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Abstract—Inference of Deep Neural Networks for stream signal
(Video/Audio) processing in edge devices is still challenging.
Unlike the most state of the art inference engines which are
efficient for static signals, our brain is optimized for real-time
dynamic signal processing. We believe one important feature of
the brain (asynchronous state-full processing) is the key to its
excellence in this domain. In this work, we show how asyn-
chronous processing with state-full neurons allows exploitation of
the existing sparsity in natural signals. This paper explains three
different types of sparsity and proposes an inference algorithm
which exploits all types of sparsities in the execution of already
trained networks. Our experiments in three different applications
(Handwritten digit recognition, Autonomous Steering and Hand-
Gesture recognition) show that this model of inference reduces
the number of required operations for sparse input data by a
factor of one to two orders of magnitudes. Additionally, due to
fully asynchronous processing this type of inference can be run on
fully distributed and scalable neuromorphic hardware platforms.

I. INTRODUCTION

Deep Artificial Neural Networks (ANN) have flourished in
the past decade as a promising technology. Despite significant
breakthroughs in algorithmic procedures, the implementation
of deep learning systems requires the availability of large
amounts of data and computing power. Nowadays, these
computations are mainly provided by GPU platforms with
thousands of parallel processors.

However, a certain dedicated accelerator can dramatically
optimize deep ANN workloads, for instance by data reuse
strategies and more efficient implementations of the compu-
tational parallelism [1]. In some applications, training is not
performed as frequently as inference and it makes sense to
separately measure and optimize the required computation for
each of them. Since low power and low latency inference is
needed for many of today’s practical edge devices, in this work
we focus on a computationally optimized inference algorithm.

Even-though ANNs are inspired by biological brains, we
are still far from understanding the function of the brain.
Particularly we lack knowledge in three aspects: data collec-
tion (sensors), learning strategies and compute mechanisms.
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work

Performance of state of the art Neural Network processors
is not close to the performance of the brain, concerning the
trade-off between power consumption, accuracy, and speed.
Scalable architecture, parallel processing, in-memory compu-
tation, communication with spikes, asynchronous execution,
low precision computation, and fault tolerance are among
some of the known features of our brain.

Most of the dedicated neural network processors are exploit-
ing parallel processing to increase performance. However, the
other features of the biological brain like asynchronous com-
munication, sparse activity, and in-memory computation are
only considered recently in cutting edge research. However, it
is known that the efficient application of these features requires
algorithm-hardware co-design. For example, an algorithm that
can provide low-precision computation enables analog in-
memory processing which will result in extreme power sav-
ings. In this work, we introduce an algorithm to enable asyn-
chronous event-driven processing in hardware. Asynchronous
communication and processing are one of the key features
of biological brains. Asynchrony makes the brain architecture
scalable and enables fully distributed neural computations.
Additionally, as each neuron works individually without any
synchronization overhead, the response latency is generally
low.

We can categorize three different types of sparsities in
neural network inference: 1) Structural sparsity, 2) Spatial
sparsity, and 3) Temporal sparsity. As the dominant operation
in DNN is multiplication-accumulation of synaptic weights
and neuron’s output (activation), an operation can be skipped
when synaptic weight is zero (Structural sparsity) or neuron
output is zero (Spatial sparsity). For example, weight pruning
[2] is a technique to improve the efficiency of DNN inference
by pruning the connections and neurons. Therefore, weight
pruning may result in having structural sparsity. Another
example is using ReLU (y = max(0, X)) activation function
which results in spatial sparsity as the output of neurons
with ReLU is zero when its input is negative. Zero-skipping
in hardware imposes irregular execution which may reduce
the performance. However, when sparsity is high enough,
it pays the price[3]. Temporal sparsity is perhaps the most
challenging to exploit. Temporary sparse data is a type of



data that rarely change in time. For example, the output
of a security camera in a quiet place mostly contains the
background scene which doesn’t change in time. Exploiting
temporal sparsity means skipping re-calculation of a function
when none of its input changed from the last update time.
This means temporally sparse executions need remembering
the results of past calculations and reusing them efficiently.
Therefore it requires an extra amount of memory. It looks like
that the preference of the biological brain is to trade power
consumption with memory. Therefore even though the volume
of the brain is high, it is very low power due to skipping
redundant processing. While in the brain on average only
between 1% to 10% of the neurons are active at each moment
[4] [5], in conventional ANN inference, all the neurons in
the neural network should be updated and communicate their
output to the downstream neurons. Therefore, unlike brain,
the amount of operations in the ANN is fixed, independent of
temporal sparsity (amount of change over time) in the input
stream.

