90 research outputs found

    Information technology for active ageing: A review of theory and practice

    Get PDF
    Active Ageing aims to foster a physically, mentally and socially active lifestyle as a person ages. It is a complex, multi-faceted problem that involves a variety of different actors, such as policy makers, doctors, care givers, family members, friends and, of course, older adults. This review aims to understand the role of a new actor, which increasingly plays the role of enabler and facilitator, i.e., that of the technology provider. The review specifically focuses on Information Technology (IT), with a particular emphasis on software applications, and on how IT can prevent decline, compensate for lost capabilities, aid care, and enhance existing capabilities. The analysis confirms the crucial role of IT in Active Ageing, shows that Active Ageing requires a multidisciplinary approach, and identifies the need for better integration of hardware, software, the environment and the involved actors

    Sustainable Technology and Elderly Life

    Get PDF
    The coming years will see an exponential increase in the proportion of elderly people in our society. This accelerated growth brings with it major challenges in relation to the sustainability of the system. There are different aspects where these changes will have a special incidence: health systems and their monitoring; the development of a framework in which the elderly can develop their daily lives satisfactorily; and in the design of intelligent cities adapted to the future sociodemographic profile. The discussion of the challenges faced, together with the current technological evolution, can show possible ways of meeting the challenges. There are different aspects where these changes will have a special incidence: health systems and their monitoring; the development of a framework in which the elderly can develop their daily lives satisfactorily; and in the design of intelligent cities adapted to the future sociodemographic profile. This special issue discusses various ways in which sustainable technologies can be applied to improve the lives of the elderly. Six articles on the subject are featured in this volume. From a systematic review of the literature to the development of gamification and health improvement projects. The articles present suggestive proposals for the improvement of the lives of the elderly. The volume is a resource of interest for the scientific community, since it shows different research gaps in the current state of the art. But it is also a document that can help social policy makers and people working in this domain to planning successful projects

    Information Technology for Active Ageing: A Review of Theory and Practice

    Full text link

    The Use of digital games to enhance the physical exercise activity of the elderly : a case of Finland

