stable.
The dynamics of neural networks subjected to time varying

external stimuli have been considered by Rescignoet al. [19],
König and Schillen [16], Bondarenko [2]. In this article we have
obtained sufficient conditions for encoding of an external pe-
riodic stimulus by a single neuron-like processor having pro-
cessing delays of various types. The dynamics of neural net-
works with two or more neurons with inhibitory and excitatory
connections with transmission delays and external periodic and
almost-periodic stimuli will be considered in the forthcoming
articles.
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