Even though data compression techniques have been used
for years to exploit the temporal sparsity (to save storage and
transmission bandwidth), still the standard routine to process
the same data includes decompression and applying heavy
processing with a high amount of redundancy. For example,
while a time-sampled voice needs around 64KB per second,
a decent video call application [6] needs less than 12KB per
second bandwidth to transfer this information. For video, the
situation is more interesting, while the data rate of a raw
High Definition (HD) video is more than 1.2Gb per second,
the same application needs around 1.5Mb per second for an
HD video call. Conventional video compression techniques
seem to have similar features as the human eye. The human
retina includes photo-receptors which fire spikes in response
to change detection in light intensity. Therefore we can only
see the objects if there is a relative movement between our
retina and the object or if the object changes its brightness.
To be able to see the non-moving objects [7], our eyes perform
unintentional rapid ballistic jumps of amplitude up to one
degree, called micro-saccades. This movement only happens
once or twice per second1. In between micro-saccades, our
vision system relies on motion events. On the other hand, the
basis of video compression techniques[8] is to send the whole
frames (I-Frame) once in a while and the data corresponding
to the moving objects in between. Therefore, one can consider
the eye as a compressor of visual stimulus and the brain as a
processor of compressed data.

Fully synchronous processing is also a problem of conven-
tional ANN inference in which each neuron must execute its
internal process after all of its inputs are available. In practice,
this means that a neuron can only fire on specific synchronous
triggers together with other neurons and a centralized process
should handle the synchronization. Scaling up a synchronous
process increases the synchronization overhead and eventually

1A video of eye movement during micro-saccades: https://youtu.be/U
xphN6ubmc

saturates the parallel processing capability which is known as
Amdahl’s law [9]. However, an asynchronous neural network,
in which each neuron can fire with a self-triggering mechanism
(threshold based), doesn’t need any synchronization. The brain
is a proof for this statement. It can scale from the 10k neurons
in a worm brain up to 86B neurons in a human brain while
using the same basic building blocks and architecture. This
level of scalability is achieved via asynchronous distributed
processing and event-based communication[10]. Inspired from
biology, event-based simulation techniques were used for
simulations of spiking neuron networks for a long time[11]
and hardware implementation of asynchronous communication
and processing is implemented in many of the available neuro-
morphic processors [12] [13] [14] [15] [16]. The asynchronous
activity allows separate processing units to work independently
without sharing a clock signal or any synchronization over-
head. Therefore, an asynchronous neuromorphic platform can
be scaled up easily without losing performance. Additionally,
asynchronous events can be communicated efficiently using a
packet switching network on chip [17] [10] [13].

As Neural Networks are mostly used for natural signal
processing (like audio/video streams), which is temporally
sparse, enabling sparse processing in inference engines will
have a great impact on power consumption. In this paper, we
propose a modified version of the bio-inspired Spiking Neural
Network (SNN) to carefully adapt its interesting asynchronous
inference feature into a non-spiking time-triggered neural
network without compromising the accuracy. We show our
proposed hybrid network can naturally exploit spatial and
temporal sparsity by avoiding redundant operations.

Fig 1 illustrates a simplified schematic of an SNN which
is used in this paper. In an SNN with Integrate&Fire neurons,
each neuron has a membrane potential which updates upon
the integration of the inputs from other neurons over time. If
a neuron’s membrane potential reaches a predefined threshold,
an output spike is fired (asynchronous self-triggering with
threshold) and propagated downstream to all its connected
neurons. Otherwise, the spiking neuron remains silent and
does not provide any output. Similar to our brain, in this
neural network only small fractions of neurons are active
simultaneously and due to asynchronous processing, they
almost do not consume any energy when they are silent.

This type of processing has two advantages over syn-
chronous processing: First, unlike synchronous neurons which
need to update and communicate their output continuously,
our SNN neuron only updates its membrane potential (internal
state) when there is an event (spike) in one of its inputs (event-
driven process). Second, an input spike can be processed
immediately and the neuron can fire anytime without waiting
for an external trigger signal (low latency).