    Get PDF
    According to the World Health Organization (WHO), population ageing is a global phenomenon, which brings both challenges and opportunities for society. The current longer expected lifespan can create opportunities for the elderly to contribute in many ways to their families and communities. However, it greatly depends on their quality of life, which is affected by many factors, including physical and functional health, social well-being, and cognitive abilities. The WHO (2012) states that physical health is one of the indicators for the elderly’s quality of life, and it declines with increasing age. Participation in regular physical exercises can help the elderly improve their physical and mental health, and this has been aided by the use of modern technologies to promote the elderly’s physical and functional health. Of these latest technologies, digital games have shown promise to improve and enhance the elderly’s physical activities through fun and engaging gameplay. The literature highlights that some commercial games in the market (e.g. Microsoft Kinect- Sports and Nintendo Wii Sports games) have the potential to improve the elderly’s physical health such as gait, balance, and fall prevention. However, researchers argue that these commercial games are not designed specifically for the elderly and their physical exercise activities. They state that most commercial games are not user-friendly for the elderly whose functional and physical abilities are limited due to their advanced years. The literature points out that more studies need to be undertaken to understand the usability and usefulness of digital games for physical exercise activities so that game designers can create elderly-friendly digital games in the future. In Finland, the government has been focusing on promoting healthy ageing and increasing home care services for the elderly. In recent years, Finnish researchers have used digital games to promote older Finns’ healthy and active ageing. The existing literature, whilst showing the potential of digital games for elderly Finns’ physical health, also acknowledges further research is needed particularly in the context of Finland. Thus, in this study, we aimed at investigating digital games to specifically assess their applications for older Finns’ physical activities, focusing on the quality of users’ experiences, and their reported ease of use and perceived usefulness. We used the mixed methods approach, which applies both qualitative and quantitative research methods. The study design included four stages: requirements gathering, analysis and design, prototyping, and evaluation. Firstly, we conducted pre-studies to elicit users’ requirements. This was followed by the analysis of the resulting data to identify trends and patterns, which fuelled ideas in the brainstorming game design and development phases. The final product was a digital game-based physical exercise called the Skiing Game. We then evaluated the Skiing Game in Finland with 21 elderly Finns (M=7, F=14, Average Age =76). By using questionnaires, observation, and interviews, we investigated user experiences, focusing on the game’s usability, and usefulness for enhancing the physical activity and wellbeing of the elderly. We also conducted a comparative test of the Skiing Game in Japan with 24 elderly Japanese participants (M=12, F=12, Average Age = 72) to further understand non-Finnish elderly users’ experiences. The findings from the usability study of the Skiing Game in Finland demonstrated that elderly Finns had a positive experience in the gameplay, and their motivation was noticeably high. It also confirmed that elderly Finns have a genuine interest in digital game-based exercises and strong intentions to play digital games as a form of physical exercise in the future. Although prior to the study most of them had negative views and misconceptions about digital games, after the gameplay their attitudes were decidedly positive. They acknowledged that whilst playing digital games could be an alternative way of exercising for them their use would primarily be when they don’t have access to their usual non-digital physical exercise. The Japanese usability of the Skiing Game showed that the elderly Japanese people also had positive user experiences in playing digital games, and also intend to use them in the future. Similarly, after playing the game they reported that their attitudes towards digital games become positive, and indicated playing digital games could be an alternative way of exercising. Although the comparison of the two studies suggests that the elderly Finns had relatively more positive experiences whilst playing the Skiing Game, compared to their Japanese counterparts, in general, both groups had a positive experience in the gameplay and showed interest in digital games as an alternative exercise. Based on the usability lessons learned from these two studies, recommendations for practitioners and designers regarding improvements in game design and development are made in this report. Implementing these modifications into future designs and further development of digital games for the elderly will improve their commercial viability and user uptake. The findings from this study can provide valuable insights, particularly for Finnish policymakers and healthcare practitioners who are keen to introduce digital games into the aged-care sector in Finland. The studies have also provided valuable insights into the optimal methods for introducing Finnish digital games to international markets, in particular, digital games tailored specifically for the physical exercise needs and motivations of the elderly. By taking into consideration the limitations of the study, we provide our future studies and further improvements of the game to be conducted

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    ICT-based system to predict and prevent falls (iStoppFalls): study protocol for an international multicenter randomized controlled trial

