research

A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays

Abstract

This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this Letter, the analysis problem for the existence and stability of periodic solutions is investigated for a class of general discrete-time recurrent neural networks with time-varying delays. For the neural networks under study, a generalized activation function is considered, and the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. By employing the latest free-weighting matrix method, an appropriate Lyapunov–Krasovskii functional is constructed and several sufficient conditions are established to ensure the existence, uniqueness, and globally exponential stability of the periodic solution for the addressed neural network. The conditions are dependent on both the lower bound and upper bound of the time-varying time delays. Furthermore, the conditions are expressed in terms of the linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Two simulation examples are given to show the effectiveness and less conservatism of the proposed criteria.This work was supported in part by the National Natural Science Foundation of China under Grant 50608072, an International Joint Project sponsored by the Royal Society of the UK and the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany

    Similar works