Many researchers aim to train SNNs by using bio-inspired
learning rules [18] [19] [20] [21] and try to model the
current understanding of the brain. Other researchers exploit
the algorithmic advances in deep learning to train an ANN
and study methods to convert a pre-trained ANN to an SNN
architecture that is more suited for mapping to asynchronous
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Fig. 1: A general feed-forward neural network. Small circles
show individual neurons. The green neurons are the ones that
received a spike and should be updated and the red neurons
are the ones that fired after receiving a spike. The process
starts from the left-hand side by input spikes coming from a
sensor and ends in the right-hand side where output spikes can
be easily related to a class of object or a decision which the
network is trained to make. Typically, the amount of sparsity
increases as we go further from the input layer to the output
layer.

neuromorphic platforms [22] [23] [24] [25] [26]. The third
category tries to modify the available deep learning algorithms
and directly train an SNN with error back-propagation [27]
[28] [29] [30] [31]. As we do not want to touch the training
algorithm and propose a one-to-one mapping of an already
trained ANN neurons to SNN neurons (both architectures have
the same number of neurons and synapses), this work mostly
fits in the second category.

The most straightforward and used method to convert a
pre-trained ANN to an SNN is to encode output values of
ANN neurons in the firing rate of spiking neurons (rate
coding) [32]. In this method, the output of an ANN unit is
mapped to the average firing rate of a spiking neuron [24]. To
reduce the amount of firing and synaptic operations in this
coding scheme, some of the hyper-parameters of the SNN
(like leak rate and threshold of neurons) can be optimized
before [23] [24] or even during [26] inference. Even-though
using frequency of firing as the neuron output makes the
conversion mathematically exact, since the equations are based
on the average firing rate of the neurons, many spikes per
neuron are needed for the spiking network to become stable.
This will increase latency, power and redundant processing of
events in the hardware. This overhead is contradictory to the
potential efficiency of SNN because low latency processing
and low power consumption are the features that make SNN
inference more interesting than their ANN counterparts [33].
Even though with this type of coding, we can benefit from
spatial sparsity (since no spike will be fired for neurons with
zero output), utilizing temporal sparsity is still a challenge.

Another approach is to encode the neuron output values
into the time of firing (Temporal coding) [32]. One famous
type of coding information in spikes is called Time To First
Spike (TTFS) coding [27]. In this coding, the output value
for each neuron is coded in the time of its first firing. So
each neuron can fire at maximum one time. Neurons don’t

have leakage and should be reset after processing each input
frame. Using this type of coding is not trivial for converting
an already trained ANN to SNN. Therefore in the previous
works, researchers tried to modify the deep learning methods
and train the network directly with spiking neurons [34] [28].
TTFS is not the only way to encode information in the time
of spikes. Recently some less restrictive solutions are also
proposed [29] [30] [31]. In these cases, the SNN neurons
are leaky Integrate and fire and they are not limited to fire
only once after reset. Generally, these methods show great
improvement from the latency and number of spikes compare
to rate coding approaches. However, we found the following
disadvantages for them which forced us to not using them:

• These methods need to re-train the network as they are
not compatible with ANN inference. Additionally, the
introduced training algorithms for these methods are not
mature yet and do not show competitive performance for
more complex tasks.

• In the mentioned works [27] [28] [29] [30] [31], addi-
tional to neuron state, synapses are also dynamic and
state-full (not instant). This means that the arrival of each
spike equals a leaky current injection to the neuron which
adds complexity during hardware implementation[35].

• Specifically, the TTFS method is optimized for im-
age processing and cannot exploit temporal sparsity in
streaming video/audio processing as it is required to reset
all neurons after each frame.

• From the hardware implementation point of view, coding
information in time may slow-down the throughput as
“delay” is part of the algorithm and cannot be avoided.
Accelerating the process would be possible only if the
communication jitter remains reasonably small compared
to the minimum time unit of the process. However, a
packet switching network, in general, does not guarantee
very low jitter communication.

Considering our needs for sparse inference, we decided to
introduce a new neuron model which is somewhere in between
“synchronous ANN nodes” and “leaky integrate and fire (LIF)
spiking neurons”. Our goal was to optimize the number
of operations for spatio-temporal sparsity while performing
asynchronous inference.

This paper is a continuation of our previous brief paper[36].
In the present paper, in addition to more detailed explanations,
we extend our algorithm to use “valued spikes” which results
in a smaller number of required events. Additionally, since
our previous paper only reported results from the MNIST
dataset, we have added two more experiments to strengthen
the paper. In the second experiment, we process a framed-
based video for an autonomous steering application. In this
experiment we showed that when there is temporal sparsity at
the input, our proposed algorithm can exploit it by reducing
the number of required operations per frames, on average. For
the third experiment, we use event-based cameras for hand-
gesture recognition to show that the proposed algorithm works
well with these types of inputs. In the next Section, we will
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explain the proposed inference algorithm. Then in Section III
we present the results from bench-marking this algorithm with
the mentioned data-sets. Finally, a brief disscussion is provided
at the end.