    Get PDF
    [EN] Background: Falls are very common, especially in adults aged 65 years and older. Within the current international European Commission's Seventh Framework Program (FP7) project 'iStoppFalls' an Information and Communication Technology (ICT) based system has been developed to regularly assess a person's risk of falling in their own home and to deliver an individual and tailored home-based exercise and education program for fall prevention. The primary aims of iStoppFalls are to assess the feasibility and acceptability of the intervention program, and its effectiveness to improve balance, muscle strength and quality of life in older people. Methods/Design: This international, multicenter study is designed as a single-blinded, two-group randomized controlled trial. A total of 160 community-dwelling older people aged 65 years and older will be recruited in Germany (n = 60), Spain (n = 40), and Australia (n = 60) between November 2013 and May 2014. Participants in the intervention group will conduct a 16-week exercise program using the iStoppFalls system through their television set at home. Participants are encouraged to exercise for a total duration of 180 minutes per week. The training program consists of a variety of balance and strength exercises in the form of video games using exergame technology. Educational material about a healthy lifestyle will be provided to each participant. Final reassessments will be conducted after 16 weeks. The assessments include physical and cognitive tests as well as questionnaires assessing health, fear of falling, quality of life and psychosocial determinants. Falls will be followed up for six months by monthly falls calendars. Discussion: We hypothesize that the regular use of this newly developed ICT-based system for fall prevention at home is feasible for older people. By using the iStoppFalls sensor-based exercise program, older people are expected to improve in balance and strength outcomes. In addition, the exercise training may have a positive impact on quality of life by reducing the risk of falls. Taken together with expected cognitive improvements, the individual approach of the iStoppFalls program may provide an effective model for fall prevention in older people who prefer to exercise at home.The authors are members of the iStoppFalls project. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no [287361]. The Australian arm is funded by an Australian National Health and Medical Research Council (NHMRC) EU collaboration grant (#1038210). The content of the manuscript does not represent the opinion of the European Community or NHMRC. The funding sources have no role in any aspects of this study. Yves J. Gschwind has been financially supported by a research grant from the Margarete and Walter Lichtenstein Foundation, Basel, Switzerland. Stephen R. Lord is supported by NHMRC as a Senior Principal Research Fellow and Kim Delbaere as a NHMRC Career Development Fellow. All other authors are supported by the iStoppFalls project, European Community Grant Agreement 287361. On behalf the iStoppFalls consortium, we would like to thank all the participants who take part in the study.Gschwind, YJ.; Eichberg, S.; Marston, HR.; Ejupi, A.; De Rosario Martínez, H.; Kroll, M.; Drobics, M.... (2014). ICT-based system to predict and prevent falls (iStoppFalls): study protocol for an international multicenter randomized controlled trial. BMC Geriatrics. 14(91):1-13. https://doi.org/10.1186/1471-2318-14-91S1131491Berchicci M, Lucci G, Di Russo F: Benefits of physical exercise on the aging brain: the role of the prefrontal cortex. J Gerontol A Biol Sci Med Sci. 2013, 68 (11): 1337-1341.World Health Organization: WHO Global Report on Falls Prevention in Older Age. 2007, Geneva: World Health Organization (WHO)Michael YL, Whitlock EP, Lin JS, Fu R, O'Connor EA, Gold R, U. S. Preventive Services Task Force: Primary care-relevant interventions to prevent falling in older adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2010, 153 (12): 815-825.Tinetti ME, Speechly M, Ginter SF: Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988, 319 (26): 1701-1707.Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, Fentem PH, Bassey EJ: Falls by elderly people at home: prevalence and associated factors. Age Ageing. 1988, 17 (6): 365-372.Rubenstein LZ: Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing. 2006, 35: ii37-ii41.Salkeld G, Cameron ID, Cumming RG, Easter S, Seymour J, Kurrle SE, Quine S: Quality of life related to fear of falling and hip fracture in older women: a time trade off study commentary. BMJ. 2000, 320 (7231): 341-346.Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, Lamb SE: Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012, 9: CD007146Panel on Prevention of Falls in Older Persons: Summary of the updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc. 2011, 59 (1): 148-157.Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JC: Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc. 2008, 56 (12): 2234-2243.Dergance JM, Calmbach WL, Dhanda R, Miles TP, Hazuda HP, Mouton CP: Barriers to and benefits of leisure time physical activity in the elderly: differences across cultures. J Am Geriatr Soc. 2003, 51 (6): 863-868.Borson S, Scanlan J, Brush M, Vitaliano P, Dokmak A: The mini-cog: a cognitive 'vital signs' measure for dementia screening in multi-lingual elderly. Int J Geriatr Psychiatry. 2000, 15 (11): 1021-1027.Lamb SE, Jørstad-Stein EC, Hauer K, Becker C, Prevention of Falls Network Europe and Outcome Consensus Group: Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe Consensus. J Am Geriatr Soc. 2005, 53 (9): 1618-1622.Zhang W, Regterschot GR, Schaabova H, Baldus H, Zijlstra W: Test-retest reliability of a pendant-worn sensor device in measuring chair rise performance in older persons. Sensors. 2014, 14 (5): 8705-8717.De Rosario H, Belda-Lois JM, Fos F, Medina E, Poveda-Puente R, Kroll M: Correction of joint angles from Kinect for balance exercising and assessment. J Appl Biomech. 2013, 30 (2): 294-299.Ralston HJ, Lukin L: Energy levels of human body segments during level walking. Ergonomics. 1969, 12 (1): 39-McArdle WD, Katch FI, Katch VL: Energy expenditure at rest and during physical activity. Essentials of exercise physiology. 2006, Philadelphia: Lippincott Williams & Wilkins, 3Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR: Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011, 22 (3–4): 78-83.Campbell AJ, Robertson MC, Gardner MM, Norton RN, Tilyard MW, Buchner DM: Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ. 1997, 315 (7115): 1065-1069.Robertson MC, Devlin N, Gardner MM, Campbell AJ: Effectiveness and economic evaluation of a nurse delivered home exercise programme to prevent falls. 