3,940 research outputs found

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    Design of a neural network simulator on a transputer array

    Get PDF
    A brief summary of neural networks is presented which concentrates on the design constraints imposed. Major design issues are discussed together with analysis methods and the chosen solutions. Although the system will be capable of running on most transputer architectures, it currently is being implemented on a 40-transputer system connected to a toroidal architecture. Predictions show a performance level equivalent to that of a highly optimized simulator running on the SX-2 supercomputer

    A Memory-Centric Customizable Domain-Specific FPGA Overlay for Accelerating Machine Learning Applications

    Get PDF
    Low latency inferencing is of paramount importance to a wide range of real time and userfacing Machine Learning (ML) applications. Field Programmable Gate Arrays (FPGAs) offer unique advantages in delivering low latency as well as energy efficient accelertors for low latency inferencing. Unfortunately, creating machine learning accelerators in FPGAs is not easy, requiring the use of vendor specific CAD tools and low level digital and hardware microarchitecture design knowledge that the majority of ML researchers do not possess. The continued refinement of High Level Synthesis (HLS) tools can reduce but not eliminate the need for hardware-specific design knowledge. The designs by these tools can also produce inefficient use of FPGA resources that ultimately limit the performance of the neural network. This research investigated a new FPGA-based software-hardware codesigned overlay architecture that opens the advantages of FPGAs to the broader ML user community. As an overlay, the proposed design allows rapid coding and deployment of different ML network configurations and different data-widths, eliminating the prior barrier of needing to resynthesize each design. This brings important attributes of code portability over different FPGA families. The proposed overlay design is a Single-Instruction-Multiple-Data (SIMD) Processor-In-Memory (PIM) architecture developed as a programmable overlay for FPGAs. In contrast to point designs, it can be programmed to implement different types of machine learning algorithms. The overlay architecture integrates bit-serial Arithmetic Logic Units (ALUs) with distributed Block RAMs (BRAMs). The PIM design increases the size of arithmetic operations and on-chip storage capacity. User-visible inference latencies are reduced by exploiting concurrent accesses to network parameters (weights and biases) and partial results stored throughout the distributed BRAMs. Run-time performance comparisons show that the proposed design achieves a speedup compared to HLS-based or custom-tuned equivalent designs. Notably, the proposed design is programmable, allowing rapid design space exploration without the need to resynthesize when changing ML algorithms on the FPGA

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Asynchronous spiking neurons, the natural key to exploit temporal sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms
    corecore