II. PROPOSED ALGORITHM

In a conventional neural network, output of a neuron is
related to it’s inputs and weights with the following equations:

x = W × I + b (1)

o = f(x) (2)

W and b are the weight array2 (1 × n) and bias (trainable
parameters), I is the input array (n × 1), o is the neuron’s
output, f(x) is a non-linear activation function and x is called
‘neuron state’. In a conventional inference, for every new input
array (for example, a new frame in a video), x (and o) need to
be recalculated which require n2 multiply and accumulation
(MAC). For natural signal processing, where the input to each
neuron is sparse in time (∆I(t) is a sparse array3), we can
reformulate the equations.

∆I(t) = I(t)− I(t− 1) (3)

x(t) = (W ×∆I(t)) + x(t− 1) (4)

∆o(t) = f(x(t))− f(x(t− 1)) (5)

Eq. 4 shows it is possible to calculate the current state of
neuron by adding the amount of change to the previous state.
For a sparse ∆I(t), in which number of non-zero elements is
m (m << n), number of required MAC operation to calculate
the new state shrinks to m× n.

Eq. 4 can be re-written as an asynchronous, self-triggered
event-based procedure as described in Algorithm 1. Each event
(or spike) comes from one of the input synapses (synapse i)
with weight wi and carries a non-zero value (δi). Composition
of all the events in time-step t makes the ∆I(t) array in Eq.
4 (very similar to sigma-delta modulation [37] [38]).

To make the computation more efficient, we can quantize
the ∆o and introduce a threshold (T ) on the minimum change.
This will result in skipping events for negligible changes. To
do so, we change the ∆o equation in Algorithm 1 with the
Eq. 6.

∆o = T × (

⌊
f(x′)

T

⌋
−
⌊
f(x)

T

⌋
) (6)

where bAc is the integer part of A.
Choosing the threshold is a trade-off as a coarser quanti-

zation results in higher quantization error but will generate
fewer spikes (an extreme case is using an ANN with binary

2n is the number of inputs to the neuron
3t is the algorithm time-step, for example can be the frame number in a

frame-based system

Algorithm 1 Update state of neuron when an input event
comes from neuron i
x = b
for each incoming spike do

x′ = x+ (wi × δi)
∆o = f(x′)− f(x)
if ∆o 6= 0 then

Fire a spike with value δ = ∆o
end if
x = x′

end for

(a) (b)

Fig. 2: Output of a neuron after receiving events with random
values along with the generated output spikes when threshold
is one (a)direct quantization (b)hysteresis quantization.

activation [39] [40]). Direct quantization, as explained in Eq.
6, results in an extra firing activity of spiking neurons. As
it can be seen in Fig. 2(a) in direct quantization, when the
output (o = f(X)) is somewhere near the transition point of
two quantization levels, small variations/oscillations in output
may result in extra firing of spikes which reduces sparsity in
inference execution.

To increase sparsity even more, we decided to use hys-
teresis quantization. The output of the “Hysteresis Quantizer”
depends not only on the current input value but also on the
previous value of its output. Eq. 7 formulates the hysteresis
quantization method where the quantization level (threshold)
is ‘1’.

outnew ←


outold + 1, (input− outold) > +1

outold − 1, (input− outold) < −1

outold, otherwise

(7)

Algorithm 2 is proposing an asynchronous event-based
inference with hysteresis quantization of neuron’s output over
time. As it can be seen, an extra persistent variable per neuron
(xLFT ) is required to support hysteresis quantization4.

As mentioned before, unlike a neuronal unit in an ANN,
the membrane potential of our spiking neuron dynamically
changes over time by receiving asynchronous pre-synaptic
spikes. Compare to more conventional SNN neurons, in our

4LFT stands for ‘Last Firing Time’. We use xLFT to recover the outold
in Eq.7, therefore it is possible to directly store the oLFT .
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Algorithm 2 Update state of neuron when an input event
comes from neuron i, Hysteresis quantization in time is
applied.

x = b
xLFT = 0
for each incoming spike do

x← x+ (wi × δi)
∆o = f(x)− f(xLFT )
if |∆o| ≥ T then

Fire a spike with value δ = ∆o
xLFT = x

end if
end for

current scheme a pre-synaptic spike charges the neuron imme-
diately (stateless synapse) and the membrane potential leak is
not needed (except for the first layer in case of using Dynamic
Vision Sensor which is explained in section III).