1: randomised controlled trial. BMJ. 2001, 322 (7288): 697-701.Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS, American College of Sports M: American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009, 41 (7): 1510-1530.Grimby G, Smedby B: ICF approved as the successor of ICIDH. J Rehabil Med. 2001, 33 (5): 193-194.Kroenke K, Spitzer RL, Williams JB: The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001, 16 (9): 606-613.Brooks R: EuroQol: the current state of play. Health policy. 1996, 37 (1): 53-72.Delbaere K, Smith ST, Lord SR: Development and initial validation of the iconographical falls efficacy scale. J Gerontol A Biol Sci Med Sci. 2011, 66 (6): 674-680.Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C: Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing. 2005, 34 (6): 614-619.Lord SR, Menz HB, Tiedemann A: A physiological profile approach to falls risk assessment and prevention. Phys Ther. 2003, 83 (3): 237-252.Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB: A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994, 49 (2): M85-M94.Podsiadlo D, Richardson S: The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991, 39 (2): 142-148.Schaubert KL, Bohannon RW: Reliability and validity of three strength measures obtained from community-dwelling elderly persons. J Strength Cond Res. 2005, 19 (3): 717-720.Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People: Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010, 39 (4): 412-423.Fritz S, Lusardi M: White paper: "walking speed: the sixth vital sign". J Geriatr Phys Ther. 2009, 32 (2): 46-49.Gschwind YJ, Bischoff-Ferrari HA, Bridenbaugh SA, Hardi I, Kressig RW: Association between serum vitamin D status and functional mobility in memory clinic patients aged 65 years and older. Gerontology. 2014, 60 (2): 123-129.Granacher U, Bridenbaugh SA, Muehlbauer T, Wehrle A, Kressig RW: Age-related effects on postural control under multi-task conditions. Gerontology. 2011, 57 (3): 247-255.Sheridan PL, Hausdorff JM: The role of higher-level cognitive function in gait: executive dysfunction contributes to fall risk in Alzheimer's disease. Dement Geriatr Cogn Disord. 2007, 24 (2): 125-137.Delbaere K, Hauer K, Lord SR: Evaluation of the incidental and planned activity questionnaire for older people. Br J Sports Med. 2010, 44 (14): 1029-1034.Huy C, Schneider S: Instrument for the assessment of middle-aged and older adults' physical activity: design, eliability and application of the German-PAQ-50+. Z Gerontol Geriatr. 2008, 41 (3): 208-216.Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM: Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand test. Phys Ther. 2005, 85 (10): 1034-1045.Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR: Validation of the Addenbrooke's Cognitive Examination III in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord. 2013, 36 (3–4): 242-250.Reitan RM: The relation of the trail making test to organic brain damage. J Consult Psychol. 1955, 19 (5): 393-394.Strauss E, Sherman EMS, Spreen O, Spreen O: A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. 2006, Oxford, New York: Oxford University Press, 3Lamberty GJ, Putnam SH, Chatel DM, Bieliauskas LA, Adams KM: Derived Trail Making Test indexes - a preliminary report. Neuropsy Neuropsy Be. 1994, 7 (3): 230-234.Wechsler D: Manual for the Wechsler Adult Intelligence Scale-III. 1997, San Antonio, Texas: Psychological CorporationFan J, McCandliss BD, Sommer T, Raz A, Posner MI: Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002, 14 (3): 340-347.Mueller ST: The PEBL Attentional Network Test (PANT). 2011, Computer software retrieved from http://pebl.sf.net/battery.html ,Beurskens R, Bock O: Age-related deficits of dual-task walking: a review. Neural plasticity. 2012, 2012: 131608-Marston HR: Older adults as 21st century game designers. The Computer Games Journal. 2012, 1 (1): 90-102.Mullen SP, Olson EA, Phillips SM, Szabo AN, Wojcicki TR, Mailey EL, Gothe NP, Fanning JT, Kramer AF, McAuley E: Measuring enjoyment of physical activity in older adults: invariance of the physical activity enjoyment scale (PACES) across groups and time. Int J Behav Nutr Phys Act. 2011, 8: 103-Kendzierski D, Decarlo KJ: Physical-Activity Enjoyment Scale - two validation studies. J Sport Exerc Psychol. 1991, 13 (1): 50-64.Borsci S, Federici S, Lauriola M: On the dimensionality of the system usability scale: a test of alternative measurement models. Cogn Process. 2009, 10 (3): 193-197.Payne BR, Jackson JJ, Noh SR, Stine-Morrow EA: In the zone: flow state and cognition in older adults. Psychol Aging. 2011, 26 (3): 738-743.Jackson SA, Marsh HW: Development and validation of a scale to measure optimal experience: the Flow State Scale. J Sport Exerc Psychol. 1996, 18 (1): 17-35.Hassenzahl M: The effect of perceived hedonic quality on product appealingness. Int J Hum-Comput Int. 2001, 13 (4): 481-499.Hassenzahl M, Tractinsky N: User experience - a research agenda. Behav Inform Technol. 2006, 25 (2): 91-97.Chuttur M: Overview of the technology acceptance model: origins, developments and future directions. Sprouts: Working Papers on Information Systems. 2009, 9: 37-Davies F: A Technology Acceptance Model for Empirically Testing New End-user Information Systems - Theory and Results. 1985, Cambridge, Massachusetts: Massachusetts Institute of TechnologySchoene D, Lord SR, Delbaere K, Severino C, Davies TA, Smith ST: A randomized controlled pilot study of home-based step training in older people using videogame technology. PLoS One. 2013, 8 (3): e57734-Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG, Consort: CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012, 10 (1): 28-55.Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hrobjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D: SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013, 346: e7586-Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW: Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011, 41 (5): 377-400.Granacher U, Muehlbauer T, Bridenbaugh S, Bleiker E, Wehrle A, Kressig RW: Balance training and multi-task performance in seniors. Int J Sports Med. 2010, 31 (5): 353-358.Kharrazi H, Lu AS, Gharghabi F, Coleman W: A scoping review of health game research: past, present, and future. Games Health J. 2012, 1: 2-de Bruin ED, Schoene D, Pichierri G, Smith ST: Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations. Z Gerontol Geriatr. 2010, 43 (4): 229-234.Lange BS, Requejo P, Flynn SM, Rizzo AA, Valero-Cuevas FJ, Baker L, Winstein C: The potential of virtual reality and gaming to assist successful aging with disability. Phys Med Rehabil Clin N Am. 2010, 21 (2): 339-356