III. RESULTS

To be able to compare with state-of-the-art results and the
performance indexes, we have applied the proposed method
on three different datasets.

The first dataset is the well known handwritten digit dataset
(MNIST [41]) used for image processing and contains static
images (without temporal sparsity). As the content of MNIST
frames is almost binary pixels (black and white) with a high
amount of sparsity (on average, around 84% of pixels in
each frame are zero), we decided to include this dataset for
benchmarking.

The second dataset is autonomous steering dataset (PilotNet
[42]) which contains a video stream recorded by an installed
camera in-front of a car and a synchronous recording of
the steering angle as the ground-truth label. This dataset
reveals how our proposed algorithm can improve processing
performance by exploiting temporal sparsity.

The third dataset is a set of hand gestures recorded by an
event-based camera (DVS128 Gesture Dataset [43]). Event-
based cameras or Dynamic Vision Sensors (DVSs) [44] [45]
[45] [46] are bio-inspired vision sensors with independent
asynchronous pixels which generate events when they detect
a change in light intensity. Dynamic Vision Sensors generate
and transmit information of the visual scene in a completely
different manner than conventional frame-based cameras. Sev-
eral advantages (like high-speed sensing, high dynamic range,
and low power consumption) result in their growing use in
neuromorphic engineering and low power mobile applications.
The sparse event-based data provided by these sensors can be
directly consumed by our network5.

A. Handwritten Digit Recognition (MNIST)

As the first experiment, we have applied the proposed
method using the MNIST [41] dataset. For this experiment,

5As it will be explained, we need to use a frame to event conversion for
the other two datasets

200 250 300 350 400 450 500 550 600

Number of operations (Kop)

65

70

75

80

85

90

95

100

A
c
c
u
ra

c
y

Fig. 3: Accuracy of SNN versus the average number of oper-
ations for all the neurons in the MNIST experiment network.

we used binary output spikes (±1) for all hidden layers.
Initially, we have trained an ANN for the MNIST dataset using
standard stochastic gradient descent. For conversion of the
ANN network to SNN, the weights and biases are used in the
equivalent SNN. To do the conversion we need to define the
threshold (equivalent to quantization level) and also a method
to convert input frames to spikes.

We converted the input frames to spikes with V alue = +1
by sending the pixels with higher intensity earlier in time
(“linear intensity to delay” coding) [18]. Additionally, pixels
with an intensity equal or less than ‘0.2’ (pixel values are
normalized between ‘0’ and ‘1’) will not fire at all (the
quantization threshold for input frame is ‘0.2’). Using this
method, each MNIST frame is converted to a spike train with
the duration of ‘0.8’ TU (time Unit)6.

We have trained a 4-layer convolutional neural network
(16C5 − 2AP2 − 8C5 − 2AP2 − 256FC[50%Dropout] −
10FC)7. Table I shows the results of the proposed method for
the MNIST dataset.

“Avg Num Spikes” in Table I, reports the average number of
spikes per input frame per neuron in the network. To measure
the accuracy of the MNIST network, we accumulated the
number of output spikes (considering the sign of spikes) and
the maximum number was assumed as the winner class.

In Table I, we also added the results from the other state-
of-the-art works on supervised training of Spiking Neural
Networks. Most of the previous works only reported the
accuracy but not the number of spikes. In our conversion
method simulation ends after one-time presentation of all the
input spikes. However, in the case of “Rate Coding” where the
intensity of the input pixels is converted to the firing rate, there
is not a definite time for the end of the input presentation. In
this case, by the longer presentation of the input, the accuracy
increases until the network becomes completely stable. On the

6Time Unit (TU) is a unit of time and depends on the real-time hardware
processing capability. For simulation purposes, a TU can be a second,
millisecond, microsecond or so without losing generality.

7xCy is a convolutional layer with x filters and kernel size of y×y and
xFC is a fully connected layer with x neurons. xAPy is an Average-Pooling
layer with kernel size of x × y. For these convolutions, we keep the input
and output size equal.
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TABLE I: Accuracy of quantized ANN and equivalent SNN for MNIST dataset.
Model ANN SNN Number of Number of Avg Num Spikes

Accuracy Accuracy Neurons Parameters (per frame)
This work(thr=1.0) 2xConv-2xFC 99.21% 99.19% 15k 100k 0.25
This work(thr=2.0) 2xConv-2xFC 99.21% 97.26% 15k 100k 0.08
Rate Coding [24] 2xConv-2xFC 99.21% 99.18% 15k 100k 0.48

(Reproduced, 25 time steps)
Rate Coding [24] 2xConv-2xFC 99.21% 98.80% 15k 100k 0.26

(Reproduced, 15 time steps)
TTFS coding [27] 3xConv-2xFC 98.96% 98.57% 7.7k 1.2M 0.13
TTFS coding [47] 2xFC 98.50% 96.98% 1.4k 476k 0.10
Rate Coding [23] 2xConv-1xFC 99.14% 99.1% 5.1k 50k 19.25

SLAYER [29] 2xConv-1xFC — 99.36% 22k 145k —
DECOLLE [30] 3xConv-1xFC 99.09% 98.77% 19k 73k —

Rate Coding [24] — 99.44% 99.44% 8k 1.2M —
Rate Coding [25] 1xConv-1xFC 98.3% 98.32% 9.5k 88k —
Rate Coding [48] 2xConv-2xFC — 99.42% 20.7k 0.6M —
TTFS coding [28] 2xFC — 97.55% 1.5k 635k —

other hand, longer input presentation results in more number
of spikes on average, resulting in a trade-off.

We measured the pre-matured accuracy of our SNN when
only part of the input spike is presented, which is plotted in
Fig.3. This figure shows the average number of operations
(synaptic update) which is needed to achieve a specific accu-
racy8.

B. Autonomous Steering (PilotNet)

PilotNet is a neural network introduced by NVIDIA [42]
along with the dataset9. The dataset contains video recording
(10 frames per second) by a camera placed in front of the car
as well as the corresponding steering angels for each frame
of the video10. To find out the amount of redundancy (espe-
cially temporal sparsity) in this dataset, we compressed the
raw frames using “Motion JPEG 2000 lossless compression”
algorithm which resulted in 18 times reduction in size. In our
SNN, we exploit sparsity in all the neural layers (not only
input layer) but sparsity in the input can result in sparsity in
deeper layers.

PilotNet is a 10-layer feed-forward convolutional neural net-
work (CNN) with input size of 3×66×200 and configuration
of 24C5−36C5−48C5−64C3−64C3−1164FC−100FC−
50FC−10FC−1FC. The output of the convolutions is only
‘Valid’ area (reduced size) with a stride of two in the first
three layers. Activation functions for all the layers except the
output neuron is ReLU . The output of this network is only one
neuron with the activation function of Tanh which predicts
the steering angle for the input frame. This network contains
108K neurons and 1.6M parameters.

To run our asynchronous inference on the PilotNet, we
used the provided trained network model. Input events to the
network is generated with the Algorithm 3 which is similar to
our spiking neuron model with a linear activation function.

We used the original trained model directly and only
provided the neurons’ threshold value to have reasonable

8In this experiment, the proposed Spiking Neural Network does not need
multiplication as spike values are binary.

9https://github.com/lhzlhz/PilotNet
10https://youtu.be/ N7nC-8YxzE

Algorithm 3 Generating input events from video stream, every
pixel is considered as one neuron

xLFT (0) = 0
for every frame do

x← Pixel V alue
∆o = x− xLFT
if |∆o| ≥ T then

Fire a spike with value δ = ∆o
xLFT ← x

end if
end for
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Fig. 4: Prediction angles of the first few frames for the original
CNN inference and the proposed SNN inference.

accuracy. Fig. 4 shows the output of the PilotNet for the
original CNN inference and the proposed SNN inference for
part of the dataset.

Fig. 5 shows the number of required MAC operations during
inference of PilotNet in the original CNN and also number
of synaptic update (updates in Algorithm 2) in the SNN for
the first 2800 frames11. For these frames, average number of
operations in SNN is 3.1Mops and it decreases to 1.7 for the
first 20,000 frames which is more than 16 times less than plain
CNN inference. The current dataset has a very low frame rate
(10 fps). To find out how are the numbers for higher frame-

11https://youtu.be/OySJKJWGrjw
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Fig. 5: The number of synaptic updates of the first few
frames for the proposed SNN inference in comparison with the
Number of MAC operations for the original CNN inference.

rates, we made a 15min recording with a 480fps camera12

which resulted in 140 times reduction in number of operations
compare to the plain CNN. As it is predictable, by increasing
the frame-rate or increasing the resolution of the frames, the
amount of reduction over the number of operation will increase
due to increase in the redundancy.

C. Hand gesture recognition (DVS128 Gesture Dataset)

In the third experiment, we have evaluated the performance
of our network by using the hand gesture dataset from
IBM [43]. This dataset is recorded with a DVS camera for a
gesture classification task and includes data recorded from 29
subjects, each performing 11 hand gestures under 3 different
lighting conditions. Each recording is a stream of events with
an average duration of 72 seconds.