    Creating Age-friendly Communities

    Get PDF
    The "Creating Age-friendly Communities: Housing and Technology" publication presents contemporary, innovative, and insightful narratives, debates, and frameworks based on an international collection of papers from scholars spanning the fields of gerontology, social sciences, architecture, computer science, and gerontechnology. This extensive collection of papers aims to move the narrative and debates forward in this interdisciplinary field of age-friendly cities and communities

    Acceptance of ambient assisted living (AAL) technologies among older Australians : a review of barriers in user experience

    Get PDF
    One of the great challenges facing Australian society is that of an ageing population. Amongst the issues involved in this drastic demographic change, the most significant aspect is the demand for older Australians to live independently at home. The development of Ambient Assisted Living (AAL) technologies aims to address this issue. The advancement of AAL applications have been done to support the users with their daily-life activities and health concerns by providing increased mobility, security, safety in emergencies, health-monitoring, improved lifestyle, and fall-detection through the use of sensors. However, the optimum uptake of these technologies among the end-users (the elderly Australians) still remains a big concern. Thus, there is an elevated need to understand the needs and preferences of the seniors in order to improve the acceptance of AAL applications. The aim of this study is to investigate the barriers and perceptions in the use of AAL applications amongst older Australians. Focus groups and quantitative surveys have been conducted to provide a detailed analysis of these impediments. The results show that there are different factors that restrict the use of these technologies along with the fact that elderly people have certain preferences when using them. An understanding of these factors has been gained and suggestions have been made to increase the acceptance of AAL devices. This work gives useful insights towards the design of AAL solutions according to user needs

    The SEE toolkit:How Young Adults Manage Low Self-esteem Using Personal Technologies

    Get PDF
    • …
    corecore