Events from DVS contain a binary value (±1 as the
sign of spike), which means an increase in light intensity
results in a positive spike and decrease in light intensity
results in a negative spike. In an ideal case (ignoring the
analog circuit artifacts and noise), a DVS pixel behaves very
similar to what is described in Algorithm 3 except the fact
that there is no frame-period. Therefore DVS pixels reacts
almost instantaneously and asynchronously to the change in
light intensity.

In practical scenarios, due to noise in analog circuits, each
pixel may have a little bit of unbalance in their positive
and negative thresholds. Additionally, each pixel may have
spontaneous positive or negative firing without any change
in light intensity. If we change the light intensity from α to
β and then back to α again, it is highly probable that the
accumulation of the output events from an analog DVS may
have an offset from zero. If we directly connect an analog
DVS to our network, this artifact results in the saturation of
the neurons’ state in the next layers. To mitigate this issue,
we took the following actions: 1) We do not use the sign
of events as the value of the event and apply value = +1
for all the DVS events. Instead, we accumulate events with
different signs in different neurons (which means we consider

12https://youtu.be/LyPTj3Parp0

two input channels for our network)13. 2) We introduce an
intermediate layer between DVS and our neural network. This
layer is built-up with the SNN neurons in Algorithm 2 and a
linear activation function. However, as input events are always
positive, to avoid saturation and to forget the past events, we
apply a periodic exponential leakage in this layer as described
in Algorithm 4. This process happens in parallel with normal
event processing which is described in Algorithm 2.

Algorithm 4 Leakage of state for intermediate layer between
DVS and our SNN. This algorithm runs periodically to apply
leak. τ is the leak rate

for every leak period do
x← x× e(leak period/τ)
∆o = x− xLFT
if |∆o| ≥ T then

Fire a spike with value δ = ∆o
xLFT ← x

end if
end for

As it can be seen in Algorithm 4, leakage also can cause
spike firing. These spikes propagate in the network and result
in the removal of the past event from neurons’ state. Please
note that leakage process in Algorithm 4 only applies to the
intermediate layer between DVS and our SNN.

To use standard back-propagation of error and GPU accel-
erated training, we train our networks in Tensorflow with a
frame-based method. However, for this experiment, input data
is event-based. To use our frame-based platform for training,
we used the fact that neuron states in our SNN network are
equivalent to neuron states in the frame-based network (when
ignoring the quantization error). To build a dataset for training,
we take periodic snapshots from the state of neurons in our
intermediate leaky layer. These snapshots are used as the
input frames for our ANN training platform. The snapshot
rate should be high enough to capture the temporal dynamics
of the scene. In this experiment, we used the sampling period
of 64 ms. Using higher snapshot rate results in more accurate
SNN conversion but also slows down the training.

Similarly, the leak rate (τ ) in Algorithm 4 is a parameter
that depends on the dynamics of the scene. By looking at
the snapshots from the intermediate layer, it is possible to
manually choose a proper leak rate. High leak rate results
in empty snapshots while a low leak rate results in blurred
snapshots. In this experiment leak rate is 32ms. It is also
possible to systemically optimize the leak rate by looking at
the network accuracy. Leak Period is another hyper-parameter
in Algorithm 4. Ideally, leak period should be as small as
possible. However, to reduce the number of operations, we
need to compromise. In this experiment leak period is 6.4ms.

We have trained a 4-layer all convolutional neural network
(CNN) [50] with input size of 2× 64× 64 and configuration

13It is possible to completely ignore the sign of the events and only have
one input channel. In [49] it is explained that ignoring the sign of events may
result in a small accuracy loss
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Fig. 6: Measured accuracy and number of synaptic update
in SNN inference system for classification of DVS gesture
dataset, over a range of spiking threshold for hidden layers
and inference time window of 64 ms.

of 64C7 − 2AP2 − 128C7 − 2AP2 − 128C7 − 2AP2 −
11GAP (Global Average Pooling). The activation function for
all the hidden layers is ReLU .

To report the accuracy, we used the state of output neurons
and reported the neuron with maximum output as winner14. As
in this dataset, the presentation of each class takes 6.5 seconds
on average, one may choose different inference time windows
for classification. We perform each inference by resetting the
state of all neurons and then presenting a part of the recording
with the length of inference time window. For example, when
the inference time window is 640ms, a recording of 6.4
seconds is divided into 10 individual recordings and results
in 10 separate classifications.

For the experiments in this section, we have quantized all
of the synaptic weights to 8 bits and stored them as integer
numbers between −128 to +127. We applied several spiking
thresholds to neurons of hidden layers to illustrate the trade-
off between accuracy and number of operations15. The results
are summarized in Fig.6 where accuracy is reported with the
inference time window of 64 ms. The number of synaptic
operations per second for the proposed SNN inference has
also been shown in Fig.6. In an equivalent CNN with frame-
based input and frame rate of 60 Hz, the number of required
MAC operations is around 146Gops per second. Fig.6 shows
for SNN with T = 256 number of synaptic updates is around
5Gops.

Fig.7 shows the accuracy of the SNN inference for several
inference time windows. As it is expected, by increasing the
inference time window which equivalent of increasing the

14This is equivalent to choose T = 0 for the last layer and accumulate
the values of output spikes for each output neurons.

15In each test, all the neurons have a similar threshold

Fig. 7: Accuracy at different inference time windows and for
5 different thresholds.

amount of information for each classification, the classification
accuracy (and latency) increases. We have compared the
results of this experiment with some other recent works in
Table II. In this table, SNN accuracy is the accuracy of the
system after presenting input for a time equal to “inference
window”, while CNN accuracy refers to the accuracy of the
frame-based system. For example in our work, each frame
period is 64ms and therefore, CNN accuracy is possible to
be less than the SNN accuracy when SNN inference window
is 896ms. As it is illustrated in Fig.7, SNN accuracy when
inference window is 64ms, is always smaller or equal to the
CNN accuracy.

IV. DISSCUSSION

In this work, we presented a method to convert a syn-
chronous ANN to an asynchronous SNN and efficiently exploit
spatio-temporal sparsity. Even though our goal was not trying
to mimic biological neural networks, we used the sparsity and
asynchronous execution features of bio-inspired implementa-
tions. Our motivation was to offer a better implementation
of synchronous ANN since a direct ANN implementation
is not easily scalable and won’t easily exploit the sparsity
of the network for efficient power consumption. We have
shown our proposed method reduces the number of operations
dramatically for different datasets while its impact on accuracy
is negligible.

In this paper, we compared the number of operations in
an ANN with the number of operations in the proposed
SNN. However, the type of operations on these two platforms
are not exactly similar. Even though both operations include
reading weights and inputs from memories, performing a
MAC operation and writing back the results, SNN neurons
should perform extra comparison and subtraction. However,
in recent silicon technology, energy consumption is dominant
by memory accesses. For example, a 32 bit read and write into
an on-chip SRAM memory consumes approximately 6 times
than a 32b floating-point addition and 12 times than a 32b
fixed-point addition16. Read and write into an off-chip DRAM
memory will be approximately 100 times more expensive than
the on-chip SRAM.

16This numbers are approximate and may change based on the technology,
temperature, and layout of the chip
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TABLE II: Comparison of classification results for DVS-Gesture dataset
Model ANN Accuracy SNN Accuracy inference window Number of neurons Number of parameter

This work(thr=64) 4xConv 90.5% 95.24% 896ms 445K 1.2M
IBM EEDN [43] 16xConv 93.06% 94.59 80ms 286K 19M

SLayer [29] 8-layers — 93.64% 1500ms — —
DECOLLE [30] 3xConv-1xFC — 94.18% 1800ms 95K 1.4M

As it is mentioned before, even though using this al-
gorithm reduces the amount of memory accesses, having
stateful neurons increase the footprint of memories. For
example, for the MNIST/PilotNet/Hang-Gesture networks
which have 15k/108k/445k neurons, we need to allocate
60KB/432KB/1.78MB of state memory (if states of a neuron
consume 32b) beside the 100KB/1.6MB/1.2MB of weight
memory (for 8b weights). For the hardware platforms that are
using expensive on-chip SRAM to reduce power consumption,
this might be a big problem (due to silicon area). Additionally,
using event-driven process requires true random access to the
memory which disrupts burst data read/write from/to off-chip
memory and reduces its effective bandwidth. Nevertheless,
new memory technologies can be a good solution for this
problem [51] due to their compact bit size and lower static
power consumption. An option would be to stop thinking about
the integration of memory into our processors and think of
integrating our processing units into a memory chip[52].

Other optimization methods like weight quantization,
weight pruning or activation quantization during training can
be done in parallel to this work for further optimizing the
networks. For future works, we will take a deeper look into
advanced video compression algorithms to see how we can
adapt their techniques to more efficiently remove redundancies
in space, time and frequency domains.
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